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Covalency Effects in KNiFs. III. Theoretical Studies
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For the (NiF6) complex in KNiFz we have constructed molecular orbitals (MO) which are linear com-
binations of the Ni'+ and F Hartree-Fock atomic orbitals. These LCAO-MO, introduced by Van Vleck,
are of the form +=N 't'(v —Xx) in which e is the Nis+ 3d function and x a linear combination of the suitable
F functions. The orbitals were assumed to be solutions of Schrodinger's equation h+=E%', where the
Hamiltonian was h= —6/2+ V~+VI,. The terms 7 ~ and VL, describe the Coulombic and exchange inter-
actions with the metal ion and ligands, respectively. Matrix elements of the form (+ ( h ~%') were evaluated
numerically on an IBM 7090. Assuming ) and the overlap between gfg and x to be small, the energy was
minimized and the parameters X were determined. For the 2pa. bonding and the 2s bonding the calculated
values were E, 'I'X, =0.383 and

¹

'~9, =0.109 which agreed very well with the values
¹

'~'X„=0.337 and
S, '~9, =0.116 determined in the nuclear magnetic resonance experiment. The molecular orbitals were
used to calculate the cubic crystal field splitting 10Dq=(%', ~h(+,)—(+q~h[%'&) which is the promotion
energy of an electron from a t2, orbital to an e, orbital. The calculated value of 10Dq=6350 cm ' agreed
quite well with the observed value of 10Dq= 7250 cm ' considering the accuracy of the calculation. Further-
more, the reduction of the spin-orbit parameter and the Racah parameter B from their free-ion values are
satisfactorily explained by the molecular orbital approach. The physical interpretation of these results is
emphasized. In particular, the only contributions to 10Dq with the correct sign come from the off-diagonal
matrix elements associated with the covalency; the amount of m electron admixture is shown to be large; one
novel physical mechanism partly responsible for the large m bonding is the crystal Geld splitting of the F
pa. and p71- levels by the Ni'+ ions; expanding the Ni'+ radial function is shown to be unnecessary for some
purposes and incorrect for the remainder. Details of the calculation are presented and implications of the
LCAO-MO model discussed.

I. INTRODUCTION
' 'N most applications of crystal field theory the cubic
~ ~ field splitting 10Dq has been a parameter adjusted to
fit the experimental data. However, several attempts
have been made to calculate 10Dq from first principles.

The first attempts to calculate 10Dq by Van Vleck'
and Polder' used a point charge or point-dipole approxi-
mation for the ligands and calculated the splitting of the
d-electron levels in the field of the ligands. The case
chosen by Van Vleck and by many of the subsequent
authors was Cr'+ surrounded by six water molecules
with their negative oxygens pointing towards the Cr'+.
These calculations gave the proper sign for 10Dq since
it is obvious that a negative charge at the corners of the
octahedron raises the energy of the e, electrons, which
point towards the negative charges, above the energy
of the t2, electrons which point between them. Further-
more, by using Slater orbitals for the 3d-electron func-
tions the values of 10Dq were quite close to the experi-
mental measurements. This harmony lasted until the
calculations were extended by Kleiner. ' Instead of
representing the ligands by a negative-point charge,
Kleiner included the delocalization of the oxygen ligand

' J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939).' D. Polder, Physica 9, 709 (1942).' W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).

electrons by using Slater orbitals for the oxygen elec-
trons. This too was a semiclassical calculation in which
the d electron's energy in the field of the ligands was
calculated. Unfortunately, the value of 10Dq calculated
in this way had the wrong sign, because the positive
nuclear charge attracted the e, electrons more than the
ligand electrons repelled them. A major advance in
the problem was made by Tanabe and Sugano who did
a quantum-mechanical calculation based on a purely
ionic model. They used the same physical model as
Kleiner, i.e., delocalized electrons on the ligand, but
they orthogonalized the d electrons to the ligands which
meant that their wave functions were composed of
d-electron functions plus some admixture of ligand 2s
and 2p functions. Furthermore, they included quantum-
mechanical exchange integrals between the d electrons
and the ligand electrons in addition to the Coulomb
integrals considered by Kleiner. They did obtain a value
of 10Dq of the proper sign but the result involved some
ambiguity because reliable 3d wave function were un-
available at that time. Phillipss acting on a suggestion of
Herring's claimed that the point-charge approximation
was correct because all the additional terms calculated
by Tanabe and Sugano would cancel. Freeman and

4 Y. Tanabe and S. Sugano, J.Phys. Soc. Japan 11,864 (1956).
~ J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959).
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Watson' repeated Kleiner's calculation using Watson'sv
Hartree-Fock wave functions and concluded that the
point-charge model only agrees with experiment when
Slater functions are used. Thus, Phillips' claim that the
point-charge model can explain the observed crystal
field is only correct if one used such diHuse-starting
wave functions as Slater's. Freeman and Watson showed
that by calculating Kleiner's correction with Hartree-
Fock functions the result was no longer a negative value
of 10Dq but rather a very small value which could be
slightly greater than zero with reasonable assumptions.

All these treatments, both semiclassical and quantum
mechanical, are confined to the ionic model. However, as
shown by the nuclear magnetic resonance (NMR) ex-
periments presented in the previous paper, ' it now is
necessary to go a step further away from the ionic
model. In this paper, we present the details of a mo-
lecular orbital (MO) calculation from first principles of
both the cubic crystalline field-splitting 10Dq and the
linear combination of atomic orbital (LCAO) wave
functions in KNiF3. The values calculated agree with
the experimental results presented in the previous two

papers. As a result of this calculation our understand-
ing of the physical origins of the crystalline field and of
the covalency is quite diferent from the traditionla
picture.

From the calculation we have come to the following
conclusions:

1. The semiclassical view of the crystalline field

splitting, which considers the ligands as perturbations
upon the metal ion, is merely one contribution which in
KNiF3 is small and has the wrong sign.

2. The major contribution to 10Dq arises from the
covalency.

3. The w bonding is described by large ~ admixtures
into the molecular orbitals —admixtures which are al-
most as large as the 0--bonding terms.

4. The m bonding is important wherever the wave
functions themselves are important, i.e., in hyperfine
interactions, in optical intensities, and in magnetic-
exchange interactions, but it is not as important as the
cr bonding when the bond energy is involved, i.e., in
bond distances, bond energies, etc.

II. MOLECULAR ORBITAL FORMALISM
IN IONIC CRYSTALS

In molecular orbital theory, the MO wave functions,

+, and orbital energies, E, are obtained bysolving the
Hartree-Fock equation

(2.1)

electron. It should be noted that, in general, the Hamil-
tonian involves coefficients of molecular orbitals, y,
appearing below. The usual way of solving this Hartree-
Fock equation is to fix y in the Hamiltonian and then
vary y in the wave functions so as to minimize the
energy; finally, after iteration, p in the Hamiltonian
should be equal to p in the wave functions. As a starting
point one assumes that the antibonding and bonding
wave functions, respectively,

+'=& '"(9—&x)

+'=&' '"(x+vt ),

(2.2)

(2.3)

are the exact eigenfunctions of (2.1). In (2.2) and (2.3),
y is a normalized wave function localized at the metal
ion, x is a normalized MO wave function for the sur-
rounding atom system, X and y are numerical coeS.-
cients, and E's are normalization constants. This is
equivalent to assuming that the antibonding orbital
energy is already maximized by X in (2.2) and the bond-
ing orbital energy is already minimized by y in (2.3).
Inserting (2.2) into (2.1) and integrating after the
multiplication by q or x from the left, we obtain

L(~lhl 9)—~(s I&Ix)],
1—)S

(2.4)

(2 5)

where 5 is the overlap integral between q and y. Here,
without any loss of generality, we assume q and p to be
real. Similarly, inserting (2.3) into (2.1), we obtain

