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possesses a continuous symmetry group under which
the ground or vacuum state is not invariant, that state
is, therefore, degenerate with other ground states. This
implies a zero-mass boson. Thus, the solid crystal
violates translational and rotational invariance, and
possesses phonons; liquid helium violates (in a certain
sense only, of course) gauge invariance, and possesses
a longitudinal phonon; ferro-magnetism violates spin
rotation symmetry, and possesses spin waves; super-
conductivity violates gauge invariance, and would have
a zero-mass collective mode in the absence of long-range
Coulomb forces.

lt is noteworthy that in most of these cases, upon
closer examination, the Goldstone bosons do indeed
become tangled up with Yang-Mills gauge bosons and,
thus, do not in any true sense really have zero mass.
Superconductivity is a familiar example, but a similar

phenomenon happens with phonons; when the phonon
frequency is as low as the gravitational plasma fre-

quency, (4~Gp)"- (wavelength 10' km in normal
matter) there is a phonon-graviton interaction: in that
case, because of the peculiar sign of the gravitational
interaction, leading to instability rather than 6nite

mass. "Utiyama" and Feynman have pointed out that
gravity is also a Yang-Mills field. It is an amusing
observation that the three phonons plus two gravitons
are just enough components to make up the appropriate
tensor particle which would be required for a finite-mass
graviton.

Spin waves also are known to interact strongly with
magnetostatic forces at very long wavelengths, " for
rather more obscure and less satisfactory reasons. We
conclude, then, that the Goldstone zero-mass difFiculty
is not a serious one, because we can probably cancel it
off against an equal Yang-Mills zero-mass problem.
What is not clear yet, on the other hand, is whether it is
possible to describe a truly strong conservation law
such as that of baryons with a gauge group and a
Yang-Mills field having finite mass.

I should like to thank Dr. John R. Klauder for
valuable conversations and, particularly, for correcting
some serious misapprehensions on my part, and Dr.
John C'. Taylor for calling my attention to Schwinger's
work.
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From group-theoretical considerations, invariant scattering amplitudes for two-body reactions of particles
with arbitrary spins and nonzero masses are constructed in various forms, including helicity amplitudes and
amplitudes free of kinematical singularities. They are linear combinations of spin basis functions with
scalar coefficients. In the process of construction the Pauli spin matrices are generalized for arbitrary spin.
On the basis of a Mandelstam representation for the scalar coef6cients, the unique analytic continuation
of the amplitudes in total angular momentum is obtained. Possible kinematical singularities of the scalar
amplitudes at the boundary of the physical region are discussed.

I. INTRODUCTION

HE basic quantities of S-matrix theory are the
Lorentz-invariant scattering matrix elements (5

functions), which depend on the spins and types of
incoming and outgoing particles and on the mass shell
values of their four-momenta. From the S functions,
invariant scattering amplitudes (M functions) that
have simpler transformation properties and that are
expected to be free of kinematical singularities can be
defined. ' A general procedure has been given to con-
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struct the invariant amplitudes in terms of the irre-
ducible unitary representations of the inhomogeneous
proper I.orentz group, based on a two-component
spinor formalism '

Although the invariant scalar amplitudes for which
the Mandelstam representation is expected to be valid
have been known for some time in the simpler cases
such as those of the pion-nucleon' and nucleon-nucleon4
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scattering systems, there is to our knowledge no system-
atic construction of such amplitudes for arbitrary
spins. ' The purpose of this paper is, first, to construct
the invariant M functions of arbitrary spin for two-body
reactions (two particles in, two particles out), and also
to construct the S functions in various representations
(for example, the helicity representation) in terms of
scalar amplitudes and explicitly given basis functions. '
Second, it is our purpose to define, on the basis of a
Mandelstam representation for the two-body scalar
amplitudes, an analytic continuation in total angular
momentum that generalizes the recent work on simpler
cases. ' In pion-nucleon scattering, as already men-
tioned, there exist scalar amplitudes that are known to
have no kinematical singularities. An investigation of
this question for arbitrary spin will be reported in a
separate paper. We proceed here on the assumption
that one among a large class of possible bases will lead
to scalar amplitudes without poles.

In this paper, we ignore isotopic spin and give no
systematic discussion of C, P, and T transformations,
but make on}y occasional comments where appro-
priate.

Apart from their theoretical interest, the con-
siderations involving higher spins will be, we believe,
of practical importance in connection with the new
higher spin resonances, and perhaps in the problem of
analytic continuation in spin of the S-matrix elements.
Many of these considerations apply to processes in-
volving arbitrary numbers of particles and are not
restricted to two-body systems. For example, the spin
matrices introduced in this paper generalizing the
Pauli matrices to higher spins may be of interest in
other applications. From these matrices we obtain the
projection operators for the irreducible invariant sub-
spaces of the tensors of arbitrary rank.

II. DEFINITION OF INVARIANT FUNCTIONS
AND GENERAL PROCEDURE

The formulas developed in the succeeding sections
are rather involved. To facilitate the reading, we outline
in this section the procedure that we have followed;
but first we define the transformation laws of the
various invariant functions. It is often said that spin
is only an inessential complication. Nevertheless, it
appears that except in simple cases a certain amount
of complication is, if not essential, at least unavoidable.

'A. C. Hearn, Nuovo Cimento 21, 333 {1961),discusses the
amplitudes for spin ~ and photon processes, in a perturbation
theory framework.
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A. The Invariant Functions

A'(k) =BI i, 'ABq p and A(A ')k=q.

Here E stands for the set of incoming and outgoing
four-momenta, k„, with P k =0 from momentum
conservation; and AK stands for the set of transformed
momenta, Ak„. Elements of the orthochronous proper
homogeneous Lorentz group I+I are denoted by h. (A),
where ~A are the corresponding elements of the two-
by-two unimodular group. The spin indices of the S
function, which have been suppressed, are transformed
by direct products of the unitary matrices X)8' and
S~~'*, which are the well-known L(2S,+1), (2S;+1)]-
dimensional irreducible representations of the three-
dimensional proper real orthogonal group. An index
transforming according to $8 corresponds to an
outgoing particle or incoming antiparticle and one
transforming according to X)~* corresponds to an in-
coming particle or outgoing antiparticle. ' In the
argument A'(k) of Ss or X)s*, the unimodular matrices
8 are so defined that

A(Ba r)p=k,

and similarly for B& p. The Lorentz transformation
corresponding to the unitary-unimodular matrix
A'=Bi, q 'ABq r trans—forms the vector p into itself
(it is an element of the little group of the vector p),
where p= (m, 0,0,0) is the rest-frame value of k; hence,
this transformation is a rotation.

From the definition of p and Eq. (A1.1) in Appendix
I, we have, in terms of Pauli matrices, 0.„,'

Bi -~Ba-,t= k~~„/m. (2.2)

The general solution of this equation can be written
in the form BI I =HI yU, where AI ~is the Hermitian
matrix (k u/m)'~2 and U is an arbitrary unitary matrix
corresponding to the freedom of arbitrary rotations in
the rest system of the particle. We use this freedom
later in the construction of helicity amplitudes. An

'For a list of conventions, notation, and various important
relations involving two-component spinors, two-by-two matrices,
and group representation matrices, see Appendix I.

9This choice is purely conventional, especially since the two
representations are equivalent. It agrees with the usual con-
vention in the four-component formalism, as will be seen inci-
dentally in Appendix II. See also the references in footnote 1.

We consider scattering processes for outgoing par-
ticles and incoming antiparticles with spins and four-
momenta S,, k;, and incoming particles and outgoing
antiparticles with spins and four-momenta S,, k, , all
with nonzero rest masses. The invariant scattering
functions (or S-matrix elements) have the following
transformation property under representations of the
inhomogeneous orthochronous proper Lorentz group' ':
S(K)= g,ns'LA'( —k,)j

g g .Os~I-A (ki)]*SLA
—'(A)Kj, (2.1)

where
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FIG. 1.Two-body scat-
tering parameters.
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important characteristic of
de6ned below is that their
independent of B.

The transformation law
functions,

the invariant M functions
transformation property is

(2.1) also holds for the R

R=S—I. (2.3)

B. The Scalar Amylitudes

For practical purposes, such as the application of the
Mandelstam representation, it appears convenient to
use a representation of the invariant functions in which
all of the dynamics is contained in. a set scalar ampli-
tudes. In a sense this removes spin from the problem.
Our problem is, thus, to 6nd a simple, explicit set of
basis functions, F"&(E), in the spin space which have
the same transformation property (2.7) as the M
functions. Then we write

There is a natural way of simplifying this transfor-
mation law. Because the matrix A'(k) =B»» 'AB«
is unitary, we have the identity

$ LA'(k)j=$' "(A'(k)]=$" )LA'(k)], (2.4)

where X)(8 ~') are the irreducible, in general, nonunitary,
representations of dimension (2S+1)(2S'+1) of I+'f.
We can, then, use the group property of X)'8') and
obtain

$ (B» p 'ABq p)=$ '&s(B&»») '

X $&s,o) (A) $(s.o& (B~ ~) (2 5

Thus, if we introduce M functions dehned by

M(E)=@I,$(s'"(B-»; »,)
8&3.$&s&,o)(B» p&)~R(E), (2.6)

we see from (2.1) that they have the simple trans-
formation law under I.+g,

M(E) =8,$&s"&(A)
.$(s;,o& (A) eMLA(A —')E) (2 7)

It is simpler to construct the solutions of this equation
than those of (2.1). Equations (2.3), (2.6), and (2.7)
are the basic formulas from which the construction of
the M and 5 functions begins. For spin ~ these are just
the kf functions introduced by Stapp. '

the four-momenta (and possibly of the signs of the
energies). One can also require that the basis functions
Y&'&(E) have de6nite transformation properties under
I' and T. Thus, if I' and T are conserved, the total
number of independent scalar amplitudes will be smaller
than the g;(2S;+1)+(2S;+1) resulting from (2.7)
and (2.8).

