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Application of the Variation Method to Field Quantization*
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The object of this paper is the application of the variation method to a simple field theory. A representa-
tion is found in which the state functions are emphasized. Variational trial forms are chosen for these, and
optimized by making the expectation value of the field Hamiltonian stationary. Only the simplest case of a
neutral, spin-zero, boson field with a fourth-power self-coupling term is considered here, but it is hoped that
with further elaboration this may in the future lead to a description of the multipion resonances. The
variation method has the advantage of avoiding any limitation on the strength of the self-coupling. Explicit
results are obtained for the vacuum, single-particle, and two-particle (scattering and bound) states, and
comparison is made with the determinantal method. Finally, a criterion for the variational stability of the
vacuum state is obtained.

I. INTRODUCTION The present paper starts with a representation in
which the state functions are emphasized. ' The varia-
tion method then provides a technique for improving
these functions, and a criterion for gauging the degree
of improvement that is attained. It also avoids any
limitation on the strength of the self-coupling. Only the
simplest case of a neutral, spin-zero, boson field with a
fourth-power term in the Lagrangian is considered here,
although the same methods can be applied to the self-
coupled pion (unit isospin) 6eld."The work reported
here is also limited to separable, or nearly separable,
variational trial functions. Voile the results obtained
evidently cannot be compared with experiment, they
are promising enough to warrant extension to more
elaborate trial functions.

HE existence of well-defined resonances, or quasi-
bound states, of the two-pion and three-pion

systems has now been established by experimental
observation. ' Several theoretical attempts have been
directed toward relating these resonances with each
other'; none of these has provided an exact solution
within the framework of any definite model, nor are
the limitations of the approximations completely under-
stood. The simplest field-theoretical model is that in
which only pions (no nucleons) are present, and the
interaction between pions is represented by a non-
bilinear self-coupling term in the field Lagrangian. Such
a term appears after renormalization of the pion-nucleon
coupling, ' and the classical theory of this model was dis-
cussed many years ago in an attempt to account for the
saturation of nuclear forces. 4 Quantization was carried
through in a lattice space, with the field-gradient
(kinetic energy) term being treated as a perturbation',
the object of this approach was to take strong self-
couplings into account without approximation. Lattice
quantization led to physically plausible lowest (vacuum)
and first excited (single-particle) states. More compli-
cated self-couplings have also been introduced in
attempts to account for other properties of elementary
particles. ' ' The particular case of the fourth-power
self-coupling has been treated most fully by means of the
determinantal methodg; this work provides an impor-
tant standard with which new theoretical approaches,
such as that developed below, can be compared.

* Supported in part by the U. S. Air Force through the Air Force
OfBce of ScientjL6c Research.' For a summary of the experimental results, see the report by
G. Puppi presented in the Proceedings of the International Con-
ference on High-Energy Physks at CERN, 106Z (CERN, Geneva,
1962), p. 713,

2The theoretical approaches have been summarized by S.
Mandelstam in a report in the Proceedings of the International
Conference on High-Energy Physics at CERN, 106Z (CERN,
Geneva, 1962), p. 739.' P. T. Matthews, Phil. Mag. 41, 185 (1950).

L. I. SchifF, Phys. Rev. 84, 1 (1951);R. O. Fornaguera, Nuov
Cimento 1, 132 (1955).' L. I. Schi8, Phys. Rev. 92, 766 (1953).' J. Goldstone, Nuovo Cimento 19, 154 (1961).' G. Marx, Acta Phys. Acad. Sci. Hung. 14, 27 {1962).' D. I. Blokhintsev (to be published).' M. Baker and F. Zachariasen, Phys. Rev. 118, 1659 (1960).