L(XIIIX)+v(el&Ix)),
1+yS

1
L(xtI IX)-v'(~lhl v)j

1—7'

(2 6)

(2 7)

xg= p~x~+p~x~

Se=psSs+ pie)
~e= ~s/Ps= ~~/P~p

(2 g)

In our problem, the 0'&'s have just the forms given in
(2.2) and (2.3), but the 4,'s have more complicated
forms as shown in (2.1) and (2.5) of part I. Even for the
la,tter, a simple extension of (2.4) and (2.5) is possible
if X, 5, and X are replaced by X„S„andX„respectively,
which are defined as follows;

where
where h is the Hartree-Fock Hamiltonian for one

1is +1ir = 1.
s A. J. Freeman and R. E.Watson, Phys. Rev. 120, 1254 (1960).
7 R. E. Watson, Phys. Rev. 118, 1036 (1960).
R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963),

referred to as part I.
'K. Knox, R. G. Shulman, and S. Sugano, preceding paper

/Phys. Rev. 180, 512 (1963)j, referred to as part IL

Therefore, we can use the expressions (2.4) and (2.5) for
both the e, and t2, antibonding molecular orbitals in our
problem.

The cubic crystalline held-splitting parameter,
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6=—10Dq, is defined as

h=E, —E(. (2.9)

Assuming ) a,nd S to be small quantities of the order of
c (c«1) and neglecting quantities smaller than e', we
arrive at the expression,

~=C(v. ll I 9.)—(v ill I 9i))
—C).(v. l&Ix.)—) (e I@l&))

+C().S.—),S,)(9.lhl &.)), (2.10)

where ) f ——) and X&——X . Here we have used the impor-
tant fact, shown below, that the difference C(y, lhl y,)—(«Ihl qi)) is of the same order as X(q Ihip), which
has the order of e' when the order of (yl hlx) is unity.
By using relations (2.6) of part I, (2.10) can be re-
written as follows:

~=C(v II I v )—(ail&l «))
+ CP.,s,+h.S.—) .s.) (&, I el 9,)]
—Cs,(„.lhlx, )+s.(&.lhlx. )—s.(v lola.))
—Cv. (~.I

I
I
X.)+~.(v. I

&
I
x.)
—v. (v ilI I

x-)). (211)
The first line of (2.11) involves the point-charge term,
Kleiner's correction, and the exchange interaction be-
tween metal and ligand electrons. The second term
comes from the renormalization. The third line comes
from the nonorthogonality between metal and ligand
orbitals, and the fourth and fifth lines come from the
covalency which is measured by p as mentioned in Sec. 2
of part I. Phillips' argued that the terms in the third
line would cancel Kleiner's correction and the exchange
terms in the first line. It is numerically shown later
that this argument is approximately correct, although
the main contribution to 6 comes from the fourth and
fifth lines, the covalency term, not from the point-
charge term which is much smaller than the covalency
contribution.

For the ts, orbitals, X is determined by Eq. (2.4) and
(2.5), with the result that

L
—(«ihl x.)+s.(9 ilhl «))

xC(yilhl «)—(x.l&lx.)) '. (2.12)

Similarly, by equating (2.6) and (2.7), we have

~.=C-(. II lx.)-~.(x.II lx.))
xC(«II I «)—(x. l ~l x.)?',

=X.—S., (2.13)

as required C(2.6) of part I) by the orthogonality be-
tween the bonding and antibonding orbitals. In deriving
(2.12) and (2.13), we have neglected small terms of
order e"(e)2).

For the e, orbitals, we cannot determine X, and A,,
from (2.4) and (2.5). In this case, we determine 7„y„
and y„ from the expressions for E„~and E„~similar to
(2.6) and (2.7). E„sand E, s are the orbital energies of
the 8'„~ and N„s bonding orbitals in (2.5) of part I,

respectively. Neglecting again small terms of higher
order, we obtain

v.= C
—(9.lhl x.)+5'.(x.Ihl x ))

XC(q. l&l q.)—(&.Ihlx.)) ', (2.14)

v.= L
—(v. l &I X.)+~.(&.l

&
I
x.))

xC(v. ll I ~.)—()c.l@lx.)) ' (2 15)

III. HAMILTONIAN

The Hartree-Fock Hamiltonian for a single electron
in our problem is

X k+ Vppysy (3.1)

in which h is the Hamiltonian of a specific CNiFs]'
molecule and V„~, represents the effects arising because
the molecule is embedded in a crystal. Assuming that
the electron of interest is localized in the molecule for
which Ig is given, we are interested in V„~, in the region
of the molecule. Neglecting the periodicity of crystals is
one of the fundamental assumptions employed in
Bethe's crystalline field theory. '0 Experimentally it is
well known that a cubic crystalline field parameter is
insensitive to the surroundings beyond the nearest
neighbor ions or ligands: For example, the cubic
crystalline field parameters in the Ni(NHs)ss+ and
Ni(el)ss+ systems are almost the same, 10300 and
10800 cm ', respectively. " Theoretically it is easily
shown that the cubic-field potential around the central
metal ion arising from distant ions beyond the nearest
neighbors is very small compared with that arising from
the nearest neighbor ions: The ratio of the former part
of the crystal field to the latter is only 0.023 in the NaC1-

type crystal. Therefore, the potential inside the hole,
which is originally occupied by the CNiFs)' molecule,
is fairly Rat around the center. Folds of the potential
of cubic symmetry inside the hole deepen as one ap-
proaches the edge of the hole, but we can show that at
the points where the nearest neighbor Quorines are
located, the depth of the potential fold is still shallow. "
From these experimental and theoretical considerations,
we now assume that V„~, is a constant in the region of
the CNiFs)' molecule. In other words, we adopt the
physical model that the molecule is placed in a Rat

'0 H. Bethe, Ann. Physik 3, 133 (1929).
n Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9, 766 (1954).
~ The potential at the center of the hole is obtained by sub-

tracting the point-charge potential due to the nearest neighbor
Quorines from minus the Madelung potential at the nickel site.
This gives the depth of the potential well, —0.7666 in atomic
units, at the center. The potential at the points originally occupied
by the nearest-neighbor Quorines is roughly estimated by sub-
tracting the point-charge potential due to the Ni'+F& originally
accomodated in the hole from the Madelung potential at the
Quorine site. This gives the depth of the potential well, —0.7763,
at the points of interest.

7..= (~, lhi X.)xC(x, lI I
X.)—(x.lhl ~.))-'. (2.16)

By using relations (2.6) of part I, X, and ), are now
obtained from (2.14) and (2.15), respectively.
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bottom potential well. This simplification enables us to
neglect U„~, as this merely shifts the origin of the
energy scale.

The Hamiltonian h is

h= hp+h', (3 2)

where hp is the Hamiltonian of a purely ionic Ni'+F6
complex in which the overlaps are ignored (S=O) and
h is a correction due to the deviation from this semi-
classical ionic model. Following Tanabe and Sugano, 4

the Hamiltonian hp is given by

hp= ,'&+—Vp—r+Vr. , (3 3)

in which —6/2 is the kinetic energy operator, Vpr is the
Coulomb and exchange interaction operator of all the
Ni2+ electrons and the Ni2+ nucleus of the form:

2,5

2.0

1,0

0,5

p»(r )
HART REE —POCK

t—--r(15.67e 3'7 7"+1.57e ' ")

V V +V Coul+V ex (3.4)
0'
0 2

I INAU

where V„„comes from the nucleus and the core
electrons up to and including the 3p shell. We have used

Fro. 2. A comparison of Froese's numerical values of fft„(r).
=Pt„(r)/r with the analytical function shown in Eq. (4.2).