The essential requirement on the scalar amplitudes
is that they shall have only the singularities of the M
function itself, which on the basis of perturbation theory
or of a pure S-matrix theory are expected to be only
dynamical. ' Furthermore, we wish to require that the
basis functions themselves have no singularities. The
simplest possibility is that the basis functions should be
polynomials in the components of the linear momenta.
To require that the basis functions have this form is
not enough, however, for the scalar amplitudes could
still have kinematical poles at various degenerate points
where the basis functions become linearly dependent.
Indeed, the question of whether there exists a set of
basis functions that never induces kinematical poles in
the scalar amplitudes already involves considerable
subtlety in the case of two-body reactions; and there-
fore, we shall restrict ourselves primarily to this case in
any discussion where the singularities are important.

The question of to what extent these various require-
ments determine a set of basis functions is not settled
in this paper. Rather we seek to establish a basic
formalism for arbitrary spins that can be used in the
construction of a large class of basis functions. %'e
follow a procedure that is natural and systematic, and
that yields the usual analytic amplitudes in special
cases. It consists erst of building up in Sec. III a set of
higher spin matrices from the spin-~ matrices, 0„, by
using Clebsch-Gordan coeKcients in a process corre-
sponding to the addition of spins. For two-body
reactions we then, in Sec. IV, combine the spin matrices
with tensors formed from the four-momenta to obtain
a set of basis functions, Y&'&(E); and we give a brief
discussion of the question of kinematical poles in the
resulting scalar amplitudes. If preliminary results are
substantiated, a second paper showing how to eliminate
the kinematical poles will be submitted by one of us
(DNW).

C. Angular Momentum

In Sec. V we define an analytic continuation in total
angular momentum for the scattering functions shown
in Fig. 1.For this purpose it is convenient to use helicity
amplitudes. Having constructed F'&'& (E) and, therefore,
M (E) by (2.8), we obtain the helicity amplitudes H (E)
from (2.6) by making the appropriate choice for B in
the expression

M(E)=P(;) A&'&(E)F&"(E), (2.8)

where the A &"(E) are Lorentz scalars and must, there-
fore, be functions of the scalar invariants formed from

R(E)=$&s'0)(B—»4»4) '$(s' '(B—»3 p,)
—'

(g) $&s2, 0& (B» ~ )
—14(3 $&8|,0) (B» )

—14

XQ() A&'&(E)F&'&(E) (2.9)
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1
k&» (s) =-(qq')

2
«d'~& '"H g» (2.12)

where 2'=cosa, hX=) —p, L&'=X'—p, ', and q and q'

are the magnitudes of the momenta of the initial and
final particles, respectively.

We now write for the scalar amplitudes a partial-wave
expansion in the s channel, for example,

A&'&(s, t,N)=pz(2l+1)A "&(L,s)d'(8)0' (2.13)

where we put for the Legendre polynomials, Pz(s)—&f&(8) 0

If we insert this into Ho, &
and combine &f"(8) with

d'(8) 00 into a single d function and perform the angular
integration, which is of the form

dsd~(8) "d"(8) '= bzzz
2J+1

(2.14)

we obtain
k&», (s) =P&, &z& A &'&(l,s)Zp&&'& (2.15)

where Z contains a sum of the original Z times a number
of Clebsch-Gordan coefficients. In the above sum the l
values are restricted by the given J.

From the fixed-energy dispersion relation for

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
For rotations, an upper undotted index transforms as a lower
dotted index.

where now the A &&& (K) can be taken as functions of the
Mandelstam variables,

s= (kz+kz)', t= (kz+kz)' I= (kz+kz)'

with s+3+N=g; m,x. The helicity amplitudes H(K)
are defined to be R(K) when

8&: z
——(k o/z&z)z&' exp( i—Po /z2) exp( —i8&rz/2)

2.10X exp(z&f o z/2),
= exp( —

i&t a,/2) exp( i8—&rz/2)

&& exp (i&t&o z/2) (q a/m)",

where q&= (ko,o,o, ~k~), i.e., a velocity transformation
from the rest frame to the s direction followed by a
rotation to the direction (8,&), of k.z

Without loss of generality we can put, in the center-
of-mass frame of the s channel, &t =0. It turns out that
for any among a large class of basis functions the
angular dependence (8 dependence) of the helicity
amplitudes can be factored into a product of ds(8)
functions in the form

H, ,(K)=p,;, , A&*&(s,t,g)Z, , &*&&f (8), (2.11)

where Z&') does not depend upon 8, and R is determined
by the spins of the particles. Here (X) stands for the
indices (&z',X',&z,X) and d (8)=$& '&Lexp(i8az/2) j.

The projection over the total angular momentum J
of H~q~ is defined by'

A "' (s, t,zz) we express A "' (l,s) in terms of the absorptive
parts A&(" and A„") of the amplitudes in the crossed
channels and obtain

k&»'(~) =E&,&'& Z&»'*' «Q&(s)Az"'(»s)

+ (—1)' «Q&(s)A„&"(s,s), (2.16)

where the Qz(s) are Legendre functions of the second
kind. Assuming that the absorptive parts Ag and A„
are uniformly bounded in t and zz by t~ (or N~), we see
that the expression (2.16) defines an analytic function
of J for ReJ&E', where 1V' is displaced from E by
some integer determined by the spins of the particles.

Details are given in Sec. V.

III. CONSTRUCTION OF SPIN MATRICES

It is convenient to separate into two parts the
construction of the basis functions 7 "& (K) for arbitrary
spin. In this section we construct a set of matrices
which span the spin space and which contain most of
the complications in the transformation law due to
spin. These matrices are independent of the four-
momenta in the problem, except under special circum-
stances to be mentioned later; they have essentially
no eEect on the singularity structure of the scalar
amplitudes. The results of this section apply to M
functions that describe arbitrary numbers of particles.

The matrices that span a given spin space are labeled
with tensor indices in addition to spin indices labeling
their matrix elements. A complete set of basis functions
I'&"&(K) is obtained by contracting the tensor indices
of the spin matrices with a complete set of tensor
functions which are polynomials in the components of
the four-momenta. Given a spin basis, it is the con-
struction of a basis for the space of tensor functions
that can lead to possible kinematical poles in the scalar
amplitudes. This question is discussed in Sec. IV.

A. Spin--,'Matrices

The basis for general spin is constructed from two-
component Pauli spinors. Since the total number of
incoming and outgoing fermions in any scattering
process must be even, " the simplest case that we can
consider involves two spin--, particles, one incoming,
the other outgoing.

Equation (2.7) then becomes

M(K)=A&3A~MP~(A ')Kj
=AM'(A z)KjAz, (3.1)

"Because @so( A)=(—1)ssgso(g) and p(—g)=p(A), we
have

M(E}=M(X(—I)E)=(—1}~'spy;Ss (I)M(E)
= (—1)»'sea(E).

Hence Z;S; must be an integer if N(E) is not to vanish
identically.
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or, writing the spinor indices,

M p(K)=A 'Ape'M
p [t1(A ')K] (3 2)

As usual, the dotted index (incoming particle or out-

going antiparticle) transforms according to A* and the
undotted index (outgoing particle or incoming anti-

particle) according to A. '0 Any two-by-two matrix can
be written as a linear combination of Pauli matrices,
a„. Hence, we can put

M(K) = f~(K)o„ (3.3)

if (3.1) is to be satis6ed.
The four-vector function fa(K) can be expanded in

terms of the four-momenta E, but that construction
is reserved for Sec. IV.

If we define

p.= (1/~~)o.

p»= (1/~2) o.,
(3.5)

where a.„ is defined in Appendix I, the orthogonality
relations (A1.6) in Appendix I become

&P
f P'~'=$ ~'$&P'

and

p ujpampa'8' =Ca a'CP p')

(3 6)

where C is the "lowering" spinor deined in (A1.2).
The general formalism of the theory also requires

basis spinors with two undotted or two dotted indices.
Such spinors can be obtained in several diferent ways.
For example, the matrices p„p™,C ' have lower undotted
indices, and they certainly span the space. There is a
choice, however, introduced by Stapp, ' that is natural
and especially convenient for a discussion of crossing
relations. It consists in defining the special spinors

g p(k)=k. p/o, ra (3.7)

which can be used to change a dotted index into an
undotted one and vice versa, where k is taken to be the
four-momentum of the particle whose spin index is to
be operated upon.