II. GENERAL FORMALISM

We start with the Lagrangian density (in units such
that h=c= 1)

2(&4)—' 2tio'p'—

which is Lorentz invariant if the field amplitude p is a
scalar or pseudoscalar function of the coordinates and
time. The canonical quantization procedure" then leads
to the Hamiltonian

L1~2+ 1 (py) 2+ 1
~ 2'+ 1pe]$3r

the commutation relations

(4 (r,t), ~(r', t)5=i'(r r'), —
and the total momentum operator

1
C~(v4)+ (v4)~jd'».

2

It is easily seen that 6 commutes with H, so that the

o 'DA preliminary account of this work was presented in the
Proceedings of the International Conference on High-Energy Physics
at CERN, 106Z (CERN, Geneva, 1962), p. 690."P. R. Auvil, Jr., Stanford University Ph. D. dissertation,
1963 {unpublished) ~

~ See, for example, G. Wentzel, Quanhcm Theory of Fields
{Interscience Publishers, Inc. , New York, 1949), Sec. 6.
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&k=~k COS~k) yk=—sk sin0k,

and express H and G in terms of the s's, 8's, and their
derivatives. "

H=Q HI,'+ po/Qz) [Q sz cos(k r +p8)]4d rz, (5)

st.ates of the system may be classified according to
values of the total energy and total momentum. Since
Eqs. (1) and (2) are also invariant with respect to the
substitution @~ —

qb, x ~ —~, we expect the states to
possess a multiplicative quantum number (equal to &1)
that we shall call the amplitude parity. "

The integration volume in (1) and (3) is chosen at
first to be a rectangular box of volume 0 with periodic
boundary conditions at the edges; 0 is later allowed to
become arbitrarily large. It is then convenient to expand
the field amplitudes in terms of the normal modes of the
box,

&=0 "'P ql, exp(ik r), rr=Q "'-'P p~ exp( —ik r).

The k's are three vectors whose rectangular components
are integer multiplies of 2x divided by the corresponding
length of the box; for notational simplicity, their
vectorial character will not be indicated in the sub-
scripts. The commutation relations (2) become [qz,pz ]
=ibk, k with other pairs commuting. Further, since we
are dealing with a neutral field, the unquantized p is
real; then the quantized P and x are Hermitia, n, so that

qk =q—k, pk =p—z

In the usual quantization procedure, " the q's and p's
are expressed in terms of non-Hermitian creation and
destruction operators. Since we wish to emphasize the
state functions rather than the operators, we express
the q's and p's in terms of Hermitian operators in the
following way:

qz—=2-»z(xzyzy~), Pz =—2-z»(X —il'„).

The new commutation relations, [xq,Xk]=[yz, Yz ]
= i8k, k with other pairs commuting, make it possible to
adopt the representation

Xg:———z8/Bxz, I'g, ———z8g 8yz.

Thus, H can be expressed in terms of the x's, y's, and
their derivatives. However, it is slightly more con-
venient to define "cylindrical" coordinates

or if sk= s k and ok= —8 k, it is only necessary to sum
over half the k space. The summations in Eqs. (5) and

(7), and all subsequent summations over k, are written
with coefficients so chosen that they do, in fa.ct, extend
over half the k space. This has the advantage that the
field variables are not duplicated within a summation.
While it is desirable to exploit the discreteness of the
k space throughout most of the calculation, final results
are only of interest for arbitrarily large Q. A summation
ca,n then be replaced by an integration, which for
convenience will be taken over the entire k space; we,
thus, have the correspondence

L ]d'&.
16m'

III. SEPARABLE TRIAL FUNCTIONS

An exact solution of the equation HP= Jig, where P is
a function of the s's and 8's, would give the energy
levels E of the quantized field. We shall apply the
variation principle to the approximate determination
of p, by choosing a trial function with some flexibilityt
and regarding the optimal form as that which makes the
expectation value of H stationary. We first choose, for
simplicity, a separable trial function that is written as
a product of arbitrary functions of the normal mode
variables:

&=Q f~(sz, 8a)

The product in (9), like the sums in (5) and (7),
extends over half the k space. The f's are assumed to be
normalized:

00 2)t' dg
lfzl'=1

p 2Ã

The invariance of H with respect to change in sign of
the field amplitude implies that it is invariant with
respect to replacement of each 8k by t5Ik+m. Thus, we
expect each f& to have definite amplitude parity, and
each

l fz l

z to remain unchanged under this substitution.
This means that when the expectation value of H is
computed with P, the only terms in the expansion of the
fourth power of the summation in (5) that contribute
are

g sz' cos'(k r+8z)+3 P g' szzsP cos'(k r+8k)
Xcos'(l r+8~). (10)

—1 8 8 1 cj2

2'k—+— +2~k ~k )
-~k ~~k ~~k ~k Cj~k—

8
G=g ik

~k

(6)

(7)

The prime on the last summation indicates that leak.
Furthermore, after the r integration is performed, the
8 dependence of (10) disappears. We, thus, obtain

(H)=—(O'H4') =2 (f~Hz'fa)+ (3&o/8&)Z (fzs~'f~)

+ (3&o/41')gg'(f~s~'f, ) (f,sPf, ), (11)
Here, ~k2=—k'+ pp'.

Since Eqs. (4) are satisfied if xi=a z and yz
———y z,

'3 This quantum number, introduced in reference 10, has been
discussed further by G. Barton {to be published}.

where we have used the notation

(f&I,'fz) = fkHk"fzdr~—



L. I. SCH I FF

The condition that (11) be stationary for an arbitrary
variation of the complex functions fi, subject to the
condition that they be normalized, is

=H2'f2+ —~z24fi
sa)

3Xp
+ —[p'(fizpfi) jz22f2 L;2f——2, (12)

20

where EI, is a Lagrange multiplier. Comparison between
the variational equation with respect to f2 and the
complex conjugate of (12) shows that E2 is real.

The group of equations (12) for all k constitutes a
particularly simple set of coupled nonlinear equations.
We write them in the form

LH2'+ (3XOA/20) zi2jf2

y(3&0/80)fs24 4(f2z2'—fi)z2'jfi=&2f2, (13)

where A =p(fez—i2f2) Since it. follows from (8) that each
summation is proportional to 0, it is apparent that the
second bracket term in (13) is of order 1/0 compared to
the first bracket term. Thus, a zero-order solution may
be obtained with A as a parameter. The correction to
this, which has the relative order of magnitude of the
arbitrarily small quantity 1/0, can then be found by
perturbation theory when the unperturbed f2 is inserted
in the second bracket term of (13).

The variational energy (H) can be expressed in terms
of the E's by multiplying (12) through by f2, integrating
over z2 and 82, and summing over k Equation (11)may
then be written as

(H) =p E2 (3X2A'/40)+ (3X—O/40)p(f&z&2f&)2 (14).
We are interested in the value of (H) when 0 is
arbitrarily large. Owing to the summation in the first
term of (14), Z2 must be known to relative order 1/0 if
the 0-independent part of (H) is to be obtained cor-
rectly. In similar fashion, the fi must be known to
relative order 1/0 if A is to be found with sufficient
accuracy to give the 0-independent part of the second
term of (14) correctly. On the other hand, the un-
perturbed f's can be used to calculate the last term
of (14).

It can be shown that the corrections of relative order
1/0 are zero for all the cases considered in this paper.
While a simple proof of this result would be desirable,
it has not been found, and the required calculations are
suKciently lengthy and uninteresting that they have
been omitted. The subsequent work, therefore, ignores
the 1/0 corrections.