V„„=—(10+31.0e 'rp")/r, (3.5) Thus, (3.6) can be written as

which is obtained" by an analytical 6t to Watson's
Hartree-Fock core potential of Ni2+. V~ '"' and V~'x

come from seven d electrons with the configuration
p~r)'I

'+u'+v'+, where &', tt', I', u', and v' are the
abbreviations for the atomic orbitals pg, q „p~, p„, and
y„given in (2.3) of part I. Subscripts + and —indicate
spins accommodated. Rewriting (2.9) we have

6(=10Dq) =—E(tp'e' 'Tp) E(tt'e' 'As) —(3.6)

where E's are the energies of the states indicated in the
brackets. The detailed electron configurations of the
I' component of the 'Ts state and of the 'As state are

4ri+I +u+v+ for 2 s with Me= 1,
)~rt~l+u+v~ for 'Tel with M, = 1.

Coul

v=tk n nt~tf
(3 g)

Vg'"= —Q
v=8

drs rts 'y„*(2)q„(1)Prs, (3 9)

where I'12 is the permutation operator for electrons 1
and 2.

In (3.3) Vr, is the contribution from the six fluoride
ions, which can be decomposed as follows,

(3.7)

where v and t are the molecular orbitals belonging to e
and t2, respectively. The explicit forms of Vz '"' and
V~'" are

2.5 V V point+ V K+V E (3.10)

2.0

2( -2.315 I -4.523 I=r (~.41e ' +45.ae '

+129.5e ' +24.1e
In (3.10), Vr,&""t is the point-charge potential given by

Vr,"'"t——g 1/lr —R, l, (3.11)

1,5

1.0

0.5

0
0 2

RADIUS IN AU

which comes from a single negative point charge
assumed at the position, R;, of the six fluorine nuclei. We
have separated out of the Hamiltonian the point-charge
contribution because historically this has been discussed
as an approximation of the crystalline 6eld potential.
As mentioned Previously, Vr, x in (3.10) is Kleiner's
additional potential due to the imperfect screening of
the ligand nuclear charge by ligand electrons, and it is
expressed as

Vix= 2 —3/
I
r —R*

I

FxG. 1. Normalized radial part of the Ni'+ 3d function, E3$(r)
(in atomic units) from Watson, where E3d(r) =P3d(r)/r.

"The numerical values of V,o„were kindly supplied by A. J.
Freeman.

+2 drp rip '
I p 't(2)I'. (3 12)

k=28 t2pz, 2yx, 2yy
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1.0

0.5

(r)2S = -11.156e-e.70I +10;805f.e-2.415I'
I"

P~s«~ HARTREE- FOCK

The normalized radial part of the Ni'+ 3d function,
taken from Watson's tables, is

Rsg(r) =r'(3 4096e """+4526.1e

+129.48e '"+24.071e " '") (4 1)

This function is plotted in Fig. 1.
Froese's numerical values" of F radial functions

from her Hartree-Fock calculation were used for our F
functions. The numerical values of Rs~(r) were fitted to
a two-term analytical function

Rs„(r)=r(15.671r ' "'4'+1.5742e ""4") (4.2)
-0.5

-1.0
0 2

I IN AU

Fio. 3. A comparison of Froese's numerical values of R2, (r)=Ps, (r)/r with the analytical function shown in Eq. (4.4).

which is compared with the numerical values in Fig. 2.
The coincidence of the two functions is not perfect but
the error introduced is negligible. The complete F 2p
functions are

(ps„,——F(10)Rs„,

(ps„' j'(——1&1)Rs„.

For the 2s function we used the Slater function
orthogonalized to the is-core function:

Vl,~ is the exchange-interaction operator introduced by
Tanabe and Sugano with the explicit form,

VL =—p it's fls-' Rs, (r) = (—11.156e ' ""+10.805re '"") (4 4)

k=2@,2yz, 2@x,2yy
9;s*(2)q;~(1)&is.

The agreement with

Fr

oese�'s
numerical values is

excellent as shown in Fig. 3. The complete 2s function is
We shall see later that this term makes important
contributions.

The Hamiltonian h' in (3.2) gives only a small con-
tribution when the overlap integral S and the covalency
y are small. In the following calculation, this term will
be neglected. This means that our calculation is the erst
step of a self-consistent field (SCF) calculation where
5=0 and y =0 are assumed in the Hamiltonian. A SCF
calculation would then substitute our calculated values
of S and 7 into the Hamiltonian and repeat the pro-
cedure until self-consistency was obtained.

IV. ORBITAL FUNCTIONS

ps, = (4s-) '"Rs,.

The 1s function has been shrunk into the Quorine
nucleus. However, the 1s-Slater function was used at
times and it is compared in Fig. 4 with Froese's values.

Since the radial functions are all drawn to the same
scale, it is possible to compare them. It can be seen that
R»(r) falls off more slowly than the others. To compare
the amplitude along a particular line, such as the inter-

2.5 i

As long as V„x, in the Hamiltonian (3.1) is assumed
to be a constant, the eigenfunction satisfying the
Hartree Fock equation (2.1) is a molecular orbital of the
LNiFsj' molecule. Furthermore, in predominantly
ionic crystals such as KNiF3 it is a good starting ap-
proximation to assume that the molecular orbital 4' is
a linear combination of free ion orbitals. Thus, we use
the molecular orbitals given in (2.1—5) of part I in
which the atomic orbitals are the Hartree-Fock solutions
of free Ni'+ and F ions '4

1.5

0

1.0

P1S(r'j HARTREE- FOCK

51 33 re-8.70 I

' An equivalent approach to this problem was described by
F.Ieger, T.Oguchi, W. O' Sullivan, and J.Yamashita, Phys. Rev.
115, 1553 (1959).However, their evaluation of the matrix elements
was only qualitative. On the other hand, A. Mukerjee and T. P.
Das LPhys. Rev. ill, 1479 (1958)j, by claiming that the observed
F" hfs could be explained by the overlap term arising from the
orthogonalization, i.e., X=S, did not allow the ligand electrons
enough freedom to describe the F' hfs subsequently measured.
In an extension of the purely ionic model, W. Marshall and
R. Stuart /Phys. Rev. 123, 2048 (1961)g claimed to explain many
transition ion properties in crystals by expanding the metal ion
radial function. This approach is discussed below.

0.5

0
0 2

RADIUS IN AU

FIG. 4. A comparison of the Slater is function with
Froese's Hartree-Fock calculations.

'~ C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).
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nuclear radius, it must be remembered that the angular
parts of the different orbitals have different values.

V. EVALUATION OF MATRIX ELEMENTS
Ip
I

TABIE II. The (pl Ur, I y) integrals.

0.263846
0.00379s

Four types of matrix elements will be considered,
namely: the overlap integrals between nickel and
fluorines of the form (ylx); the nickel diagonal terms

(psl Apl p); the fluorine diagonal terms (xl jsplx); and
anally the off-diagonal terms, also called resonance
integrals, of the form (&pl hpl x). The matrix elements of
the molecular orbitals were expressed in terms of atomic
orbitals. Details of this analysis are shown in the Ap-
pendices. The integrals expressed in terms of atomic
orbitals were evaluated numerically by the following
four means.

Two-center integrals were: (1) mainly computed on
the IBM 7090 using Switendick and Corbato's pro-
gram"; (2) in a few cases evaluated analytically.
(3) Some two-center integrals which could not be
handled adequately by Switendick and Corbato's pro-
gram were evaluated by an auxiliary IBM 7090
computation. Non-negligible three-center integrals were

(4) determined by a direct summation conducted on the
IBM /090.

The overlap integrals are listed in Table I.The atomic
overlaps were calculated by Switendick and Corbato's
program on the IBM 7090 and confirmed by a separate
machine program. These are related in Appendix I to
the molecular overlaps which are the last three listed in
the table. It is clear that the molecular overlaps are
independent of the subscript y indicating the compo-
nent of a degenerate set of molecular orbitals.