Ke then define basis spinors

({k0)aaegaa'Pp P= (k'oPaC /~)aP&

(00).kp
——t&„. 'gp p= (Cp„k /m{r). p.

(3.8)

These spinors transform according to A A and
A*A*, respectively. For example,

A {00(k)Ar =A„0(A){0"$A(A) kj. (3.9)
'~ A review of spinor calculus with conventions for dotted and

undotted indices is included in Appendix I.

From the transformation law of o„given by (A1.1), it
is clear that we must have

A„ f„(A-)K)= f„(K), (3.4)

They satisfy orthogonality relations

and
{0)'(k).p{0„(k)"p'=t') bpp'

0))'(k).0{0„(k) p
=C Cpp

(3.10)

with corresponding formulas for dotted indices.
A spin basis for arbitrari]y many spin- —, particles is

obtained by taking direct products of matrices chosen
from among p„, 0)„(k), and {0„(k), depending on the
desired index types.

1. Trartsformatiort Properties

The spin matrices just described are classified
according to the representations of L+g of the types
${s"(A), S{s'&(A*), or the respective contragredient
representations 5){ '&(A 'r) X){s &(A ')) The whole
apparatus of the spinor calculus can be taken over for
arbitrary spin. The spin indices will be written as lower
undotted, lower dotted, upper undotted, and upper
dotted, respectively, corresponding to the four repre-
sentations listed above. The contraction of an upper
with a lower index of the same type is then an invariant
operation.

The raising of a spin-5 index is accomplished by
contracting on the right with the matrix

~{S,O)(C—1)ap ~{S,O)(C-))ap —( 1)S—ag (3 11)

and lowering by contracting on the right with

""(C).= ""'(C)- =(- )' '-.— ( )

The spinor for changing dotted to undotted indices

B. Properties of Matrices for Arbitrary Spin

Many of the characteristics of the spin matrices for
higher spin are a straightforward generalization from
the spin-~~ matrices and can be understood without
going through the details of a somewhat involved
construction. Before proceeding to the actual con-
struction, we shall, therefore, describe the essential
results.

As already indicated, the fermion spin indices can
always be paired; and we can also pair the boson indices
by adding a dummy spin-0 index whenever the total
number of particles is odd. Thus, we require a basis for
matrices with two fermion or two boson spin indices;
any spin space can be spanned with direct products of
these. This basis is given by a set of rectangular matrices
p» ' ' '»1{(55) pal' ' '»M(55 ) 0)»' ' 'I 2M(55' ~ k)
{o»"'»)r(55'; k), where M= max(S, S'), which span the
spin-S, spin-5' space, and which reduce to (3.5) and
(3.8) when S=5'= -', . Here 5 and S' are the spins of the
pair of bosons or fermions. The spin indices labeling
the matrix elements have 25+1, 25'+1 values,
respectively, ranging through 5, 5—1, ~ ~ ~, —5 and
5' 5' —1 —5'

) )
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and vice versa, defined in (3.7) for spin —,', becomes

K)&s,o) g(k) j X)(s,o) (k.&re) (3 13)

By convention we take the types of the indices of the
matrices S'8"' to be the same as those of their
arguments.

The matrices p&„)(SS'), where (ts)=(p) t&ssr), are
constructed to have a lower undotted spin-S index and
a lower dotted spin-S' index, while the p&»(55') have
an upper dotted spin-S index and an upper undotted

spin-S' index. The construction is such that (A1.4)
generalizes to

p(,)(55')=&""'(C ')p(.)(55')*&"'"'(C) (3 14)

The &o matrices are defined by analogy with (3.8):
&«)( )(SS . k) —X) so (k. &r/m)p( )(SS )Xl ', )(C)— (3 15)

and similarly for the corresponding matrices with lower
dotted indices.

The transformation laws are given explicitly by

and

S "'(A)p '(55')S' '"'(A) =A() '(A)p "'(SS'),

) "P'"'(55')X)' ' "(A)—'=A(, )' '(A)p'"'(SS'),

&s, )(A)(o(„(55 . k)K)&s, ')(A)r A()&»(A)&o&, )LSS .A(A)k

(3.16)

where A&„) &» stands for a direct product of Lorentz transformations, one for each tensor index of (v).

Z. Orthogonality Relations

The fact that the spin matrices actually span the spin space is exhibited explicitly by the relations

p'»(55') ep(„)(5'5)e' '=&) 't)pe'

' '(SS'). ,„,(SS'). = S' "(C) X)' ' "(C)
(o&»(55', k) e&o(„)(55', k) '~'=t) ~'he~',

(3.17)

and those formulas obtained from these by raising and
lowering indices. These relations are a special case of
more general formulas given in Sec. III D.3.

3. Symmetry Properties

It will turn out that there is a connection between
the p matrices and the irreducible subspaces of the
tensors of rank 2M. This connection induces various
symmetries among the tensor indices of p, as well as
making p traceless in the contraction of any pair of
tensor indices. Actually, we have omitted an extra
label in the description of the p matrices, expressing a
freedom in their construction which corresponds to
the fact that there are, in general, several irreducible
subspaces of the same dimension in the space of tensors
of rank 2M. When S=S', however, the p'»(55) are
essentially unique; and they are symmetric in the
interchange of any tensor indices. Similar results hold
for p and m.

C. Spin-1 Matrices

Matrices for higher spin can be constructed from the
p„matrices by a process of spin addition with the use
of Clebsch-Gordan coefFicients. Consider the quantities

pv" (SS') &t= Q»»;; C(-,',—',,5; y,y', n)
XC(-,',—',,S'; i&,i&',P)pv»„p "» „', (3.18)

e%cients in Rose s notation. " The new quantities p~"

transform according to the representation S( '&

S( ' "*.To prove this we start from the identity

Q, » „„C(5),Ss,S; y,y',n)C(5), Ss,S', &(,s',P)
X «l)(s&,o)(A) «~(so, o)(A), «'

=l)ss X)&s")(A) e, (3.19)

which expresses the reduction of a direct product of
representations into a direct sum. By using the ortho-
gonality of the Clebsch-Gordan coefFicients,

Q»» C(5&)So,S;y,y'«n)C(5&)Ss, S', y,y')n')

=~S8& "
and

Ps, C(5&,Ss,S; y,y', n)C(5&,Ss,S; K K n)
=8~"8~ "',

we get from (3.19) the identity

Qe K) & s ') (A) eC(S„Ss,S s )(' P)
=Q»» C(5),5 5;sy«y' «)$n&)(A) '

X ~(so,o) (A)

(3.20)

(3.21)

This leads at once from (A1.1) to the transformation
law

"(A) X)' ' "'(A) ' 'p "(55') '

=A,v(A)A "(A)p"(SS'), (3.22)

where 5)& "(A) e=f)&so)(A)* e. In matrix notation

where S, 5' can have either of the values one or zero, 13M. F. Rose, p(emenfary y'heory of gngm)ar ~omentum (John
and C(j&, jo,js', n),ns, ns) are the Clebsch-Gordan co- Wiley tk Sons, Inc. , New York, 1957).
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Fxo. 2. Addition of spins.

+
0

and the second relation in (3.20), we get

Qss p" (5'5)~ p""(55').s
=2- Tr[p"'(5'5)p""(55')7,
—g)L Pg

0' v (3.27)

p""(11)=p""(11)

p„~(11)=0,
p~"(10)=-', e""'~.(10),

p "(01)= ——', ""p„.(01)
(3.24)

p""(00)= -'g""

The various symmetries follow from (3.23) and (3.18).
That p„"(11)=0follows from (3.6), (3.18), (3.23), and
the fact that C is antisymmetric. We have used also
(A1.5) and (A1.6) from Appendix I, as well as the
often useful identity 2vC(-'„ i~ 0; a, p0) = Ce '. There is
a correspondence between the expressions (3.24) and
the irreducible subspaces of the second-rank tensors of
dimensions nine (symmetric and traceless), three (self-
dual), three (anti-self-dual), and one (scalar propor-
tional to g„„), which will be further explained after
orthogonality relations are obtained.

The matrices p&"(55') can be obtained by replacing
p with p in the construction (3.18), or they can be
obtained directly from pl'"(55') by the general pro-
cedure (3.14). Using (3.21) and (A1.4), we find that
the two methods give the same result. Then, the
orthogonality relations, (3.6) and (3.20), lead to

p""(55') sp„,(L'L)&"=Bsrbs c o 'ass',
alld

p&"(55').ep„.(LL'). s ——herbs c.n& "(C)..
X X)' ' "(C)ep .

Making use of the relation

(3.25)

this is the same as (3.16) when (5,5') = (1,1); (1,0);
(0,1).

According to the values of 5, 5', the p&"(55') provide
spin matrices for the four diGerent situations shown

schematically in Pig. 2. It is clear from the construction
in (3.18) that because the direct product matrices
p&p" span the 16-dimensional product space, the
matrices p""(SS') must span the corresponding four
direct-sum spaces of dimensions 9, 3, 3, and 1.

