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It is shown that in a nonlinear Heisenberg-type theory a bound state appears which has all the properties
of a neutral vector particle. From such a model all the results of standard electrodynamics follow in the
limit of in6nite bare coupling constant. The method used is that of Schwinger's external sources.

1. INTRODUCTION
' 'N the last few years several attempts' ' have been
~ - made to derive quantum electrodynamics from a
held theory with four-fermion coupling. In the present
paper we discuss this problem with the use of
Schwinger's equations for Green's functions. ' It will be
shown that in theories with a four-fermion coupling a
bound state appears when the bare coupling constant
is sufIIciently large. The formation of such a bound state
changes the whole discussion of renormalizability. All
interactions between the fermions can then be viewed as
mediated by a boson and the theory turns out to be
renormalizable in the perturbation expansion. In this
paper, we restrict ourselves to quantum electrody-
namics, although the method we use seems to be rather
general and can be applied to mesodynamics as well.
There are two reasons which make quantum electro-
dynamics more attractive in this respect than other
theories. First, the use of the perturbation expansion is
justified and second, the gauge invariance leads to
several simplications. In particular, the limit of an
infinite bare coupling constant can easily be found.
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From the 6eld equations
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and from the equal-time commutation relations it
follows that the functional 7 obeys the following equa-
tions in functional derivatives'.

2. EQUATIONS FOR THE GENERATING
FUNCTIONAL

%e shall discuss the theory of a self-interacting
spinor field P, with the Lagrangian density 2 chosen in
the form
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For reasons which will be clear later, we replace Eqs. (6)
by a new set of equations for a certain more general
functional Z.
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All properties of such a theory can be obtained from the
time-ordered Green functions. To deal with all the
Green functions at the same time we introduce the

*A preliminary account of this work appeared in Bull. Acad.
Polon. Sci. Classe (III) 9, 385 (1962).' W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957);R. Ascoli and
W. Heisenberg, Z. Naturforsch. 12, 177 (1957).' J. D. Bjorken (to be published).

3 P. Freund, Acta Phys. Austriaca 14, 445 (1961).' J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452 (1951).
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' K. Symanzik, Z. Naturforsch. 9, 809 (1954).
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The new functional Z depends on p, p and on an auxiliary
source function J„.9"hen J„=O, Z reduces to the initial
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functional v-, i.e.,
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3. EQUATIONS FOR THE PROPAGATORS

It will be sufFicient for our purpose to investigate the
simplest Green functions: the electron propagator 6 and
the photon' propagator g„„both in the presence of an
external current J„.

Equations (i) are very similar to the equations for the
generating functional in quantum electrodynamics in
the Gupta-Bleuler gauge. The only difference is the
appearance of po' in the third equation, instead of the
operator

Current conservation leads to an additional equation
for Z. This equation may be called the functional Ward
identity. ' lt has the form

Current conservation leads to two simple equations
for the propagators G and b„„:
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The easiest way to derive them is to differentiate Eq. (9)
with respect to g, g, and J„.

Since Eqs. (13) and (14) hold for all values of J„,they
are equivalent to an in6nite set of integral equations.
The lowest three equations have the form
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All the Green functions with either no or two external
spinor lines can be derived from G and g„„by differ-
entiating with respect to J„or 8„.I,et us introduce also
the inverse propagators G ' and g„„'which are defined
through the relations
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It is only the equation for the propagator g„„which
diGers from the corresponding equation in quantum
electrodynamics. All remaining equations, including all
equations with more than two external spinor lines
coincide in the four-fermion theory and in quantum
electrodynamics.

Equations for G—' and g„„',derived from Eqs. (7), have
the form
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' H. Umezawa, Quantum Field Theory (North-Holland Publish-

ing Company, Amsterdam, 1956).
7 The derivation of such an identity in quantum electrodynamics

is given in another paper of the present author, Nuovo Cimento 17,
95& (&960).

s It will become clear later that the name photon propagator is
fully justi6ed.