(p., Uz,"'"'Ip.,)
(o'~ UIo'"'I or&)

(do, siido, s)
(do, poiido, po)
(do, ps+lido, ps+)
(do~,siidh. +,s)
(do+,poIIdw~, po)
(d~+,p~+Iid~+, p~+)
(drr+, po IIdo ,ps.+)--
(dV,s ildb+, s)
(Cff' Pollds' Po)
(d p+,p~+Iid p', p~+)

(p'.~ I
vr""'I e )

(o„l Vr,'"I o „)
(do, siis, do)
(do, PoIIPo, co)
(d p oiisp do)o
(ds"",s iis,ds.~)
(d~+,PoiiPo, dh+)
(d~+,P~+IIP s+,Co+)

(d~+,ps lips, ds-+)

(db+, sIIs,db~)

(dp' PoIIPo Cf")
(dp+, p +lip~+, da+)

(dp+,p~-lip~-, d p+)

(p., l vs,e"
I v.,)

(p ~, l vr. '*I
p ~,)

(to.~l Ur I p.v)

(prqlvLI pry)
Difference

1.58687
1.58055

0.27063
0.28602
0.26136
0.26605
0.28048
0.25786
0.00073
0.25810
0.27111
0.25111

12.6648
12.6237

0.17577X10-2
0.52749X 10~
0.01921X10~
0.01233X10~
0.14436X10~
0.07668X10~
0.00858X 10~
0.00082 X10~
0.04545X10 2

0.00870X 10~
0.00211X10~

0.02396
0.01082

1.5327
1.5490

—0.0163

(e I
Itp

I eP)

By using the orbital energy ed of Ni'+ 3d electrons,

«= (q'I —sA+vsrl v') (5.1)
we have

(p Ihol v)=«+(v lv~l q) (52)

where VL, is separated into three terms as shown in
(3.10). Detailed methods of calculating (pl Vr, I io) are

TmLx I. The overlap integrals.

given in Appendix II. Numerical values of the integrals
are given in Table II. The orbital energy ed is —1.4125
in atomic units in Watson's calculation, ~ and we use this
value since we are using Watson's Hartree-Pock
functions.

(xl&six)

We arrange (x I
hp

I x) as follows:

(x lhol x) = (x I
—A/2+ V~ I x)+ (x I

V~
I x) (5 3)

(do is)
(C IPo)
(d~+

I
p~+)

0.047014
0.0639is
0.037784

Neglecting the differential overlap between the fluorine
orbitals at diferent sites as mentioned in Appendix IV,
Eq. (5.3) can be rewritten as follows,

(poey lxye)

(p.~ lxv.)
(p~~l» )

0.081431
0.11071
0.07556s where

(xlholx)=e+(xl vilx)'+(xlv~lx), (5.4)

(xl v, lx)'= (xl v, lx) —(&;I v;,, I &,), (5.5)

"A. C. Switendick and F. J. Corbat6, Quarterly Progress and e is the orbital energy of the fluorine 2s or 2p elec-
Report, October 15, 1959, Solid-State and Molecular Theory
Group, Massachusetts institute of Technology, Cambridge, tron when X is composed of the 2s or 2p orbital: we use
Massachusetts (unpublished), the Hartree-Pock energies calculated by I'roese" which
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TABLE III. The (XI VM IX) integrals. U& '"' and Uz'" coming from only seven d electrons of
Ni'+ as mentioned in Sec. III.

(Xvs I Vcorel Xvs)

(xez I Vcore I xvv)

(Xes I Vcore I Xvz)

(x re I Vcore I xr v)

(do,slldo, p~)
(d~+,slldrr~, po)
(di's+, sIIdB+,po)

(x., lV c'"'Ix )
(x I

Vocoui
I x

(x..lv. -'Ix )
(x r I

Vocoui
I xr )

(dsr+, sllpa, drr+)

(dBA, sll pa, db+)

(x-I v"*IX,.)
(x„.l v.-lx„,)
(x..l V '*Ix..)
(xr-I Va'*lxr-)

(x„lUMlx„.)
(x.,lvMlx. .)
(X„IUM I x..)
(xr I

UM Ixr )

—2.6385
—2.7934
—0.4226
—2.5590

0.04533
0.042925
0.03950

1.84308
1.94079
0.29261
1.78790

0.00036g

0.000052

0.000132
0.001898
0.000420
0.000097

—0.7955
—0.8545
—0.1304
—0.7712

(» l&sir)

The use of the relation,

(»a) —-', r)+ VM i X) = eo(»pi X),

leads to the expression,

(5.6)

(& I
VLpointlX )r

(& I
VLpointlX )'

(» r I
VL"'"'I«-)'

0.058109
0.070939
0.035267

(»s! ho I x) =«(»a
I x)+ (»' I

VL
I x) (~ &)

As shown in Appendix V, the (»si VL I x) term is divided
into two-center and three-center integrals, the latter of
which are important and cannot be neglected. The
three-center integrals were neglected in Tanabe and
Sugano's4 work. Details of the evaluation of both these
two- and three-center integrals are given in Appendix V,
and the numerical results are listed in Table V.

TABLE V. The (» I VLI X) integrals. (»ol VLIX) = (» I VLIX)'
+(»rl Vr, lx)", where (»vl VLIX)' is the twc-center integral and
(»rl VLIx)" the three-center integral.

are e2,———1.0765 and e~„———0.1815. q, is the Quorine
orbital at site i The . (xi VLtx)' term represents the
effect of five Quorines on a remaining Quorine. The four
identical Quorine-Quorine interactions in this term were
calculated exactly by using Switendick and Corbato's
program on the IBM 7090. The interaction with the
more distance Quorine was approximated as a point-
charge interaction as shown in Appendix IV. Numerical
values of (xi VLix)' are given in Table IV.

Neglecting again the differential overlap between y;
and sp;(i'), methods of evaluating the (x(VMix)
term are given in Appendix III. Numerical values of
the integrals appearing in this term are given in Table
III. It should be borne in mind that, in contrast to
(»s)hip), (xihix) is not the orbital energy of the
Quorine electron in the crystal as U~ in h involves

TABLE IV. The (x I UL I X)' integrals, where

(xl vr. lx)'=—(xl ULI x) —(»'I v', LI » ~).

(do, slls, s)
(da, paIIs, pa)
(da, prr+lls, psr+)

(do, sll po, s)
(da, pall pa tpo)
(da, p~'ll p,p~')
(drr+, sll prr~, s)
(dp+, po I

prr+, po)
(d~+,p~'lip~~, p~')

(»"IVL '"'IX )
(~ I

VLCoul
I X )'

(» «I VL'"'I xr )'

(da, poll pa, s)
(do,p~+llp~+, s)
(da, slls, po)
(do,pn. +llpn+, po)
(drr+, slls, prr+)

(d~', phyll po,p~")
(d~+,pa+

II pn. +,p~+)
(dn. +,pp.+ II pW, ps.+)

(ta. l vr. '*IX")'
(ta IUr'*Ix )
(» r I VL'*lxr )'

0.030302
0.030326
0.027970
0.038090
0.039937
0.034763
0.016874
0.016871
0.016155

0.40380
0.51112
0.26422

0.010867
0.003749
0.006166
0.001062
0.001910
0.001499
0.016155
0.000783

0.08429
0.08352
0.04069

(2.)-i
(»s. zlvr, LI»s. s)

(»s, *l vi, LI »s, *)
(»rs, s I Ui, r I »zs, z)

(»rs, vl Vr, LI »rs, u)

(» s,.l vs, LI » s, p)

(x., l VLI x.,)'
(x..l VLlx..)'
(x..l v. Ix..)'
(xr. I Vr. l xr.)'