For any given pair of values S, S' there are 16 values
of the tensor indices, and hence the p&"(55') are not all
linearly independent. In fact, various symmetry proper-
ties of the Clebsch-Gordan coefficients, for example,

C(Si,52,S;ai,ap, n)

( 1)s s, s-e(-5, 5„5;n, ,n„n), (3.23)

are rejected in symmetries of the tensor indices. A
straightforward calculation gives

These relations can be used to get a compact char-
acterization of the invariant subspaces of the second-
rank tensors. An arbitrary tensor can be expanded:

lie in the four invariant subspaces mentioned pre-
viously.

D. Matrices for Arbitrary Spin

For arbitrary pairs of boson or fermion spins we
proceed inductively, generalizing the construction for
spin 1. By addition of spins we reduce the direct-
product space p&'13 13p&"=—~p& into a direct-sum
space. There is, of course, a freedom in the order for
coupling the spins. We shall follow the convention that
the reduction is always carried out beginning at the
left: ([ . (P»SP"') 73P»). All other choices are
related to this one by a unitary transformation.

1. Eedec&ion of the Prodlc1 Space

As an example, consider the reduction of the space
ep~. We obtain a set of matrices

p"'"'"'[55':(LI')7 s=g„„„'C(L,2,5;yy', n)
X C(L';', ,5'; e,~',p)p»»(LL'), „p»,,„,, (3.30)

where L, L' can have any combination of the values 1
and 0, and S, 5' can have any combination of the values
—,
' and ~. The spin indices are labeled by S, S', and L,
L' label the intermediate spins that are added to ~~, 2
to produce 5, 5'. The set of matrices p»&'»[55'. (L)7,
where (L)= (LL'), will be called the "reduction" of
the space 3p&. In general, we shall use the notation
p» "»[55'.(L)7 for the matrices that are the reduction
of ~p&. The spin indices are lower undotted for spin S
and lower dotted for spin S', and (L) labels the set of
pairs of intermediate spins that are the "path" by
which the spins S, S' are reached.

The reduction is defined inductively by

p"' """+'(55':LLL':(L")7&-s
=Q „;;C(L,~,S; y,y', n)C(L', ~~,5';i,ic',P)

Xp»" »[LL:(L")7 .p»+~, ,

where S=L&2, 5'=L'& —,'. The matrices

(3.31)

T "=Q ~ T""Tr[p„.(5'5)p "(55')7 (3 28)

Clearly the "projected" tensors defined by

T~"(SS')= 7" Tr[pq„(5'5)pl""(SS')7 (3.29)

p~~sp~ s Tr(o„o p) =g„„ (3.26) P»".»[55'.(L)7
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which have an upper dotted spin-S index and an upper
undotted spin-5' index, are delned inductively by
replacing p with P in (3.31).

Z. Trartsforntation Properties

We have already the transformation laws (A1.1) for
p& and (3.22) for the reduction of 2p". A simple
induction argument in which we use the identity (3.21)
and the definition (3.31) then gives the general law,

m{")(A)p(»[SS'(L)]m(' '&(A) t

=A(.)' »(~) p'"'[SS':(L)] (3 32)

where we use the same notation as in (3.16) with

(ti) = (t(i . tin). By the same kind of argument we
can conclude that

p'"'[SS:(L)]=S' '"'(C ')p'"'[SS:(L)]
X~("&(C), (3.33)

and obtain the law

&""(4) "p("&[SS':(L)]&"")(~)'
=A, „,{ ) (~)P( &[SS'.(L)]. (3.34)

ducible parts. In fact, the tensors

»f p'"'LS'S:(L)]p'"'[SS':(L)]}

are for each label [SS':(L)]projection operators into
orthogonal, irreducible, invariant subspaces. It follows
from (3.36) that they are projection operators into
orthogonal subspaces; and the fact that they project
into subspaces invariant under I.+g follows from the
transformation laws (3.32) and (3.34), which show
that they are isotropic tensors with respect to L+).
That they project into irreducible subspaces can be
seen by noting that the ordinary Lorentz transfor-
mations, A, are equivalent to the representation
S'~ "S" &', which is equivalent to L}(&")f3+«0)*.
Thus, the irreducible representations that occur in the
reduction of the direct product A.'»~"' are equivalent to
those that occur in the reduction of fs.~pt'. For any
tensor of rank A" we get

T" =ass'( ) T Trf p [SS:(L)]
Xp'"'[SS':(L)]}

=ASS {I.& T»[SS':(L)]v (3.38)

where T'"[SS':(L)]are the irreducible parts of T(».

Generalized co matrices with two undotted or two dotted
spin indices can be obtained by procedure in (3.15).

3. Orthogonuli ty Relations

Again by induction, the orthogonality relations for
spin is, (3.6), and for the reduction of )32p", (3.25),
readily generalize to

p'"'LSS':(L)]-e (.)PJ':(L')]- e

sI s' I' (I ) (I ') S "(C) 5)' ' "' (C) et) (3.35)

for the reduction of fs~pt". Similarly,

p'"'LSS':(L)]-ep(.)L~'~:(L')]'"
5$J5s J' '5{I) {I )5vv~'5ee', (3.36)

where (L') is (L') with each pair of spins interchanged.
Either of these equations proves that the p(»[SS':(L)]
span the spin-(S, S') space. Furthermore, from the f)rst
equation in (A1.6), from (3.27), and from the second
orthogonality relation for Clebsch-Gordan coe%cients,
(3.20), one can show by induction that

Res «& Trf O'"'LS'S:(L)]p'"'LSS':(I)]}
—g(»(v) —gglvl. . .gyyvy (3 37)

where the trace is with respect to the matrix product
in the spin-(S, S') space.

4. Irreducible Tensors

Equation (3.37) leads directly to an expansion for
an arbitrary tensor of rank E into a sum of its irre-

5. The Spin, Basis

In order to span the spin-(S, S') space, we can use
any of the sets of matrices p{»[SS':(L)]for 1V greater
than or equal to the minimum integer such that the
spins S, S' occur in the reduction of fs~p&». This
freedom will be reduced by requiring that X actually
be the minimum integer. Because at least 25 undotted
spin--', indices are needed to build up an undotted
spin-S index and 2S dotted spin-2 indices to build up
a dotted spin-S index, the minimum integer is Ã= 2M,
where M=max(S, S'). Thus, we shall choose a set to
span the spin space from among p&'")'~[SS':(L)].

In general there will still be a freedom in the choice
of (L), the intermediate spins that are passed through
in order to arrive at S, 5'. This freedom is present,
however, only in the set of left elements or the set of
right elements of the pairs of spins in (L) and not in
both; for either S or 5' is the maximum spin that can
occur in the reduction of ~~p&; and the maximum
spin can be reached in only one way. %hen 5=5' this
discussion implies that (L) is uniquely determined.
Furthermore, as we shall see, in that case p(SS) is
symmetric in all of its tensor indices, so that all possible
orderings for carrying out the reduction give the same
result. If 5/S', then there is a genuine freedom in the
choice of (L) that corresponds to the occurrence of the
same representation of 1.+g a number of times in the
reduction. From the discussion in Sec. III D.4 on
irreducible tensors, each choice corresponds to a par-
ticular symmetry character of the tensor indices.

A consequence of the requirement that the spin
matrices have a minimum number of tensor indices is
that they are traceless in the contraction of any pair
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of tensor indices. To see this, we suppose that 5~&5' and write out the recursion (3.31) in full:

p [55 (L)]aS 2 av;I;2; C (5 21 2 y 5 j Y2S—I) &22S) &2)C(5 1) 21 5 2 ) Y2S—2p &22S—ly Y2S—I)

X XC(-,',—,', 1 I Al,&22)gl)C(L2S Il 2,5—j s2$ 1)P—2S)P)

X ' ' ' XC(2)2&LI i pisp2)SI)p a02t p a2SSIS. (3.39)

There is a special symmetry of the Clebsch-Gordan
coefFicients; for 5I~&52, we have"

QP C(sl, 52, Sl+52, P, y, &2)

XC(5I—52, 52, Sl, 8, s, P)
= QS C(SI, S2, SI+S2,. P, &&, &2)

XC(SI—52, 52, SI,. i&, y, P). (3.40)

By substituting 52= ~ into this equation and comparing
with (3.39), we see that the sum of Clebsch-Gordan
coefFicients over y; is symmetric in the interchange of
the &I,. [Symmetry in aI, &22 follows from (3.23).j Con-
traction on any pair of tensor indices gives a factorC, from (3.6), which is antisymmetric. Hence, the
sum is zero. When 5=5' the sum of Clebsch-t ordan
coefFicients over p;, ~; is symmetric in the interchange
of the p; indices as well, so that we then have symmetry
in the interchange of the tensor indices. The symmetric
and traceless property of the equal-spin matrices in
their tensor indices can also be proved easily by
induction, again, by the use of (3.40). Finally, it is
clear that the proof of the vanishing of the traces is the
same for 5&5'.

shall suppose for the purpose of the discussion im
mediately following that we have done so.