Lowest State—Physical Vacuum

The leading terms of Eq. (13), together with the form
of Hio given in (6), shows that the unperturbed f's are
two-dimensional harmonic oscillator functions. Then
the unperturbed E2= (Ii,+1)42, where Ni is zero or a

positive integer and

e22 4d2——2+ (3XOA/0), A =Q L(24i+1)/42j. (15)

Suppose now that we start with some set of n~, and
imagine that changes to nA, +bng are made. Then if the
corresponding fractional change in A is small, which
implies that only a finite number of the n's are
changed, the change in e& is given approximately by
842 ——(37 08A/204&) The. variational energy

(H) =g (422+ 1)42—(3XOA2/40),

given by the leading terms of (14), then changes by the
amount

S(H)=g .,Sn, (16)

Thus, a moderate increase in the 22's increase (H). It
is reasonable, then, to expect the smallest value of (H)
to be attained when each nI, is zero. This lowest state
corresponds to the physical vacuum. The corresponding
normalized unperturbed eigenfunctions of Eq. (13) are

f2(z2, 02) = (242)"2 exp( —-'242z22). (17)

The vacuum state is defined by Eqs. (9) and (17);it has
zero total momentum and even amplitude parity
(equal to +1).

If we regard A as an undetermined parameter in the
first of Eqs. (15), the second equation shows that A is
quadratically divergent in the following sense: For a
finite k space with dimensions of order A, A is of order
QA'. This suggests that mass renormalization be intro-
duced by replacing the square of the unrenormalized
rest mass, pp', by p,'—5p,' in the original Lagrangian
density; here, bi42= 3XOA—/0~X+2 is the mass counter
term. The first of Eqs. (15) then becomes

2 k2+~2

and we shall see that p, is to be interpreted as the
physical particle rest mass.

First Excited States —Single Particles

The first excited states of the field are evidently ob-
tained when each of the m's is zero except for one of them
which is equal to unity. The state function is given by
(9), where each of the f's has the form (17) except for
one, which is a first excited oscillator state:

fi(z2, 92) =2"242zi exp(&2&2 242z2') —— (19.)

It follows from (7) that this state is an eigenfunction of
the total momentum operator 6 with eigenvalue Wk; it
also has odd amplitude parity (equal to —1). Equation
(16) shows that the energy of this state exceeds that of
the vacuum by e&. Thus, if we regard the vacuum energy
as being unobservable, Eq. (18) shows that the first
excited states correspond to single relativistic particles
of rest mass p, . It should be noted that even though k is
restricted to half of the space, the twofold degeneracy
of (19), indicated by the & sign, yields particles of all
momenta.
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Ke have shown in this section that the state functions
defined by Eqs. (9), (17), and (19) are optimal from the
point of view of the variation principle provided only
that the trial function is of separable form. The same
6nal result for the particle energy and momentum can be
obtained by applying the Bogoliubov transformation to
the non-Hermitian creation and destruction operators
usually defined in terms of the q's and p's."However,
this procedure assgmes that the transformed operators
correspond to oscillator states, and it is much more
difIicult in the Bogoliubov formalism to show that
oscillator states are actually optimal.

IV. SECOND EXCITED STATES

The second excited states of the field may be described
by separable trial functions of the form (9) in which
either (a) each of the e's is zero except for two of them
which are equal to unity, or (b) each of the n's is zero
except for one of them which is equal to two. In case (a),
the 8 dependence is of the form exp(&i8k&i8i), which
corresponds to total momentum Wk&1. Since we must
have h/1, the total momentum cannot be zero; we can
nevertheless arrive at a c.m. (center-of-mass) coordinate
system by a limiting process. It is somewhat simpler to
make use of case (b), in which case there are three
second excited states, which may be chosen to be
proportional to exp(&2i8k), or independent of 8k. The
6rst two of these have total momentum %2k and even
amplitude parity, and describe two particles each with
momentum Wk. The third state has zero total momen-
tum and even amplitude parity, and describes a pair of
particles with equal and opposite momenta (k and —lr).
This representation of the c.m. system is used in the
following; however, the same results can be obtained
from case (a) by means of the limiting process men-
tioned above.

i' Q +kgk(zkp8k)g fl(zl&18l)&1 (20)

where the f's and g's are normalized and have even
amplitude parity, and fk and gk are orthogonal to each
other; again, the prime indicates that l/k. Normaliza-
tion of pk requires that Q I

ak I'= 1.It then follows from
(8) that unless a limited set of the a's is involved in