0.13193
0.18603
0.18532
0.01406
0.18333
0.18532

0.87605
0.87322
0.05624
0.86924

(», Vr. lx.,)'
(». VLIX-)'
(»rrIULlxr )'

(ta, l Vr. x..)"
(». I UL X..)"
(» rlUL xr )"

(», Vr. lxvs)
(sav Vr. lxv.)
(»'r VLlxre)

—0.08725
—0.06899
—0.02334

0.08626
0.12681
0.08578

—0.00099
0.05782
0.06244
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TABLE VI. Numerical values of (y~hol s')i (p lholx)
anri (x)hp)x) in atomic units of 27.2 eV.

Orbital

$
eg

(» lhpl p)

0.1202

0.1365

(p lhpix)

—0.1160—0.0986—0.0443

(xlhpl x)
—0.9959—0.1628—0.0835

For summary the calculated values of (tp~hp~ p),
(pp[hp~7f) and (x ~hp~x) are listed in Table VI.

TABLE VII. Calculated values of & and X and comparison
with the experimental values.

Orbital

0.031
0.285
0.173

p, (calc) =0.9616

0.113
0.396
0.249

37-4.
Calc Exp'

0.109 0.116
0.383 0.337
0 246

p, (calc) =0.2744

& See Eq. (4,3) of Part I.
' R. G. Shulman and S. Sugano, J. Chem. Phys. 36, 3496 (1962).' M. Tinkham, Proc. Roy. Soc. (London) A236, 535, 549

(1956)."R. G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960).

VI. COVALENCY

Now it is possible to determine the covalency
parameters, y, by using (2.13), (2.14), and (2.15). The
calculated results are given in Table VII together with
the experimental values. The agreement with the
experimental values is good, particularly for the experi-
mental value of E &X,=0.116 which ignores the 1s—2s
cross-term.

In Table VII we see that the covalency admixture
of the 2s orbital, p„ is only about one-third as large as
the 2s overlap, 5,. It is particularly important to note
that the reason for the small value of y, is the large
negative value of (X, ~hp~ X,) which mainly arises from
the large negative value of the 2s atomic orbital energy
of F . In contrast to this small 2s covalency, the
covalencies for the 2po and 2ps orbitals are more than
twice the overlap integrals, 5 and 5, respectively.

It is interesting to compare y, with y via (2.13) and
(2.15). We see that —(y~hp~x)+S(7f~hp~7f)=0. 0986
—0.0180=0.0806 for 0-. This is more than twice as large
as the numerator for the z orbitals which is 0.0380. How-
ever, since —(X ~

hp
~ 7f) in the denominator of the express-

sion for y is larger for 0. than for x by 0.08, the final
value of p, is only 1.6 times p . Therefore, we may
argue that the origin of the relatively large x covalency
is partly the lowering of 2po. orbital energy relative to
the 2ppr energy in the molecule by the attractive poten-
tial of the central metal ion. In the semiclassical model
this is the crystal field splitting of the F ion and it has
been mentioned in a previous report. ' The large value
of y =0.246 confirms the previous conclusions from
experiments" "that the x bonding is large.

We wish to emphasize that although the m admix-
ture into the molecular orbital is almost as large as
the 0. admixture still the bonding energy is given by
—y(pp I hp

~ x) which is 6960 cm ' for o and 1670 cm ' for
x. Therefore, we may say that the x bonding is impor-
tant wherever the wave functiotrs themselves are impor-
tant but it is not as important as the 0 bond when the
energy is involved.

VII. CUBIC FIELD-SPLITTING PARAMETER

Let us discuss the separate contributions to 6 shown
in (2.11). In Table VIII the contributions to 6 from
the nickel diagonal terms on the first line of (2.11) are
listed. We see that the point-charge approximation
gives a very small contribution, 1390 cm ', while
Kleiner's correction makes 6 negative. Furthermore,

TABLE VIII. The various contributions to h.

Origin Term
ContnbutIon
tohincm '

point-charge (Vr&" ') +1390
Kleiner's correction (Vc ) —2080

Nickel diagonal ~ Exchange (VL,~) —2880 ~ —2670
renormalization +900

(&~&~—4S~) (v~l ho I v~)

~sos(pe hp xs)
Non-orthogonality —S,p, (~, h0 z,)

+& (p~ ho)x.)

7sps(pe ho xs)
Covalency —y,p,,(q, ho g,)

+v (v~ hplx )

Total

+2060
+2390 +3730—720

+790
+6170 +5290—1670

calculated 6350
experimental 7250

although the individual exchange terms are small as
shown in Table II, they make a larger negative con-
tribution to 6 than the total Coulomb contribution.
Thus, the semiclassical model (S=O, y=0) which in-
cludes only the contribution from the nickel diagonal
term predicts a negative value of 6 and disagrees with
experiment. To a first approximation this conclusion is
independent of the specific 3d wave function adopted
because if a more expanded wave function were used,
the point-charge contribution would increase but so
would the negative contributions from Kleiner's correc-
tion and the exchange interaction.

After the contributions from the nickel diagonal term
we have listed the contributions of the nonorthogonality
to A. In this approximation, which could be called the
quantum mechanical purely ionic model, the assumption
is that y=0 but SWO. The metal ion orbitals are
orthogonalized to the ligand orbitals in this approach
which was followed by Tanabe and Sugano. 4 In this
approximation, where X=5 the renormalization term is
reduced to about 300 cm '. The contributions of the
nonorthogonality term is +3730 cm ' while the con-
tributions of Vl. and Vl.~ total —4960cm '. These two
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terms cancel to within 1200 cm ' which is a small num-
ber when compared with A. Within this accuracy there-
fore we have confirmed Phillips" claim that the contri-
bution from the nonorthogonality approximately cancels
those from VL,~ and VL,~. Within this purely ionic model
the calculated value of 6 is 500 cm ' which does not
agree with the observed value of 7250 cm '. Further-
more, while an expansion (Marshall and Stuart" ) of the
metal wave function would increase S and the positive
contribution of the nonorthogonality term it would at
about the same rate increase the negative contributions
of the nickel diagonal term. Therefore, by merely
expanding the metal ion function one could not hope to
explain the observed 6 under the assumption of ) =S.
However, good agreement with the observed value is
obtained when the calculated values of the covalency
parameters are included in the calculation as shown by
the last terms in Table VIII. Furthermore, it is note-
worthy that with the exception of the small point-
charge contribution the o8-diagonal terms are the only
contributions to 6 with the correct sign.

VIII. OTHER PARAMETERS IN THE
CRYSTALLINE FIELD THEORY

In the previous discussion we have not explicitly
touched upon the normalization factors, E, '" and
E& '~'. These factors are more than unity when p=0 but
less than unity when p&S. They are just unity when
y=S. Assuming that y and S are small, we have

which leads to

(~ 2+~2 ~ 2) (+ 2++2 g 2) (8 4)

In our problem, substituting numerical values, we
obtain

6=0.039. (8.5)

It is interesting to compare (8.5) with Zahner and
Drickamer's" conclusion for MnC12 and MnBr2 that e

can be no larger than 0.04 in these crystals. Pappalardo"
also has found values of ~ in the range 0.03—0.05 for
Mn'+ in crystals. It also is interesting to note that the
8 value has been found to decrease with increasing
isotropic pressure" ""and that this fact can easily be
explained, as seen in Eq. (8.1), by assuming the
covalency p increases more than the overlap S.