A. The Tensor Basis

2 &'&
T'"'LK; (2)3T'"'[E; (2)3= g&"""&

T'"'[K; (I)3T&.&[E; (f)j= ~&'& & &,

(4 3)

such that each tensor satisfies (4.2). We shall see how
to form these tensors for two-body processes in Sec.
IV C. To form a basis for the M functions, we combine
the tensor and spin spaces to obtain functions,

I'&'(E) = T,„,[K; (')j, r'"'(5, ,5,'), (4.4)

which then transform as the M functions. Finally, we

expand the M functions in terms of this basis,

We suppose that we have introduced a set of tensors
of rank Ã, functions of the four-momenta E,

T» "as(K il i2&)=T&"'[K. (i)]
i, =1, 2, 3, 4, (i) =iI .

ii&&,
.

and the reciprocal set T'"'[K; (i)] defined by

IV. TENSOR BASES AND KINEMATICAL
SINGULARITIES OF THE SCALAR

AMPLITUDES

Having constructed a basis for the spin space, we
can now expand any M function in the form

M(E) = +&,&
A"'(E') I'&'&(E)

where A "& (E) are scalars under L~t.

B. Determination of Scalar Amplitudes

(4 5)

~ &.&&
"&f&.& (K) =f&.& (~K). (4.2)

In general, the space of tensor functions f&»(E) can be
spanned by a set of tensors formed from the four-
momenta E. For those cases where there are at least
three linearly independent four-momenta in E, we
can form a complete basis of arbitrary rank, "and we

"This relation is probably known, although we have never run
across it. In any event, it is a straightforward calculation from
formula (22.28) in U. Pano and G. Racah, Irreducible Tensorial
Sets (Academic Press Inc. , New York, 2959).

"Given three independent four-vectors, one can always form
a fourth by taking the skew product. See Sec. IV D.

~&-&(E)=f&.&(K) II'r'""(5',5*')&-;&, (4 1)

where the r&a'(5, ,5 )&,.&
represent either p ol' &0 spill

matrices in the previous section, according to the index
types; (p;) for fixed z represents a total of 2 max(5;, 5,')
tensor indices; (n;) represents the two spin indices of
the paired particles; (p) represents the collection of all
tensor indices; and (&2) represents the collection of all
spin indices. From the transformation laws (2.7) and
(3.16), it is clear that

where I' represents the appropriate p or co matrices with
upper indices. Then, we define reciprocal basis functions

I"*'(E)"= T&.&[E; (I)) II r'""(5J5 ')"' (4 &)

which satisfy orthogonality relations

F&f& (K) F'b) (E)&» —
I&

&s& (4.8)

If we now require that the scalar amplitudes be defined

In general, there are considerably more of the labels

(2) than the dimension of the spin space. As we have
seen in Secs. III D.4 and III D.5, there are symmetries
among the tensor indices of I'(&', which means that not
all of the T&a&[K; (i)] are needed to span the tensor
space. Thus, Eq. (4.5) does not determine a unique set
of scalar coe%cients. There is, however, a natural way
to impose a set of subsidiary relations among the
A"'(K) so that they become determined.

First, we summarize the orthogonality relations
among the spin matrices, (3.17), by the notation

r& &(5,5'), ,r,„,(s,s')&»=s,., &», (4.6)
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by the equation

A&o(K)=—M& )(E) Y&'&(E)&~', (4.9)

we get an identity upon substituting into (4.5) and

applying (4.8). This is precisely equivalent to requiring
that the solutions for the scalar amplitudes in (4.8)
satisfy the set of linear relations

A&" (K) =+& ) A &'&(K) P"(E)&.) Y&'&(E)", (4.10)

which just sufhces to determine them uniquely.
Equation (4.9) is basic for the study of kinematical

singularities in the scalar amplitudes. It is clear that
any singularities of A"'(K) not possessed by M(E)
must come from Y&"(K)." If the tensor basis
T&"'[K; (i)] in (4.4) is constructed from polynomials
in the momentum components, it will be holomorphic,
and both f'&»[E; (i)] and Y"&(K) will be meromorphic
with poles at those points where the T&&~[E; (z)]
become linearly dependent. The question is whether
there exists a set of T&&'[E; (i)] such that the poles do
not appear in the A"'(K). We do not attempt to give

an answer for the many-particle case; and we give only
a discussion for the case of two-body reactions, to which
we restrict ourselves from now on.

C. Syecial Bases for Two-Particle Reactions

It is straightforward to obtain I functions for two-
particle scattering systems such as are described by
Fig. 1. A method for constructing a tensor basis has
been given by Hearn, ' and several examples of spin-2
basis functions have been worked out by Stapp. ' The
simplest method is to construct a set of four independent
four-vectors, v&(i), i = 1, 2, 3, 4, in the region where at
least three of the momenta are linearly independent,
and then to construct a tensor basis

(4.11)

Unfortunately, as we shall see in Sec. IV D, this pro-
cedure appears to lead to kinematical poles for higher
spins.

A special basis for spin--„spin-0 scattering having
definite signature under P and T is'

Y'= [(k,/m, ) (k,/—m,)]',
Y'= [(k&/m, )+ (ka/m~)] o, 0 i ———1, O.r = —1,
Y'=n(.k, —/m, )n, -(k, /m, ) p ——+1, =+1,
Y =n n+(k3 o/m3)n 0(kg &r/mg), &rp= —1, err=+1,

(4.12)

Y 3, 1 $(Z)$, 1'py (4.14)

where the subscripts, 3, 1, refer to the particles with
spin. A basis for four spin--', particles can then be
obtained in the form

Y"=Y'3, g Y'4, 2
——s (i)3,&s"(J)4,np„&ap„, (4.15)

where s (j)4, 2 is obtained from s (j)3 i by the interchange
kI ~ k2, k3 ~ k4. There will be an appropriate reduction
in the number of basis functions if P and T symmetry
are imposed. ' This kind of basis is a slight generalization
of the one obtained from (4.11).

Although the Y functions obtained from (4.11) or
generalizations of (4.11), such as in the example (4.15),

"This method of analyzing the kinematical singularities is the
analog in the M-function formalism of the method given by
QGMW.

where n= k~—k4, particles 1, 3 have spin, particles 1, 2
are incoming, and particles 3, 4 are outgoing. We show
in Appendix II that the E amplitudes obtained with
this basis are the same ones obtained from four-
component spinors by

R=2n( k3) (A+y —nB)n(kg) (4.13.)

In particular, the amplitudes 3' and 3' coincide with
2 and B.

We can de6ne a set of four-vectors s"(i)3, i so that
the basis (4.12) becomes

are not necessarily the best from the viewpoint of
kinematical poles, they have certain advantages. The
complete Y' function defined by (4.4) splits into a
tensor product of two F functions for the two spin
pairs. These functions will be described by the notation

Y(SS';i &. f2M) = v»(i&) . v"'" (i2ir)1'&„)(S,S'), (4.16)

where M=max(S, S'). They are multilinear in their
four-vector arguments, and in Sec. IV D we shall see
that they have simple inversion properties. When the
four-vector arguments are expressed in relativistic
spherical coordinates they become a generalization of
spherical harmonics to many arguments and to the
relativistic case, except for normalization and possible
phases. '" Because of the method of construction of the
p and &d matrices, for example in (3.30), the two-spin
Y functions satisfy recursion formulas analogous to
those for spherical harmonics. If S)S'&0, we have as
an example"

"For a discussion of relativistic spherical functions see A. Z.
Dolginov, Soviet Phys. —JETP 3, 589 (1956); A. Z. Dolginov
and I. N. Toptygin, ibid. 10, 1022 {1960);and A. Z. Dolginov
and A. N. Maskalev, ibid. 10, 1202 (1960). Relativistic spherical
coordinates are obtained from t =p cosha, r =p sinha, where
t'2 —r'&0. We shall not give the details of the connection in this
paper. For a discussion of this generalization in the nonrelativistic
case, see R. Spitzer and H. P. Stapp, Phys. Rev. 109, 540 (1958).' Equations such as (4.1/) implicitly express a spinor inter-
pretation of the Clebsch-Gordan coeScients. In line with the
discussion. in Sec. III 8.1 and Eq. (3.21) one can regard the
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F(S+-'„S'—-', ; i, i»+,).p
=Q,„;;C(5, —',, S+-,';ri y'ia)

XC(5', -'„5'——', ; K K p) Y(55'; i~ i»)y. .

XY(2 s ~»+i)v' (417)

More generally, one can start from four-spin basis

functions Y(~~ 2 —,
' s'; ij) that are not direct products

of two Y(-,' -', ;i) functions and define recursive sum

rules such as

YL5&~5&ii (v) (J)j-Ys'= 2» t~ 2 "p~' c(J4iL4i54i ~i~'i~)c(J8iL3iS~ i ~i~'iv)c(J2iL2iss i »l~'il)
XC(Jg,L),5g,'p, p', ic) Y[J4JSJ2Jg, (i)]g,),„YQL.4LSLsLg, (j)jg, i, „', (4.18)

where one must, of course, keep track of the coupling
scheme. %e shall write this in the short form

YL(5), ( j)j&-i=~(J,L,S;~,~', )
x Y((J),(i)1(v) YL(L) i (j)l(v'). (4.19)

The reduction is shown schematically in Fig. 3 for a
simple case; the right-hand side corresponds to the
binomial expansion.