4. PROPERTIES OF THE PROPAGATOR g„„

By virtue of Eq. (16) the propagator g„„and the
inverse propagator g '„.can be written in the form

g"(x—y) = —(g"—o- a„a„)g(h —y)
—pp 'CI 'a„a„a(h—y), (21)

S-'..(*-y)=- (g..—o-'a.a.)r'( -y)
—po'0 'a„a.a(x—y). (22)

From Eq. (18) we can find the equation for g. In
momentum space it reads

g '(k') =p + 0Tr y„G(p+k)
3(2z)4

xr (p+u, p)G(p)dp. (23)
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5. PROOF OF THE EQUIVALENCEThe right-hand side of Eq. (23) can be written as a
spectral integral

0 (M',A)dM'
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where o (M', A) is a positive spectral function and Mo is

the lowest mass of those intermediate states which
contribute to the propagator g. The factor k' in front of
the integral appears as a result of current conservation.
In order to ensure the convergence of the integral, we
introduced a cutoff parameter A. The spectral function
0 can be computed by the perturbation method.

%e shall be interested only in the limiting case p,p= 0,
which leads to quantum electrodynamics. The discussion
could also be extended to the case pp/0 and would lead
then to a vector meson theory. Although, the transition
to the limit @0=0 cannot be directly performed in the
initial Lagrangian, one can do it in the equations for the
propagators. The only singular term is the last term in
the expression (21).It is well known, however, that this
term does not affect physical results since it represents
the propagation of unphysical, longitudinal photons
which do not interact with electrons. Ke could easily
eliminate this term by an appropriate gauge transforma-
tion. ' An even more straightforward procedure which
will be used in the further discussion is to keep p, 02 in
Eq. (21) as an arbitrary parameter, the value of which
does not afFect gauge-independent quantities.

In the limit po ——0, the inverse propagator g ' has a
spectral representation of the form
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Terms of the order k'/cV and m'/A' have been neglected.
Expression (29) is to be compared with the unre-
normalized photon propagator in quantum electro-
dynamics. In the same order it has the form
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The only difference is the value of the renormalization
constant Z3.

Ke show now that the set of equations for the
propagators yields identical renormalized solutions in

(24) the four-fermion (FF) theory and in quantum electro-
dynamics (QED). First, let us consider the lowest order
correction to the propagator
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This difference will disappear, of course, in the re-
normalized expressions. In both cases, we shall have

g„„-'(k')=Z,g-'(k')

This leads to the following representation for the
propagator g: " pdM2Z

8(k') = ——+
k2

(27)

In formulas (25) and (27) we made use of the fact that
the pole term in (27) represents a zero-mass particle,
and the existence of such a particle implies that the
lowest intermediate mass Mp is zero. Had we not put
pp

——0 we would have obtained a bound state with non-
zero mass.

Apart from possible differences in the spectral func-
tion and in the constant Z~ the propagator g does not
differ from the photon propagator in standard quantum
electrodynamics. %e show in the next section that
after renormalization both propagators become equal.

B. Zumino, J. Math. Phys. j., 1 (1960); I. Bialynicki-Birula,
ibid. 3, 1094 (1962).

= —k2 1+02 (34)
M2 M2 P2

where 0-,. differs from 0 in having ep' replaced by
e'=Z3ep'. In the lowest order we obtain

e' = (1/121r') ln (A'/4m') (35)

so that the observable charge does not depend on the
bare one. Since the equations for the electron propagator
and the vertex function are the same in both theories,
there will be no difference (apart from the diBerence in
factors Za) between the next order corrections to the
electron propagator and to the vertex function. The
simplest way of proving the equivalence in any order is
to notice that in both theories we have the same set of
Feynman diagrams and the same rules for writing the
5-matrix elements. Finally, we would like to point out
that the equations in the four-fermion theory can be
obtained from those in quantum electrodynamics as a
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result of the transformation

BI » ~ «8~~) (36)

in the limit e ~0. The transformation (36) belongs to
the renormalization group and leaves the physical
content of the theory unchanged.

6. CONCLUSIONS

The main result of this paper, which is that particles
may appear in conventional field theory without corre-
sponding fields being introduced into the initial Lagran-
gian, seems to be quite general. We restricted ourselves
to quantum electrodynamics, but very similar results
can be obtained in mesodynamics.

There are many formal similarities between our ap-
proach and the results of Jouvet, "Nambu and Jona-
Lasinio, "Bjorken, ' and Freund. ' It is very likely that
all these, seemingly completely different, descriptions
are to some extent equivalent.

We do not think that in this paper we have given a
proof that the photon is a bound state of an electron-
positron pair. We would rather say that our results
indicate that an ambiguity exists in the relationship
between physical particles and Lagrangians. There may
exist several Lagrangians leading to the same set of
Feynman diagrams.

'0 B. Jouvet, Nuovo Cimento 5, 1 (1957)."Y.Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
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The equilibrium shape and the fission barrier are calculated for the entire range of angular momenta for
which a rotating droplet held together by surface tension has a stable equilibrium. A liquid drop which is
originally spherical takes the shape of an oblate spheroid as the angular momentum increases. At higher
angular momenta, the shape becomes concave at the poles and a ring form is created. It is shown that the
equilibrium ceases to be stable at or near the critical angular momentum at which this change of topology
occurs.

I. INTRODUCTION

'HIS paper presents a calculation of the equilibrium
configurations of rotating liquid drop nuclei and

the fission barrier of such drops. The opposing sects
of surface tension and centrifugal forces are considered.
In this respect the calculation differs from the work of
Bohr and Wheeler' where nonrotating nuclei were
considered and the two opposing effects determining
stability were the Coulomb energy and surface tension.
The purpose of this paper, in which Coulomb effects
are neglected, is to obtain information about the effect
of angular momentum on nuclear stability. When the
separate eGects of angular momentum and Coulomb
forces will be known, one might attempt to look at the
general case where both effects exist.

The importance of nuclear states with high angular
momenta was realized from the results obtained with
the heavy-ion accelerators. When uranium is bom. -
barded by 10-MeV oxygen nuclei, states with angular
momenta as high as 60 units of h are obtained. It has

~ Part of this work was submitted as part of a thesis in partial
fulfillment for the Ph.D. degree at Princeton University.' N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

been found experimentally' that the partial width for
fission increases with increasing angular momentum.

The properties of a rotating incompressible Quid have
been studied and discussed by Plateau, ' Poincare, 4

Rayleigh, ' and Appel. ' However, none of these papers
contain an analytic expression for the equilibrium shape.
All of the authors resort to numerical methods at one
stage or another. In this paper analytic expressions for
the shape of equilibrium are obtained. It is also shown
that the topology of the equilibrium conlguration
changes when a parameter (which will be deaned later)
assumes the value 2.414. This value is to be compared
with 2.32 and 2.4, which are the estimates of Appel
and Rayleigh, respectively. The nature of those equi-
libria with respect to small deformations when the

' S. A. Baraboshkin, A. S. Karamian, and G. N. Flerov, Soviet
Phys. —JETP 5, 1055 (1957).

~ J. Plateau, Memoire sur Les Phenomenes Que Presente Une
Masse Liquide Libre et Soustraite de I,'Action de la Pesanteur,
Premiere Partie, Nouveaux M6moires de 1'Academic Royle des
Sciences et Belles Lettres de Bruxelles, Tome 16 (1843).

4 H. Poincard, CappillariQ, George Carre, Editeur (Paris,
1895},pp. 118.

s Lord Rayleigh, Phil. Mag. 28, 161 (1914).
P. Appel, Traite de Macanique Rationelle (Gauthier-Villars,

Paris, 1932), Vol. 4, Chap. I, p. 295.