In order to explain the first observations' of ligand
hfs in iridium hexachloride complexes the molecular
orbital model was proposed by Stevens. "Among his
many important contributions to this problem he con-
sidered how covalency would reduce the orbital angular
momentum. It has been shown by Geschwind" for our
case of Ni+' in OI, symmetry that the electronic g factor
should be

g =2.0023—(8X„~,k, '/10Dq) (8.6)

in which P„~, is the coupling constant of the spin-orbit
operator )„~,L S in the crystal and k, is the orbital
reduction factor

N —1/2 1 &(72+~ 2 +2 +2)
N —1/2 1 1(~ 2 ps)

Inserting the calculated values of y and S

(8.1)
&--= (+

I &I+~)/(~/. I &I «)
which can be expressed as

r;~~2=0.968,

Eg '~'=0.988.
(8.2)

These reduced normalization factors are important in
explaining the small reduction of the Racah parameter,
B, which is reduced by 7% from the free-ion value as
determined in part II. The exact calculation of 8 is
tedious, but a crude estimate was made by substituting
our calculated molecular orbitals into the Coulomb and
exchange integrals which determine the term splitting
and Racah parameters. It was seen that neglecting the
normalization our calculated molecular orbitals gave
a negligible reduction of 8. On the other hand, the
normalization factors are important. Since 8 is propor-
tional to N ' (or the fourth power of the normalization
constant) the calculated reduction of the normalization
factors as shown in (8.2) is large enough to account for
the observed 7% reduction in B. Since all the reduc-
tion of 8 could be ascribed to the normalization factors,
the use of Koide and Pryce's" covalency parameter t. is
justified and it is given as

(1—e)'"= (N /N ) '" (8.2)
so S. Koide and M. H. L. Pryce, Phil. Mag. 3, 607 (1958).

(8.8)

In deriving (8.8) we have assumed, after Tinkham, 's

cancellation of the last two terms in his exact expression.
Substituting numerical values we find

k, =0.88. (8 9)

Substituting in (8.6) and solving for X„~„weobtain

P„~,= —320 cm ' (8.10)

~' J. C. Zahner and H. G. Drickamer, J. Chem. Phys. 35, 1485
(1961).

~ R. Pappalardo, J. Chem. Phys. 31, 1050 (1959); 33, 613
(1960).

2' D. R. Stephens and H. G. Drickamer, J. Chem. Phys. 34, 937
(1961).

~4 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122,
1469 (1961).

25 J. H. E. Griffith, J. Owen, and I. M. Vizard, Proc. Roy. Soc.
(London) A219, 526 (1953)."K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542
(1953).

2' S. Geschwind (private communication).

which agrees very well with the value of 'A= —324 cm '
observed in the free-Ni'+ ion. In other words, this cal-
culation shows that to within experimental accuracy
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~cry8=4ree ion The observed reduction in ~crysk ' from
the free-ion value is completely explained by the eRects
of covalency upon the orbital reduction parameter k, .
We also note here that

is given as'6
h-= (+~ I &I+~)/(v ~l &I v ~)

h„= 1—XP/2

=0.97.

(8.11)

(8.12)

IX. CONCLUDING DISCUSSION

As previously mentioned we have succeeded in cal-
culating 10Dq and the covalency in KNiF3. Before dis-
cussing these results further we first summarize the
approximations adopted in the present calculation.
They are as follows:

(1) We have assumed V„„,to be a constant, in other
words, we have treated a specific molecule

I
NiF6j4

placed in a potential well, instead of treating the crystal
as a whole. This approximation should be valid in the
determination of 6 for the experimental and theoretical
reasons mentioned at the beginning of Sec. III. How-
ever, in calculating the covalency the approximation
might be a little worse, since the expression for the
covalency involves the value of (x I hIx) which is sensi-
tive to the possible deviation from the potential well
model. However, the final agreement with the meas-
ured covalency supports the applicability of this
approximation.

(2) The most characteristic approximation in our
calculation is to neglect h' in the Hamiltonian. This is
equivalent to doing the first step of the SCF calculation
where in the Hamiltonian y=0 and 5=0. This ap-
proximation cannot easily be justified for the calcula-
tion of 6 even in ionic crystals where p and 5 are very
small, since 6 is essentially a small quantity of the order
e' as mentioned previously. It would be an important
future problem to examine why our approximation has
given such good agreement with experiment.

(3) We have neglected some three-center integrals
which seem to be unimportant. As long as h' is ignored,
the only many-center integrals are the three-center
integrals appearing in (y I

ho
I x) and (y I

ho
I
g). The three-

center integrals in (pIhoIy) are important and have
been calculated more or less accurately. The three-
center integrals in (x I

ho
I x) should be small. In particu-

lar, the value of 6 does not involve (x I
ho

I x) so that the
calculation of 6 is independent of this approximation.

(4) We have assumed that y and S are small and have
neglected higher-order small quanties. This approxi-
mation is justified in so-called ionic crystals such as
KNiF3.

With these possible sources of error in the calculation,
it is immediately clear that further calculations intend-
ing to improve the agreement with experiment are not
warranted at this time. These extended calculations
might follow the SCF approach, or vary the metal ion
radial functions, or the ligand radial functions (or mix

I l
II \

A =~/(+/I "~ ~g)

B= Xt(&t I h I Xt ')

A'=v, h, [t lx, )

B = V, &+, I hl X,)

X, =7+S

tlItlItl I~B'

/
/

/ A

I

eg~))~&)
'

FIG. 5. Energy-level diagram for the molecular orbitals formed
between Ni~+ d electrons and the I ligands.

in metal ion or ligand excited states, which are equiva-
lent to radial expansion). Closer agreement with experi-
mental values would not justify the physical existence
of these terms so long as the errors implicit in the calcu-
lation are as large as they appear to be. Furthermore,
we have shown' that expanding the metal ion radial
functions (Marshall and Stuart" ) cannot explain the
observed F"hfs. Here we see that this assumption is un-
necessary to explain the Racah parameters while an
expanded radial function in the crystal is inconsistent
with our finding from the spin-orbit interaction that
(1/r')„~, =(1/r')f„, ;,„. In summary, we have shown
that in KNiF3 the concept of expanded d-electron radial
functions is unnecessary to explain some of our observa-
tions and inadequate to explain the remainder.

The extensive numerical agreement of the molecular
orbital calculations with the experimental measure-
ments leads to the conclusion that molecular orbitals
provide an accurate physical model of the crystal. We
feel that the main value of our calculation lies in the
physical understanding we now have of the crystal, not
in any particular agreement between a calculated
number and a measurement.

In order to discuss the important physical phenomena
in this crystal let us turn to the energy level diagram
shown in Fig. 5. The left-hand column shows the effects
of the crystal field upon the d-electron orbital energies.
In this approximation, we display e+ (&p~ I

Vl,
I py)

where e is the orbital energy of the d orbitals. Notice that
in this approximation the t&, levels are higher in energy
than the e,. The reasons for this have been discussed
above in Sec. VII. In the next column the contributions
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of the covalency, in our perturbation treatment, are
presented. Energies for the antibonding orbitals are
increased above the (q r I ho

I yr) levels by X~—(y~ I ho
I xo)

in accordance with Eq. (2.4). Here the strength of the
0- bond dominates and the antibonding e,* orbitals are
raised above the 32,*.The energy difference is 10Dq as
indicated in the figure. The lowering of the bonding
orbitals from the F orbital energies is shown to scale.
Substituting the approximate relation

—(o Iho I x)

(v II ol v) —(xlholx)
(9 &)

the increase of the antibonding orbital energy is
approximately

(o Iho
I
x)'

(o I&ol o) —(xl&olx)
(9 2)

L. Pauling, The Putz~re of the Chemical Bond (Cornell Univer-
sity Press, Ithaca, N. Y., 1939).

At this point, we can stop and relate Eq. (9.2) to
chemical bonding in general. Pauling's" two considera-
tions for the strength of a chemical bond were 6rst the
overlap of the wave functions corresponding to the
numerator of (9.2) and second, the energy difference
between the atomic orbitals corresponding to the
denominator. From (9.1) we can see a possible explana-
tion of one surprising aspect of covalency as measured

by ligand hfs. The Quorines" in K&NaCrF6 have ap-
proximately the same value of X as the chlorines" in
(IrClo) '. All chemical arguments say that the "cova-
lency" should be larger in the Ir+4 complex than in the
Cr+'; i.e., the larger charge on the metal ion, 5d electrons
instead of 3d and chlorine instead of fluorine. But by
covalency in this general chemical usage one means the
energy associated with the covalency. From (2.4)—(2.7)
it is clear that when the values of ) are the same for two
complexes the bond energies might still be diferent. In
fact, we are led to the conclusion that both the numera-
tor and the denominator of (9.1) are larger for (IrClo) '
than for (CrF,) '. Since it is considerably easier to
calculate the diagonal terms in the denominator than
the off-diagonal terms in the numerator it should not
be very difficult to estimate the validity of these
conclusions.