D. Kinematical Poles

A reciprocal basis to (4.11) is easily obtained from
the reciprocals of the four-vectors v(i), which are given
by

Four-momentum conservation implies that only
three of the momenta can be independent for two-
particle reactions. For the purpose of this discussion
we shall choose

v(i) =k, for f= 2, 3, 4; v(1) = Lksk&k4]. (423)

Clearly v(1) is independent of k2, k~, k4, and v(1) =0 if
and only if k2, ka, k4 are linearly dependent. Equation
(4.20) implies that

d=v(1) v(1)=det(k; k,) for i, j=2, 3, 4,

which is familiar in the analysis of scattering kine-
matics ' e shall write d in the form

with

v(1) = Lv(2) v(3)v(4) j/d,
v(2) = —Lv(1)v(3)v(4)j/d

v(3) = Lv(1)v(2)v(4)j/d,

v(4) =-Lv(1)v(2) v(3)3/d

with
d= ~ (s'il, sa' tb' —Nc'+—2abc—),

a= (mP+mP mP —m4')—/2,
b= (mP+mP —m2' —m4')/2

c= (mP+m4 m2 ma )/—2—

(4.24)

d= e„,)„v&(1)v"(2)v"(3)v&(4), (4.20)

where Lxysj„= e„„q,x"y"s&. From these definitions it is
clear that

v(&) ' vU) =b'
and

2 ' v" (i)v" (~) =2 i v" (f)v" (~) =g"" (4 21)

The tensor basis reciprocal to (4.11) is then
th

T» '&(i, f&) = v» (i,) v" (i~) (4 22)

and the V functions are obtained by substituting into
(4.7).

From (4.9) it is clear that any kinematical singu-
larities in the scalar amplitudes must be poles coming
from the vanishing of d, provided the v(i) are poly-
nomials in the components of the four-momenta. The
determinant d vanishes if an only if the four-vectors
v(i) become linearly dependent. "
Clebsch-Gordan coefFicients as spinors with the first two indices
upper and the third lower, or with the 6rst two indices lower and
the third upper. This property is already familiar from the rotation
group and is mentioned, for example, by E. P. Wigner, Group
Theory ared its APP/ication to the' Quantum Mechanics of Atonsic
Spectra (Academic Press Inc. , New York, 1959), Chap. 24, pp.
292-296.

'9 In this statement we are taking it for granted that at least
one of the four-vectors is inside the light cone and that all three of
the vectors are real. When the vectors become complex the state-
ment is no longer true in general, and our analysis of the kine-
matical singularities must, therefore, be considered heuristic. The
essential result, however, survives a more careful treatment.

where we have used the identity s+t+u=g, mP.
This reduces in the equal-mass case, as usual, to (stu/4).
It can be shown that the basis in (4.12) or (4.14) has a
determinant proportional to d.

To analyze the kinematical singularities induced in
the scalar amplitudes by this basis, we consider first
the case of spin-0, spin-~ scattering —of which pion-
nucleon scattering is an example. It is well known that
the scalar amplitudes in (4.13) have no kinematical
singularities, " and our discussion should be regarded
as an illustration of how such a proof goes in the
M-function formalism.

The basis functions and their reciprocals are

Y'=v(i) p, Y'= v (f) p' (4.25)

I I I I

2 2 2 2 I I I I I I 0

I I

22

+ + + +
0 I 0 0 0 0 0

4 6 4 I

permutations permutations permutotions

Fro. 3. Decomposition of direct products of spin-~ basis functions.

'4 See, e.g., T. W. B. Kibble, Phys. Rev. 117, 1159 (1960)."G. F. Chew, S-3fatrix Theory of Strong Interactions (W. A.
Benjamin, Inc. , New York, 1961), Chap. 5.

and the scalar amplitudes are

Tr/Mp"jv„(f) = a'(s, t,u) =f"(K)v„(i) —(4.26).
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We suppose that we can invoke the Hall-Wightman
theorem~ in a manner similar to that of GGM%4 to
infer that a'(s, t,u) is holomorphic except for the
dynamical singularities from M and the kinematical
poles in 8. Ke shall prove that the poles are not present.

Disregarding the dynamical singularities, we see by
inspection of (4.20) and (4.26) that

lima'(s, t,u)(f =0, (4.27)

because limv(1) =0. Using (4.24) and eliminating u, we
can write d in the form

&(»&',v(; i&' ' 'i»() = f(~& (&)8"'(i&) ' ' '8""(i»()
~ (4 30)

the best that we can conclude is that the coeKcients
(4.30) have kinematical poles of order at most d~—'.
That we can, in fact, get poles from a product basis is

d= ——,'t[s —s (t)][s—s (t)]. (4.28)

Thus, except for a finite number of values of t where
s+(t)=s (t) or possibly 1=0, a'(s, &!) can have only
simple poles in s. But from (4.27), a'(s, t) must have at
least a simple zero in s for the same values. By applying
the argument to each variable in turn, we find that at
most a'(»t, u) can have poles at a finite number of
values of its argument. But this is impossible because
a function of several complex variables cannot have
isolated poles. [See, for example, the lecture notes of
H. J. Bremermann, Convp/ex Analysis in Several
Variables (University of California Press, Berkeley,
1962) p. 91.]

This proof does not, however, generalize for a product
basis to higher spin or to the case where more than two
particles have spin. In general, if we write

Trpb f'(w)(S S&')8 f'(ys)(S2 S2')]=f(v)(g) (4 29)

which is holomorphic except for dynamical singularities,
and

illustrated by the example f„„(K)=g„„.Then a(s, t,N; ij)
=8(i) 8(j), and, in particular, a(11)=8(1) 8(1)= 1/d.

In general, considerable care must be exercised in
the selection of a basis, as is already known by experi-
ence with the x-S and X-X cases. One expects from
perturbation theory that such a basis exists. s In the
X-X case, GGMW were able to obtain a proof only by
doing a partial-wave analysis. Preliminary results
obtained by one of us (DNW) indicate that this is not
necessary, and that in fact a complete solution can be
given for the problem of 6nding a basis leading to
singularity-free amplitudes for two-body reactions.
The details will be given in a second paper. For the
purpose of the continuation in total angular momentum,
we need only assume that there exists some basis formed
from polynomials in the momentum components such
that the scalar coeKcients have only dynamical singu-
larities; and that will be our procedure.

V. ANALYTIC CONTINUATION IN TOTAL
ANGULAR MOMENTUM

The analytic continuation in total angular momentum
J is most conveniently done in terms of the helicity
amplitudes B„q,„q, which have simple projection
properties in terms of the partial-wave helicity ampli-
tudes h„~ „~~."In the s channel, for example, we have

(&0

H„»,„ = P (2J+1)h„g,„&,~(s)
2(qq')&/2 g~

Xexp[i(X—p)(t] exp[ —i(V—p')$]
«'(8) ~ —.,i-., (5 1)

where q' and q are the magnitudes of the 6nal and
initial c.m. momenta, and where we have introduced
the convention that the upper undotted index of the
d matrix shall be written as lower dotted because both
have the same transformation property for rotations.

Equation (5.1) can be formally transformed into a
Sommerfeld-Watson representation

1

2(&2If')'" 2i a.z-»(

(2~+1)h( & (&)d (8)»,»(—1)

(sinn 1)
L2 ( )+1]P (, )~'"'( —8) ',— (—1)'"'

+g
sinna(n)

(5 2)

where a(&z)=a(e,s) and P(n, s) are the position and
residue of the eth Regge pole of the partial-wave
helicity amplitude h~(s). We wish now to establish
that there is a unique analytic continuation of the
partial-wave helicity amplitudes from the physical
values of J.

Let us denote, in the center-of-mass system, the
scattering angle of the outgoing particles 3 and 4 (Fig.

~D. Hall and A. S. %ightman, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 31, No. 5 (1957}.

1) by 8 and n —8. We shall put &=0 without any loss of
generality. Also let us denote the helicities of particles
1, 2, 3, and 4 by P, p, , X', and p'. Ke write the M
functions in the form of Eq. (4.5)

M( )(E)=Q()A('&F(s)(')(E)( ) (53)
Here (i) labels the scalar amplitudes; (S)= (S4, ,S&)
are the spins; and (a)=(a4,am, a2,a&) are the spinor
indices. The helicity amplitudes are given according to
Eqs. (2.9) and (2.10), by
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H= X)& 4 "&[exp(i8'o.2/2) (—k4 o/m4)"']

&3 S's'"[exp(i8o2/2) (—k, .o/m, )"']
&3 I) '2 "'[exp(i&ro, /2) (k2 8/m2) "]*

&8& ~&a&,o&[(k . 8/m )&/&]+ p . A &&&p'&a&&o (5 4)

Consider the basis, Eq. (4.12), for the spin-(-,',0)
system. %e 6rst evaluate the E;basis functions, 8"',

—kg o&, k& o)~ ~

m3 iv ml ~k

where 8'= ~—8. The angles in the center-of-mass frame
of particles 1 and 2 have been taken to be zero and ~,
respectively.