(20), which turns out not to be the case, each uk is of
order Q "'. We do not assume at this point that the f's
and g's are oscillator functions. Our object is to deter-
mine the optimal function of the form (20) that has the
quantum numbers of the vacuum (zero total momentum
and even amplitude parity), and is orthogonal to the
vacuum trial function. Since it turns out that the f's
and g's in (20) are, in fact, oscillator functions of the
kind considered in Sec. III, the orthogonality require-
ment is automatically fulfilled. For the present, how-
ever, we do not make this assumption.

The argument leading to Eq. (10) is still valid, and
we 6nd that the expectation value of IJ is

Wave Packet Trial Function

The second excited state just described Lease (b)] is
degenerate in a way in which the first excited state of
Sec. III is not. First excited states for all vectors k of
the same magnitude have the same energy and ampli-
tude parity; but since they have diGerent momenta and
G commutes with II, matrix elements of H between
diferent states are all zero. On the other hand, second
excited states for all vectors k of the same magnitude
have the same energy, amplitude parity, and momen-
turn; hence they may, and in fact do, have nonvanishing
matrix elements of H between them. It is necessary,
therefore, to work with a wave packet: a sum of
separable products of the form (9).

We, thus, choose our trial function in the form

(H)k =P (fkHk'fk)+ (3XPA'/4Q)

+Q I ak I
'( (gk/Hk'+ (3xoA/2Q)zkkjgk) —(fk[Hkk+ (3lioA/2Q)zkk) fk) }

+ (3&o/2Q) I p ak(fkzk gk) I
+ (3lio/gQ)g L(fkzk'fk) —2(fksk'fk)'j

+ (»k/gQ)Z I
~k I'I (gks"gk) —(fkzk'fk)+4(fkz"fk)' —4I (tks"gk) I'

4(g,Z,'g, ) (f—ksk'fk) 7 (21)

$k and f'k are associated with the orthogonality of fk
and gI,. From a comparison between the variational
equations with respect to fk, gk, ak, and the complex
conjugates of Eqs. (22), it is readily seen ths. t Zk, Ek',
and a are real, and that )k=1 k

We ignore the last two lines of (21) in what follows.
Then the first of Eqs. (22) consists of two parts, one of
which is of order 0 compared to the other; the leading
(unperturbed) part is just the oscillator equation Lfirst
part of (13)).The second of Eqs. (22) is all of the same
order, and is an inhomogeneous equation that relates
gk to the unperturbed f's. It may be solved by expanding
g& in oscillator functions; it then follows that only one of

The Lagrange multipliers EI„Eg,', and n are associated
with the normalization of fk, gk, and teak, respectively;

The terms in Eq. (21) have been grouped so that those
in the first line are of order 0, those in the next two lines
are independent of 0, and those in the last two lines are
of order 1/Q; A is again defined as P(fkzk'fk) In.
analogy with Eq. (12), the variational equations as-
sociated with (21) may be written as

&(H)k/&fk= Ekfk+bgk,

8(H)2/8gk Ek gk+f kfkg (22)

b(H) k/bak =Otak
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Two-Particle Scattering

We define 8=P(equi/ei), and rew—rite Eq. (24) as

(n —2ea) na ——3Xo8/2Qea. (25)

There are two kinds of nontrivial solutions of (25):Either
a~ is spherically symmetric with respect to the direction
of the vector k and 840, or else 8=0 and 0.= 2~I, . The
first case describes 5-wave scattering, and the second
describes higher partial waves in the c.m. system for
which there is no energy displacement and hence no
scattering. Ke are interested only in 5-wave scattering,
in which case the equation for o. is easily seen to be

20

ea(n —2ea) '3Xo
(26)

The summation in (26) is over the vectors k, and may
be written as a summation over the magnitudes and
directions of these vectors. Because of the spherical
symmetry of the summand, we may write this