Another interesting anomaly in covalency and crystal
field splitting, i.e., the large value of 10Dq in the cya-
nides, is now understandable. Previously in discussing
10Dq in terms of a point-charge model it had been
necessary to introduce the effects of covalency in an
ad hoc fashion to explain the large values of 10Dq in the
essentially non-ionic cyanides. However, now we see
that even in the extremely ionic Quorides 10Dq arises
from the covalency terms. However whether the large
value of 10Dq in the cyanides arises from a small amount
of m bonding or a relatively large amount of 0 bonding is
still unanswered.

In conclusion, we have shown that the LCAO-MO
introduced by Van Vleck' and extended by Stevens '
and Tinkham" can explain the NMR, optical, and ESR
experiments in KNiF3.
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(Pep I
xy s or s) ~~(tIto

I
sioos or s)

=v3(a~Is or p~),

(~ I x.-)=2 (o o I o o,.)
=2(d~+I p~+).

(Al)

(A2)

II. (q I Vl,
I q ) Integrals

In the following calculations, we use the relations:

(o.vlV~lv. .)=3 Z (vvlVo, halo»), (A3)

(a) (stol V p""'I op) Vl.p""'= p 1/Ir —R
I

In our problem it is convenient to calculate the
spherically symmetric and cubic parts of these integrals
separately without using Switendick and Corbato's
machine program; the main contributions to these
integrals come from the spherically symmetric parts
which are canceled by each other in the expression for
the crystalline field splitting. The analytical expressions
for (y I

Vl.p""'I p) are well known as follows:

I V pointl + )

(o „IV,"'."I o„)=6I, ',I, —-
(A5)

(A6)

"J.H. Van Vleckt J. Chem. Phys. 3, 807 (1935).

APPENDIX

I. Overlap Integrals

The overlap integrals between y's and g's are given
in terms of those between atomic orbitals as follows:



S. SUGANO AND R. G. SHULMAN

where

Ip= dr Pbq'(r)/p+ dr Pbq'(r)/r,

which are used throughout this paper.

(A7)
(c) (v I

V '*I v),

(v„l V;-I p,»)=3 Z P (p»v, llv, v»), (A16)
p=xc, v k=2 s c2ps, g, zP 00

««'P "(r)/u'+ u'
p P

dr P3d, '(r)//rb, (AS) with

(u,slls, u) = (do,slls, da),

(u, slls, u) = (do, po llpo, do),

(u, xllx, u) = (u, ylly, u)
= (do, pv +IIp»r+, da),

(v,slls, v) = (d&,sIIs,dB+),

(v,slls, v) = (d&,paII pa-, dV),

(v,xllx, v) = (v,ylly, v)

;p(de+, p-~+II p~+,de+)

+(db' p Ilp~, d~ )j, (A»)

where Pbq(r) =«R3q(r).

(h) (v I
v ""'I~),

V coul 2 p d r
k=2s, 2ys, y, z

&y using (A3) and (A4), it is easy to see that

«"I
v~'"'I v")=6 2 2 (v»vbIIq»vb), (A9)

y=u, v k=2s, 2pz, y, z

with
and

(u,sllu, s) = (do, sllda, s),

(u,sllu, z)= (da, polldo, po),

(u, xllu, x) = (u,yllu, y),
= (da, p»r+IIda, p»r+),

(v,sllv, s) = (db+, sIIdB+,s),

(v,sllv, s) = (db+, paIIdB+, pa),

(v,xllv, x) = (v,yllv, y),
= (db+, pv+lldB+, ps+),

(V c. l
V~'"I ~c»=2 2 2 (~»V bllV bV») (A19)

y=$, g, f k=2s, 2yz, y, z

with
(A10)

(l.,kllk, |.)= (.,kllk, .),
(&»'llk' &) = (~ k'ilk' ~) «»'&x r
(~;llx, ~) = (n rlly, ~),

(&,rllr, ()= (~ *ll*~)

(g,slls, g) = (dv+, slls, d»r+),

(g,all s,()= (dv+, po II pa, dv ~),

((,xllx, e) =l(d~+, p~ Ilp, d~+),

(k,rllr, k) = (d~+,p~+II p~+,d~+)
+-', (d~+,p~-lip~-, d~+). (A21)

(A20)(A11)
and

(~ I
V coull ~ )

=4 Z Z (V»v bll V»V b), (A12)
y=$, g, f k 2s, 2@x,y, z

with

(t.,kill. ,k) = (.,kll. ,k),

(P,k'll&, k') = (g,k'lip, k'), (O'Ax, y)

(~,*II~,*)= (.,rill, ».
(krllt, r)=«*ll~ ) (A13)

(t,sill(, s) = (d~' slldx' s)

(f,sll t,s) = (d~', pa!Id~' pa)

(~,*II~,*)=(d ',p 'lid-', p- )
——;(d~+,p~-lid~-, p~+),

(z rllk y) = (d~', p~+Ild~" p~+)
+-', (d~+,p~

—
IId~ ,pm+). (A14)-

Notice the following abbreviations:

III. (g I
Vbr

I g) Integrals

As mentioned in the text,

V~= V,„+Vg '"'+Vg'" (A22)
where

(A23)V„„=(a+be "')/r,
and, in general,

coul —p V' coul g d& r —1
I p (2) I2 (A24)

Vcc =Q V„' =Q' d»2 r» 'p» (2)*ceo»(1)P». (A25)

(v.eblis v.)
—= (~,bile, d)

for k=s, x, y, s,

In (A24) the summation runs over all valence electrons

y and in (A25) the summation extends over all the
valence electrons with spins parallel to the spin of the
X electron. In our specific treatment of KNiFb, p»

dred«2 r» 'go(1)*q'b(2)*pc(1) ya(2), (A15) means P» t, b, „,„,r, „,„and P»' means P» s, „.Here, we
will treat y~cou and @~ex with any & as a general rule.
It should be noticed that three-center integrals are
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completely neglected in the following expressions of

(x I
V~ I x).

(a) (xlV....ix).
Since V„„is spherically symmetric, we have

(xr-I V r'"I xr-) = (k,ylly 5) (A42)

(xr I
V„'"Ix&,)=—I:(~ylly, g)+3(v,ylly, v)

2~3(N ylly, v)j, (A43)

(xylol Vcorel xyk') ($3,kl Vcorel rp3, k')q

(xvr I Vcorel xrr) (0 a, vol Vcorel 0 B,vc)q

(A26)

(A27)

«r-I V '"I xr-) = lL3(g,ylly, g)+(v,ylly, v)

+2~3(N y fly, v)j. (A44)

(xr- I
Vt'"'I xr-) = (xr- I V.""'Ixr-)

2 pg )g pS )S )

(xr-I Vr""'I xr-) = (~,yll~, y),

(A32)

(A33)

(xr-I V-""'Ixr-) = lL(g,yll~ y)+3(v,yllv, y)
—2~3(N, yllv, y) j, (A34)

(xr-I V ""'Ixr-) =-:C3(~,yll~ y)+(v yllv y)
+2%3(N,yiiv, y) 7. (A35)

Almost all integrals in (A28) —(A35) have already been
given in (A10), (A11), (A13), and (A14). Cross integrals

(y,sify, s) are simply obtained by substituting for s or
pa the suitable s's in (y,slip, s)= (dm, slldm, s). The only
new type of integral appearing in (A34) and (A35) is
given as follows:

(Nrllvy) =—(~*llv*)
= (1/v2) («,prr+iid&+, pv. ).