Ke want now to separate the 8-dependent part of
II (q). To see how the first two matrices act, we consider
firstly the case Si=53= 2, 52=S4=0. The general case
will be built up from here.

where R= P &,&
A &'&R"&, or, in matrix form,

k—3 &r~&/' /k&. o~'/2

mg J Emy/
(5 5)

We obtain in the center-of-mass frame (after some
calculation):

Rk k"'= (m&mg) "'([(E&+m&)(E3+m&)]"'—q' &rq &r[(E&—m&)(ES—ma)]'")
Rk k&" = (m&ma) &/'([(E& m&—) (E3+ms)]'/2q &r '[(—E&+m&) (E3 m3)]'"q' &r),

Rk k&@= (m&m3) "'{[E~+E4][(E&+m&)(E3+m3)]'"+q[(E&—m&) (E3+ms)]"'+q'[(E&+m&) (Ea—ma)]'"
+q' &rq &r([(E&—m&) (E3—mg)]'"[E2+E,]+q'[(E&—m&) (Eg+m3)]&/'+q[(E&+m&) (Ea—ma)]'/2)), (5.6)

and

R' '&'& = —(m&ma) '"(q &r(q[(E&+m&) (E +3m)]3+&/q'[(E & m&) (E3 m3)—]"'
+[E +2E ][4(E &m&)(E3+&4)] )+q &r(q['(E& ml)(E3 m3)] +q [(E&+ml)(E3+m3)]

+[E2+E4][(E&+m&)(E3 mQ)]"'-') j .

Here Ei, E~, E3, E4 are the c.m. energies of the four
particles, and j and j' are the unit initial and final
momenta. In the equal-mass case these expressions
simplify to

R"'= (1/m)[(E+m) —q' &rq &r(E—m)],
R "&= (q/m)&r (q q'), —
R "&= (2/m) [(E+m) (2E—m)

+q' &rq &r(E—m)(2E+m)], (5 7)

R"'= —(4qE/m)a (q+q').

These are just the standard expressions.
For the scattering of two spin--', particles we have

16 combinations R& &kk&*'&(a) R& &kk&/&(a'), where the
argument a' indicates change of signs of j and j' and
change of Ei~ E2, E3~ E4, and my+-+ m2, m3+-+ m4.
There are, of course, other choices of basis functions
possible that are not a direct product of two E functions.

For the spin-(-,',0) system, we have from Eq. (5.4)

Hg &,
k k= S&k" [e &p(ix8 g/2&)r]g /& P &;& A "&R/», k k'"&. (5.8)

Equations (5.6) show that Rk k" are functions of
e j and e j', which are the helicities of the two
particles in the center-of-mass frame. The rotations
merely diagonalize the helicities to their eigenvalues P

and X'. This is, of course, precisely the meaning of the
helicity amplitudes. Using the identity

[exp(i8o&)]&, (&r &1) &,
—— 2' &&[qxe(pi 8o22/)]

or in matrix notation

[exp(i8 /2)o] 2(&r kk) [exp ( i8o 2/2)] =—
o&&q, (5.9)'

we obtain from (5.8)

Hg &,
k k=Q

&;& A "&Zk k&" (l& /&')d'/'-'(8)g 1, (5.10)

where Z&&"' is independent of the angle 8. It is ob-
tained by replacing e j by 2X and cr j' by 2X' in Eqs.
(5.6). We have also used the identity

0&k "&[exp (i8o,/2) ]= d'/'(8)

The corresponding formula for the helicity amplitudes
of four spin-~ particles is

H »,
. ,kkkk' "=0&k "&(exp[i(&r—8)o2/2]}„

X 'L&'k "[exp(i8o 2/2)]&, o

XR .k k&f&R ~ k k&i&( —1)k—
/&

where we have used

n& "&[exp(i&r&rg/2)] o= (—1) 8

Then,

k k k k&&, i&=g&g&k k&& /&d&/&(8)g, k

Xd"'(~ 8)'. u(5 11)--
The separation of the angular part in the above

manner can be performed for any basis that is a poly-
nomial in the momenta. Such a basis can be reduced
to a sum of terms such as k;&k;", k;.k,.g"", and eq~»k, "k,",
for example, in the case of second-rank tensors; and
these multiplied with the spin basis give eventually
terms like k;~~„k;"0. „ from which the angular parts
can be obtained by use of Eq. (5.9). The angular parts
of the scalar products k; k, , which are polynomials in
s, t, and I, are obtained by Legendre expansion. Thus,
if a general polynomial basis is used, we obtain a sum
of terms of the type (5.11).
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The form of the transformation properties of the R
and H functions is the same as that of the M functions;
only the argument of S( ' "' is different. Consequently,
the basis functions of the higher spin E and IJ functions
are constructed from Eqs. (5.6) and Eq. (5.11) by
means of Clebsch-Gordan coeKcients in exactly the
same manner as the higher spin M functions. We have,
therefore, corresponding to Eqs. (4.18) and (4.19) the

recursion formulas

I{) )(', /) —P(J I 5' ~ a P y)g ( )(')I(I ( )(/) (5 12)

and

H( (8)(i,)') —P(J L 5' ~ cr r )()H (z)(i)H (I)(' (5 13)

We shall now exhibit the angular dependence of the
higher spin helicity amplitudes. First, let us consider
the spin-1 helicity amplitudes.

H "u') "'i') =Q C(-' —' 1.a',P', l(')C(-' -', 1;a P X)C(-' -', 1.x' p' p, ')C(-'„-'„1 /'c p p)H '« *"'(8)
XHP //««"'(8)H. c««'"'(7r 8)H ~—««'"()r —8). (5.14)

From Eq. (5.10) we have

H """(c&""=QCp —' 1 a' p' X')Cp —' 1 a p j()C(-'-', 1. /c' p', p')C(-'„g, 1' K p p)Z««" (a',a)Z««'"(p', p)
XZ««(k) (/c) )'c)Z««(l)(p~ p)dl/2(g), .di/2(g)p, /«dl/2()r g), d)/2(s g. )

Since the Z s depend upon the helicities but not the angles, we can write the Eq. (5.15) in the form

H(i)' '=Z"""("La',a; P',P; /c', /c; p', p; ()c)]d'/2(8}. .d)/2(8) p /)d"-'()r —8), , ;d"'()r—8), , p

with the obvious definition of Z&""&&'&

In this form, the equation can be generalized, and we obtain for the higher spin case

(5.15)

(5.16)

H(i)'""'=Z'""'La' a . . a')) av P' P O'I Pic (&)]d'"(8) d'"(8)
Xd)/2()r —8) p c) d)/2()r —8)p /) (5.17)

where /7= max(25), 253) and M= max(252, 2Sc). The d'/'(8) and d)/"-(x —8) functions can now be recombined into
a sum of single d functions multiplied by Clebsch-Gordan coeKcients by using the relations

and
d'(8)~'= (—1)" "'d'(8)-~,—.= (—1)" "d'(8).X= (—1)' "d'(~—8)~,-p

d i.)d „„=JrC(J, L, I;)(', cc', )('+p')C(J, L, I; X, /l, X+/l)d i+),i+). (5.18)

For example, in the case of spin 1, Eq. (5.16), we find

(iii)) {i)—Z(ii)1) ( )P ca)P) P. ) ' . )
P (y)]( 1)l c // Q —C—(1 1 I,a) P) a)+P))C(1 i I a P a+P)

XC(~, 2) I'; —x') —p', —x' —p')C(~) 2, I') K) p& K p)C(I) I') k I a'+P ) & p a +P & p )
XC(I, I', k;a+P, /; p, a+—P —r'. p)d'(8) —

+p
—.„,, +/) „; (5.19)

or

where
H(i)""""=Xi&f'")L~',a; P',P; x',x; p'p; ()();&]d'(8). ~-"-, .+/-'-;,

W(*)[a' a' p', p; x', /c; p', p,' (X); k]

(5.20)

is the coeff)cient of d"(8) in (5.19).
The general case is also of this form but with a more complicated lower index of the same form.
We are now in the position to discuss the partial-wave helicity amplitudes, which are defined by Eq. (2.12).

We have

h(~) (r) =k((I(I')" d(cosg)d (8)/)v, /))H(i)

where

=
2 (qq')'" dzd~(8)z), ,zi Q (2l+1)A(c)(is)dc(8)oj) Q W('La'a p' p x'ic p'p (X) k]

I (i), l

Xd"(8)-+s " '-+/ ' ', -(5 -21), --
d" (8)"+/) " '-+i ' '= d-'(8-)», ,»-

from the Clebsch-Gordan coefficients in Eq. (5.19) with the indices on d~ just Aj( and l«)c'. Finally, we combine
d) (8)0() with d~(8)c)i, q« to obtain

J+l
d Dodec))~cc),= P C(,l)J,L; 0)/«li')l«l(')C(l) J)L; 0)l&,l«l()d cc& ~, c)j„

E [J'—l)
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and integrate each term dsd~ by using Eq. (2.14);hence,

J+l
ko&~(s) =-', (&/I/')'&2 P P (2/+1)A&" (/ s) Q W&"[(X);k]C(/ Jk; 0 /I&X', Al&')C(/ Jk; 0/&Aha&), (5.22)

(i) L k~f J—l[

and, because the k values are restricted by the Clebsch-Gordan coe/ficients in their definition, Eq. (5.20), only a
restricted, number of / values of A &'&(/, s) contribute to each ko, &~ with a given J.For example, in the case of spin-1
particles, k =0, 1, 2, and only three l values contribute; thus, /= J, J—1, and J—2, respectively. Writing the terms
separately, we have

k&» = s (&/&/') P &, & ( (2J+1)A &'& (J,s)W&' [(&&),0]C(J,J,O; 0,6&&',dA')C(J, J,O; 0,~,/&I&)

+ (2J—1)A &'& (J—1, s) W&*&[(&&),1]C(J—1, J, 1;0, 6&,', 6&,')C(J—1, J, 1; 0, gj, , g)&)

+ (2J—3)A &"(J—2, s) W& "[(&&),2]C(J—2, J, 2; 0, AX', L&')C(J—2, J, 2; 0, pl&, ~)). (5.23)

In the higher spin case we will have, in general, more
terms of this form.

This equation and the generalization of it will now
be used to define an analytic continuation of h~ in J.
The Clebsch-Gordan coefFicients can be continued
analytically in J in terms of their closed-form ex-
pression. Note that this continuation is naturally not
unique. Ke can take one that does not change the
asymptotic behavior of A (J,s) for large

~

J
~

in order to
make the Sommerfeld-Watson transformation (5.2)
possible.

Assuming that the scalar amplitudes A "' (s,t,N)
satisfy the Mandelstam representation (see previous
section), we obtain, in the usual way, " an expression
for each term A &'&(J,s) in (5.19) suitable for analytic
continuation in J:

1
A&'& (J,s) =— ds A, &'& (s,s) Qg (s)

the Pauli spinors to arbitrary spin and the projection
operators for the irreducible subspaces of the tensors
of arbitrary rank.

Although we have given a general prescription for
expanding the 5 matrix for two-body reactions in terms
of a set of basis functions, we have not given in this
paper specifications for choosing the basis functions
for the general case in such a way as to avoid possible
kinematical poles at the boundary of the physical
region. With the assumption that there exist scalar
amplitudes that satisfy the Mandelstam representation,
we have obtained the unique continuation in total
angular momentum.

ACKNOWLEDGMENTS

Ke would like to thank Dr. Henry P. Stapp for many
interesting discussions throughout the development of
this work.

+(—1)~— ds A &'&(s,s)Qg(s), (5.24)

where Ai&" and A„&" are the absorptive parts of the
scalar amplitudes, A(", in the t and u channels, re-
spectively. These absorptive parts are assumed to be
bounded uniformly in s by P and N~, so that A (J,s)
is a holomorphic function of J for ReJ&S. Equation
(5.24) inserted in (5.23) together with the analytically
continued Clebsch-Gordan coeKcients defines finally
the analytic continuation of the partial-wave helicity
amplitudes. Note that in various terms of h~, J occurs
in the argument of A displaced by integer units, so that
the poles will occur displaced in A (J,s).

and

Op=, 0i=, 0'2=

APPENDIX I: NOTATION, CONVENTIONS,
PROPERTIES OF SPINORS

Our Lorentz metric is gpp=1= —gii= —g22= —g33.,
also, 6pi23= —1. For matrices we use the notation M
for transpose, M~ for Hermitian conjugate, M* for
complex conjugate.

A brief review of spinor calculus, '4 leads us to note a
number of relations involving the Pauli matrices, cr„,
where

VI. CONCLUSION

By an application of the theory of representations
of the Lorentz group, we have shown in some detail
how to extend the two-component S-matrix formalism
to describe nonzero-mass particles of arbitrary spin.
In the process we have obtained the generalization of

~ M. Froissart, in Proceedings of the I.a Jolla Conference on the
Theory of 8'eak and Strong Interactions (unpublished); V. N.
Gribov, Soviet Phys. —JETP 14, 1395 (1962).

and the space-inverted matrices, 0„=(00,—o). The
one-to-two homomorphism between I.+g and the two-
by-two unimodular group is expressed by

'4 For these and other formulas from the spinor calculus, see,
e.g., %. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953);
E. M. Corson, Introdlction to Tensors, gPinors, and Relativistic
W'ave Equations (Blackie 8z Son Ltd. , London, 1953).
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and the transformation character of 0„, cr„ is expressed
by

and
Axe„A'= LA(A)x joo„

A ]tx]'()„A '=LA(A)x)"o„,

(A1.2)

we have the general matrix equation for any M,

C—'M~C= M—' detM. (A1.3)

The spinor indices are taken to be C ' &=C '& and
C p=C p, and these matrices are used as raising and
lowering spinors, contracting always on the right index.
The matrices a„satisfy the identities

where A is a two-by-two unimodular matrix, and
A=&&&')(A).

For any spinor, those indices transforming according
to A, A* are written as lower undotted, lower dotted,
respectively, and those transforming according to the
contragredient transformations A —'~, A ' are written
as upper undotted, upper dotted, respectively. Thus,
from (A1.1), o„o„have indices o„(],()„s C'on. traction
of relatively upper and lower indices of the same type
is an invariant operation. %e use the summation con-
vention throughout for repeated relatively upper and
lower tensor or spinor indices.

If the matrix C is de6ned by

trices A, respectively, with S, S' half-integers. The
matrices Ss(A) are unitary; and the representation
X) is unitary-equivalent to X) *, which follows from
(A1.3) and the group property. But K)&s s'(A) is in
general not unitary, and the representation X)( ') is
inequivalent to X)' '

~ & unless S=S'. The following
identities hold ~ ~(s,o) (A )—~(o, s) (A )

—]( ~ ~(s,o) (A 4)
~(s,o) (A )s. ~(s, ) (A r) —5)(s,o) (A) r The choice

S&& "(A)=A is a convention. The opposite convention,
S&' &) (A) =A, is often used. If the latter convention is
used, $(8 "' in our formulas should be replaced by
~D(0, S)

APPENDIX II: RELATION TO FOUR-COMPONENT
FORMALISM

M =B—x3 p3RBI j pgt. (A2. 1)

The positive-energy solutions of the free-particle Dirac
equation in momentum space can be written in the form

The customary introduction of the invariant scat-
tering amplitudes has been in terms of four-component
spinors. Stapp has already given the relation between
his two-component M-function formalism and the
four-component formalism. ' Ke give here a demon-
stration that exhibits the relation between the corre-
sponding scalar amplitudes for pion-nucleon scattering
without isotopic spin.

According to (2.6), the M function for the situation
described in (4.12) is

a„=C—' 'cr„~C=C '~„*C (A1.4) (A2.2)

Ke write the indices of the Kronecker's 5 symbol in
two diferent ways, for example, 8», 5 '. Both mean
the same thing. The indices are written as relatively
upper and lower when we wish to emphasize the spinor
character of the symbol.

The following equations and orthogonality relations
are often useful:

where p represents two two-component vectors, which
we take to be

$1/2 ) f—1/2 ~ (A2.3)

%e use the following representation for the Dirac
matrices:

and
&pg v= gyv+ 2&&yv) p& 0'

)
)i-p

0'p0 v gyv 2ZEpvgp& 01 ' -I)( p.

—,
' Tr(o„o„)=g„„,

ayp —a P
& ~p .~ P'a' —g a'g P'

Then, writing

(A2.4)

u =N. ~go, (A2.5)

2('. ]]——2u (—ko) Tus(k]), (A2.6)

aPfrya'P' Caa'CPP' ~

For any four-vector x we have (x o)(x o)=x x. The
Hermitian matrix (k.o/m)]&o corresponds to a Lorentz
transformation from rest to the four-momentum k:
(k ~ cr/m)]~o=cosh(x/2)+k e sinh(x/2), where k is the
unit three-vector and x is the "angle" of the I.orentz
transformation; also, k= kate sinhy, ko= m coshx.

The representation matrices for the proper rotation
group and the proper homogeneous orthochronous
Lorentz group, X)s(A) S& '(A), are def]ned for
unitary-unimodular and unimodular two-by-two ma-

and evaluating (A2.1) using (A2.2) and (A2.5), we
obtain

kg 0- k3 0- k3 0- kg a
M = Tl] Too+ T]o To], (A2.7)

f8/ f83 Sl3

Rely

where T;, are the two-by-two blocks of the T matrix.
From (4.13) and (A2.4), these are given by

T]]=T92 A, T]$ Bo n, T2] Bo"u (A2.8)—— .

The M function (A2.7) thus agrees completely with
the M function given by the basis (4.12) in the P and-
T-conserving case, where A =A' and B=A'.