2 E=Z C(k),
Ic 8P k

(27)

the even excited states appears, and we take this to be
the second. The third of Eqs. (22) is

{(gaL&a'+ (31'(u4/2Q)sa']ga)

(—fata'+ (3~&/2Q)sa'] fa) )cia

+ (3&o/2Q)(gasa'ga)K(f«P fi)ni=«a (23)

If we multiply this through by a& and sum over k, the
right side is equal to o;. The left side can be shown to be
equal to (H)o minus the vacuum energy found in Sec.
III, if only terms that fail to vanish as 0 becomes
arbitrarily large are retained. Thus, if we again regard
the vacuum energy as being unobservable, o. is the
energy of the second excited state.

Equation (23) determines n and the u's. It is sufhcient
now to use the unperturbed f's, in which case (23)
becomes

2eana+ (3&o/2Qea) [P(ai/ei)] =nba . (24)

The physical meaning of Eq. (24) may be inferred in the
following way: If ) p were zero, then a~ could be different
from zero only if 0,= 2~I,. Thus, for arbitrarily large but
finite 0, there would be a discrete set of energy levels
that correspond to noninteracting pairs of particles with
equal and opposite momenta; for given magnitude of the
momenta, each level would be degenerate with respect
to direction. Since Xp is not equal to zero, the spectrum
of o. does not have this simple form, but is still discrete.
The c's are mixed together, and the displaced n's corre-
spond to wave packets that describe two-particle
scattering. The displacement of o. can be related to the
scattering phase shift in a well-known way. ""

where lr=—(O,8,&). It is convenient then to imagine that
the volume 0 is of spherical shape with radius R, so that
Q=knRo/3. Then we may use spherical waves instead
of the plane waves of Sec. II; for any partial wave, the
summation over k can be replaced in the limit of
arbitrarily large Q or R by R/n. times an integration over
k. The function C(k) can be determined by writing the
limit of the complete summation in (27) either as
(R/~) J C(k)dk, or from Eq. (8) as (Q/16oro) f4'-O'dO.
It follows that

C(k) = O'R'/3. (28)

R'R' (ere ', n) ereR—-
cot

6&~ E (30)

In the argument of the cotangent, e~—2n is the negative
of the displacement of the energy of a particle caused by
the interaction, and (K/es)(s. /R) is the separation of
adjacent unperturbed particle energies; thus, this argu-
ment is just the scattering phase shift b.""

Combining Eqs. (26), (29), and (30), we obtain

cot5=—
3Xp &ls~ &k &K

(31)

where we have replaced —,'n by t.~ in the integral. This
integral is logarithmically divergent, which means that
5 is in6nitesimally close to zero or an integer multiple
of z if ) p is finite. We may, however, assume that ) p is
in6nitesimally negative in such a way that the first
term on the right side of (31) cancels the divergent part
of the integral, leaving a finite remainder that deter-
mines b. One way of accomplishing such a coupling
constant renormalization is to add and subtract
J'(O'/ea')dk on the right side of (31), and define the
renormalized coupling constant ) by the relation

Except in the immediate neighborhood of the value
of k for which the denominator of the summand
vanishes, the left side of (26) may be replaced by the
principal value of the integral over O. From (27) and

(28), this is
(O'R'/3) (R/~)dk

(29)
ea'(n —2ea)

'The discreteness of the summation must of course be
taken into account when eI, is close to —',o, . Let e~ be the
value of ~I, that is closest to —,'a, and E be the correspond-
ing value of k. Then the denominator of the summand
of (26) can be written to suf5cient approximation

—
2esoL (ere ——,'n)+ (K/ere) (ie7r/R)],

where n ranges from —~ to +~ in integer steps. This
substitution, together with (27) and (28), then gives
for this part of the left side of (26):

'4 J. Schwinger, Phys. Rev. 94, 1362 (1954).
'~ B. S. De%itt, Phys. Rev. 1{}3,1565 (1956)."M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

1&rr' 16m' k'
+ —dk.

3A, 3A, p

(32)
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cotb=—
6k 6k 6K

(33)

The last term in (33), e~ times the principal value of
the integral, may be evaluated in an elementary way
and is equal to

(re2 1)1/2 &z
1+—— in)re+(n' —1)'"j, w=—)1.

2K zo p

%e, thus, have a closed expression for the differential
scattering cross section in the c.m. system, (1/K') sin'5;
it decreases monotonically with increasing particle
energy.

Two-Particle Bound State

Equation (26) may also have a solution for which
o. (2p, , which corresponds to a bound state of the two-
particle system. In this case, the summation on the left
side is equal to the integral (29), of course without
taking the principal value. Ke use the same renormali-
zation as for the scattering problem, replace o. by 2~0,
and find that (33) is replaced by

idea n- (1—v')'"
= 1+—— (-,'~+ sin —'v),

ea (ea eo) —2v 'U

where n—=ao/p&1 is the ratio of the total energy of the
system to the rest mass of two free particles, and the
value of the arcsine lies between 0 and ~x. There is no
bound state unless X is negative and 16m'/3

~

X
~
(1+-,'m",

as ~X
~

increases from this minimum value to inanity, aa

decreases monotonically from p, to zero.

Equation (31) then becomes, after a change in variable
of integration from k to el, .

16m'

Equation (34) is very similar to the first-order result
obtained by Baker and Zachariasen, ' which differs from

(34) mainly through the appearance of the squared

energy rather than the energy in the integrand of D.
This is a characteristic difference between covariant and
noncovariant dispersion relations; indeed, Auvil" has
shown that (34) can be obtained from a summation of

graphs in which the propagation is entirely forward in
time, not forward and backward as with Feynman
graphs. However, it has not proved possible to derive
the covariant version of (34) from a variation principle

by the methods developed in this paper, so it is not clear
that the first-order Baker-Zachariasen expression for 8

is superior to (33) or (43).

V. STABILITY OF THE VACUUM STATE

The variation principle has been used in this paper in
the sense that the expectation value of the 6eld Hamil-
tonian for a given class of trial functions is to be made
stationary. The stationary point should in addition be
a minimum, and we investigate this now to see whether
or not the vacuum state found in Sec. III is stable with
respect to small variations in the f's Our p. rocedure
consists in calculating (H), given by (11), when fa of
(17) is repls, ced by

——I/2

Fa=(fa+ga) 1+ ~g~ dra

here ga is orthogonal to fa, so that Ii a is normalized. The
smallness of the variation implies that J'~ga~'dra&&1,
and we shall keep only quantities of second order in
the g's.

Retaining only the leading terms, of order 0, we 6nd
after some calculation that (H) is replaced by
(H)+b(H), where

Connection with the Determinantal Method

1 r(K)—e*' sinb =, r(K) =-
sr D(K)

(34)
r(k)dea

„ea(ea ex arj)——D(K) =1—e~

where q is a positive infinitesimal.

A formalism such as that developed in this paper must
conserve probability, since it is set up in terms of
normalized state functions. It is expected, then, that the
S matrix will be unitary, and this is demonstrated in
the case of two-particle scattering by the existence of
the real pha, se shift given in (33). It is also of some
interest to rewrite (33) in a form that brings it into
correspondence with the determinantal method, "6
which also leads to an S matrix that is automatically
unitary. The result is

b{H)=Q (gaLHa'+ (3XaA/20) saa —ea]ga)

+ (3& o/4fl)(Z[(g. 'f.)+(f""g.)j)'. (35)

Since ~k is the smallest eigenvalue of the operator
Ha'+(3XaA/20), and the square bracket in the second
term is real, it is evident that h{H) is positive so long as
) 0 is positive and g/, is nonzero. Thus, the vacuum state
is stable if ) 0&0. However, the discussion following
Eq. (31) shows that there is no two-particle interaction
in this case. 9, e should, therefore, investigate stability
when ) 0 is negative.

This is most readily accomplished by expanding g/, in
higher oscillator sta, tes fa„, which are assumed to be
normalized:

ga=Q &a.fa ) LHa'+(BOA/211))fa~= (ra+1)aafa~
n~l

In this notation, faa is given by (17) and fa& by (19).
Only faa contributes to the second term of (35), and it is
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easily seen that

(faaza'fa)=Pa/pa, IPaI ~1;
We see that

16m' k' Sm'

+ —dk(—

b(H) =
2''

3IXpIQ- b(k)
pab'(k) k'dk — k'dk (37)

16m' eg,

where we have explicitly recognized that Xo is negative.
We must now choose b(k) so as to maximize the ratio

b(k)
k'dk aab'(k)k'dk (38)

Variation of (38) with respect to the form of b(k) shows
that it is stationary when b(k) =constant/pa', further
analysis shows that this stationary point is a maximum.
It then follows from (37) that b(H) is positive with this
form for b(k) if

Sx

I@I�(

(
—dk) (39)

The inequality (39) is the stability criterion for the
vacuum state when it has the separable form (9) and it
is assumed that Xp is negative. The integral in (39) is
logarithmically divergent; if the k space is spherical and
has radius A, then (39) becomes approximately

IxpI ( A.»p.
3 ln(2A/p)

(40)

I't is interesting to see what conclusions can be drawn
concerning the reaormalized coupling constant ) from
(32) and (39).

the value of Pa depends on the particular linear com-
bination of the three degenerate second excited oscillator
states that is chosen for fap. Substitution into (35)
then gives

b(H)=Z "(Ib»I'+2Ib»I'+3Ib»I'+ )
+ (37 p/4fl) I Z(bagPa+5agPa)/pa j' (36)

For negative Xp, b(H) is algebraically smallest when
all of the b's are zero except for b~g. Further, if only a
finite set of the baa differ from zero, the first term of (36)
is of order unity and the second term is of order 1/0, so
that 8(H) is positive. Thus, we obtain the severest test
of stability if we assume that bap is real and Pa is equal
to unity, and then take the limit of arbitrarily large 0
so that b~2 can be replaced by a continuous function
b(k) Equa. tion (36) then becomes

from which it follows that X is negative for stability, and
also that

I
P

I
(2I Xp I. Together with (40), this leads to

the stability criterion

3 ln (2A/p)

which for large h. means that the renormalized two-

particle interaction is very weak. "As an example, there
is no bound state of the two-particle system if A) 6.6p, .

VI. CONCLUDING REMARKS

We have shown how the system described by Eqs. (1)
and (2) can be formulated in terms of state functions
that can be approximated by means of the variation
principle. This method does not impose any limitation
on the magnitude of )0. Optimal trial functions of
separable form have been found that correspond to the
vacuum and to single-particle states, and which require
the introduction of mass renormalization. Optimal
wave packets that describe two-particle scattering and
binding have been constructed, and these lead naturally
to coupling constant renormalization. The variational
stability of the vacuum state has been examined, and
yields the rather unsatisfactory criterion (41). This
suggests that attention should be focused on more
elaborate trial functions, particularly for the vacuum
state, rather than on the introduction of isotopic spin
or the solution of the three-particle problem. "

Although it is not shown in this paper, we have also
found that a sum of separable products of the form (9),
in each of which a finite number of the f's are permitted
to di6er from the lowest oscillator function (17), does
not change the leading term in the vacuum energy,
which is of order 0. It seems likely that improvement
can be achieved only by abandoning the separable form
(9), perhaps by expressing f as a function of collective
variables that involve all of the 2's and 8's. The variation
formalism is well adapted to attempts of this kind, and
these are now under way.
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'7 Owing to an error of a factor 2 in the earlier derivation of the
stability criterion, this result was incorrectly stated in reference 10.