(c) (xiv, -lx).
(A36)

Also in this case, the y's are restricted to those with
components v and i. Then, integrals for any y are
expressed as follows:

(X„„I
Vg'"

I
x„„.) = (X„„

I
v„'"

I
x„„.)

= l I:(6»ilk' &)+(f kllk' &)j (A37)

(x. I
vr'*I x")= (g,kllk' g) (A38)

(x'I V-'"
I x') = 4C(~ kllk' ~)+3(v kilk', v)3, (A39)

(x„,l
V„*Ix„,) =-', I:3(~,klfk', ~)+ (v, kllk', v) j, (A40)

which can be calculated analytically. In (A26), k and
k' are s or ps.

(b) (x I V,""'Ix).
We need this type of integral with X=X„„,and

X= X~ . By using symmetry considerations, we obtain

(x „I V,c. i
I
x .) = (x „IV c. i

I
x „,)

=hi:(s»ll(, k')+0 kill»')0, (A28)

('.I
Vr""I")= (~,kll~, k'), (A29)

(X„„I
V„o'"&

I
x„z, )= 4 I (Nk fi

ggk')+3 (vkif vk') 1, (A30)

(x ~l V ""'Ix ~ )=4I 3(N»III»')+(v, kllv, k')3, (A31)

where k, k'= s or z, and

(u,yl fy, v) = —(N, eflux, v)

= (1/W) (d~,p~+ii p~-, d~+). (A45)

IV. (gi Vi, ig) Integrals

To the approximation in which we neglect the dif-
ferential overlap between the fluorine orbitals at
different sites, the (x I

Vl. ix) integrals are expressed, in
general, as follows;

(xl Vl, ix)=(q;I V;, l, le,)+(q, lg' V;,r I p,), (A46)

where y; is a fluorine orbital at the ith site. The first
term in (A46) is combined with the kinetic-energy
matrix element, (q, I

—
~ 6

I q;), to give the orbital energy
of the fluorine electron, and the second term is given for

g with the component, ~s or vz, as

(ya, ai vs, i, i q3, a)+4(q3, sf vx, i. i y3, a )
with k, k'=s or s, (A47)

and for X~ as

(0 3, 7/I V6, + I 0 3,r)+2L( p3, y I Vg, r I p3, r)

+(~a., l V, ,.I ~~..)3. (A48)

The 6rst terms in (A47) and (A48) may be well ap-
proximated by (2p) ' except for the s—s cross term
which is assumed to be zero in our calculation. The
remaining integrals are the Coulomb, exchange, and
nuclear attraction integrals appearing in a homonuclear
diatomic molecule with nuclear distance V2p. One must
be careful of the components z and y which do not refer
to the molecular axis.

V. (q I Vr, I y) Integrals

For this calculation, it is convenient to use the
relations

Almost all the integrals in (A37)—(A44) have already
appeared in (A17), (A18), (A20), and (A21). The cross
integrals (y,siis, y) are simply given by substituting s or
pa for the suitable s's in (y,siis, y)=(dm, sfis, dm). The
only new type of integral appearing in (A43) and (A44)
is expressed as follows:

where k, k'= s or z, and

(xr- I
V~'*I xr-) = (xr- I V.'"I xr.)

)X S) )A $7 j (A41)

(v "IV~lx»=3 2 (v"IV~.~lx ) (A49)

(v

real

Vr lx~»=2 2 (v" I Vs, ~lx.) (A5o)
V=5. vl t'
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which are similar to (A3) and (A4). These relations
lead to the following equations for y= v and i,

(v. l
UNIX..)=~&l (v. l U3 il e3.),

+ (p I Q U ,LI 'pa, /g)j (k=s or s), (A51)

«r I
U

I &r-) =2l:(~~ I V3,i I ~3,,)
+(v~l 2' V', ~l ~3,w)j, (A52)

where the first and second terms are two- and three-
center integrals, respectively.

(a) The two-center integrals.
The contribution from V3,1.&""' has the form of a

split nuclear attraction integral. The explicit forms are
as follows:

(~-I v '"'I ~ ~) =(d~l 1/" Ik), (A53)

(~~I v3, j"'"'I p3 )= («'I 1/r'I p~'), (A54)

where r' is the electron coordinate measured from the
fluorine site at which orbitals k and per+ are located.

The matrix elements of UB, L,
'"' are obtained as

follows:

(~ I va, i""'Iv3, ~)=2I:(d~,~Ilk, ~)+(d~,p~llk, p~)
+2(d.,p~+llk, p~+) j, (A55)

«~l vs, ~""'I~a.w)
=2L(d~';IIIp~', ~)+(«',p~II p~', p~)

+ 2(«+,p~+II p~+,p~+)). (A56)

The matrix elements of V3 ~'" are given as follows:

(~-I U3, ~'"I ~3,~) = (&~,~ll~, k)+(&~,p~llp~, k)

+ 2(d~,p~+Ilp~+, k), (A57)

(v (I va i-I v, ,) = («+,~II~ p~+)+ («', phyll p~p~')
+ («+,ps+llpvr+, p7r+)

+ («+,p +lips+, pm+). (A58)

(b) The three-center integrals.
In our calculation of the three-center integrals, V;,z,

is assumed to be the point-charge potential. The three-
center integrals are computed approximately, replacing
the integrals by the sum in which a fine cube mesh has
the volume (0.0625)'. The summation in fact extends

over the region, 0(x(p, 0(y(p and —p/2(s(2p,
and is finally multiplied by 4. Difhculties associated with
the singular points of the potential, P' V; r„at x= p,
y= 0 and @=0,y= p are eliminated by cutting off a small
cube involving these singular points. This is justified by
the fact that no appreciable change in the value of the
integral is seen when the size of the small cube is varied.

In order to check this, the overlap integrals were
calculated this way. The comparisons with the exact
calculated values are:

(~-I ~~, .)
(~.l ~~, .)
(~~l ~a, w)

Approx.

0.01209
0.01727
0.00967

Exact

0.01175
0.01598
0.00945

Error 'P~

2.9
8.1
2.3

(A59)

The region over which the summation was performed
was determined after examining the contribution from
several regions separately.

Numerical values of the three-center integrals are

I =—(~ I
V~IX *)3---~=~3(~-IZ' V', ~I ~3..)

=0.08626,

I.—= (~„lv,
l
x„,)„.„,=w3(~„lg' v, , l v„,)

=0.12681,

I-=(~rl V~lxr-)3--.~=2(~(IZ' V'. ~l v3,.)
=0.08578.

(A60)

Q' U, , (xr=y=0, s=O) =1.32,

Q' V, , r, (x=y=O, s= p) =0.88,

P' V, r, (x=y=0, s= p/2) =1.12,

(A62)

namely, that Vr,"' is very close to the value of P' V, r.
at the midpoint between the nickel and fluorine site 3.

It should be noted that the ratio between the three-
center integral and the overlap integral is found to be
almost the same for s, o, and m, e.g. , I,/S, =1.06,
I,/S. =1.14 and I /S =1.13. This means that the
following relation approximately holds:

(v. l V~I Xr~)3---~= V~'"(v vl ~&~) (A61)

where Ul, '" is a constant being independent of y and k,
and it is 1.1 in our case. Thus, a very interesting fact
appears, when we see the values of Q' V;, r, at several
points:


