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The Regge formula is modified in such a way as to exhibit the "full" contribution of each Regge pole to
the scattering amplitude. In this modified form both the contribution from each pole and the new back-
ground term have the correct cuts in the z plane. In the case where the partial wave amplitude is mero-
morphic in the whole / plane we show that, under certain assumptions, the scattering amplitude can be
represented by a series sum of contributions from the Regge poles. Each contribution has the correct cut
in the z plane, and the series converges for all z in the cut plane. An approximation of the scattering ampli-
tude at low energies in terms of a few contributions from leading poles is discussed. Finally, it is shown that
this modified Regge formula leads to a relatively simple bootstrap procedure for constructing the scattering
amplitude from unitarity and analyticity.

I. INTRODUCTION Furthermore, the contributions of the poles as given in
Regge's formula have the cut in the s plane starting at
the wrong threshold. .

In this paper we modify the Regge formula in such
a way so as to exhibit the "full" contribution of each
Regge pole. This contribution is shown to have the
correct branch point in the s plane. The new background
term in this modi6ed Regge representation will also
have the correct threshold in the s plane.

In the cases where the partial wave amplitude is
meromorphic in the whole l plane one can push the
contour of integration for the modiied background
integral to the left and replace it by a series of con-
tributions from the left-half plane poles. The new
representation thus enables us to do what in the original
form could not be carried out as can be seen from
Mandelstam's paper on the extension of the Regge
formula. 4 %hat we 6nally achieve is a representation
for the scattering amplitude as a series sum of contri-
butions from the Regge poles where the contribution
from each pole has the right threshold in 2:.

In Sec. III we discuss the possibility of whether the
scattering amplitude for low energies can be approxi-
mated by the contributions from few leading poles.
Kith such an approximation one can try to 6t the
low-energy data with a few poles and thus obtain some
information about the nonresonant Regge trajectories.

Finally in Sec. IV we show that the modiied form
of the Regge representation leads to a simplification of
the unitarity condition. It is also shown that unitarity
and analyticity lead to a bootstrap procedure for
calculating the weight function that appears in the new
background term. This bootstrap procedure is much
simpler than that connected with the Mandelstam
representation. '

Before we get into the details we remark that many
of the results of this paper can be trivially generalized
to the relativistic case if one makes the necessary
assumptions of meromorphy of the partial wave ampli-
tude in the angular momentum plane.

HE nature of the behavior of the scattering
amplitude in potential scattering for large values

of momentum transfer was erst given by the work of
Regge. ' The conjecture has been made that results
similar to Regge's may also be true in relativistic
elementary particle scattering where now the mo-
mentum transfer of one channel is the total energy in
the crossed channel. "

Regge's method consisted of examining the analytic
properties of the partial wave amplitude as a function
of angular momentum. He showed that the amplitude
was a meromorphic function of l in the half-plane
Rel& —-,'. Using this result and the watson-Som-
merfeld transformation he was able to modify the
partial wave series and obtain the representation given
in Eq. (4) below. This representation consists of two
terms. The erst a background integral which for large
2 vanishes as s '~'. The second is a sum of contributions
from the poles in the angular momentum plane which
are proportional to P~„(—s) and which determine the
behavior for large 2. The position of the poles l„ is
dependent on the energy.

One can show that bound states and resonances are
associated with poles in the angular momentum plane.
This fact leads to the conjecture that all elementary
particles and resonances are associated with moving
poles in the angular momentum plane. ' Following this
conjecture it would be interesting to consider the
possibility of approximating the scattering amplitude
by contributions from a few poles for all s and not just
large s.

For any such investigation the Regge representation
in its usual form is not very useful because one knows
very little about the so-called background term.
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II. EXTENSION OF THE REGGE FORMULA physical s, —1(s(+1,and integrate by parts to get

Our starting point is the Regge representation of the
scattering amplitude in potential scattering. Regge'
showed that for potentials which are superpositions of
Yukawa potentials; i.e.,

zAPg «(z)

cosmic

+" e" sinhx
dx.

(2)si' „(coshx+z)si'

rV(r)= 0.(«i)e &"d«s,

The integral in (4) runs along the line Rely=0 and

hence we can substitute the representation (6) for the
(1) Legendre function appearing in the integrand. We

obtain

the partial wave scattering amplitude A(l, s) is mero-

morphie in l in the half-plane Rel& —~. Here s is the
usual energy variable and in this section we are con-
cerned only with physical, real and positive values of s.
Furthermore, Regge proved that as ~l~ ~ ati in the
half plane A takes the following asymptotic form:

1 +" B(x,s) sinhx
f(s,z) = — dx

v2 „(coshx—z)ai'

~ P.(s)P,„;(—z)X.
+2z.P, (7)

cosa) „
A (l~,s) —(C (s)/pl~) e-"&,

Here we have used X—=l+~ and ( is given by

cosh~= 1+m'/2s,

(2) where now B(x,s) is given by

sao

B(x,s) =
2XS zoo

d)~ e"'A (l~,s).

f(s,z) = i—+&QO A (li,s)
ZAP, «(—z)

cosmic

where m is the lower limit in (1). Using these two
results and the Watson transform of the partial wave
expansion, Regge obtained for the scattering amplitude

f(s,z) the representation

The integral defining 8 is essentially a Fourier trans-
form and it is clear from (2) that it exists for all x.

For x($, one can use (2) and the fact that A (X,s) is
meromorphic in the right half X plane to express 8 in
terms of the right-hand poles of A (li,s). For this purpose
we write

B(x,s) =Br,(x,s)8(x—&)+By(x,—s)8(g x) (9)— .

(10)B(x,s)=Bz(x,s)= ——P P„(s)e""*, x(&.where P„ is the residue of A(X,s) at the pole X=li,
=1„+—,'. The number of poles for Reh) 0 is finite and
is denoted here by X.

If one now continues (4) to unphysical or complex
values of z then each of the two terms in (4) will have a
cut starting at z=1. However, it is known that f(s,z)
has a cut which starts at z=cosht=1+m'/2s. ' Evi-
dently, some cancellation must occur between the two
terms in (4) and we shall seek a representation which
among other things explicitly exhibits this cancellation.

For this purpose we note the following representation
for the Legendre functions Pq «(z), 6

Thus (7) can now be written as

1 "Bz(x,s) sinhxdx
f(s,z) =-

v2 «(coshx —z)'"
——1 & e""' sinhx

+P P (s) dx
v2 (coshx —z)zi'

2z li~i,„«(—z)
+

COSZAn
xPi, «(z)

=v2
cosr'A

coshhx
8g

(coshx+z)'"
So far we have considered only physical s, however

each term in (11) can be analytically continued in z.
For the first term one can easily see that the cut will

(5) start at z=cosh$=1+m'/2s. To avoid the difficulty
with the ~ power in the denominator one can integrate
the first term by parts and obtain

+oo eh'
dx.

W2 „(coshx+z)'"

This representation holds only in the restricted region—-', &Rek& —', . We li~it ourselves for the moment to " Bz'(x,s)dx Br,(g,s)
fl.(s,z) =v2 —v2 . (]2)

(coshx —z)'" (cosh) —z)'"'Bateman Manuscript Project, Higher 2"runscemfeltal Iiunc-
Iions, edited by A. Erdelyi (McGraw-Hill Book Company, Inc. ,
New York, 1953), Vol. 1, p. 156, (11). The last expression can now be easily continued in s

p (s)p ( z)2& For x & p we can close the contour in (8) in the right

(4) half plane and obtain
n=l sin+i„
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2xlj.~),„y(—z)
+

cosmic„
Rely„) 0. (13)

For large ~z~ the second term in (13) is the one that
dominates. Also near a resonance the second term
dominates. However, away from resonances or large
values of

~

z
~

the first term, which can be considered as
the background term of a speci6c Regge pole, is of
comparable value as the usual Regge term. For large s
this background term behaves as

~
z

~

The association of (13) with the full contribution of
the eth Regge pole will become more meaningful if we
can show that Br,(x,s), i.e., the background term in
(11), is determined by the left-hand singularities of
A (X,s). That this is the case, we shall demonstrate for
the case of potentials for which A (X,s) is meromorphic
in the whole P plane.

The properties of A (X,s) for Relic&0 are more
complicated than those in the right half plane. In
general, it is not true that A(X,s) is meromorphic in
the half plane Rely&0. However, Mandelstam' and
Froissart' have shown that for a subclass of the po-
tentials defined by (1), A P, ,s) is actually meromorphic
in the left half plane. I.et us for the moment limit
ourselves to this subclass. Then one can for x) $ move
the contour in (8) to the left and get

n=l

and has the correct branch point. It follows now that
since the second term in (11) is just a finite sum then
it also must have the correct branch cut in 2'. In the
Appendix we shall show explicitly how the cuts of the
two terms in the square brackets cancel each other in
the region 1(z((1+m'/2s].

It is tempting at this point to identify each term in
the summation of (11) as the full contribution to f(s,z)
of each Regge pole in the right half plane. If we denote
by R(s,z; X„) the contribution of the pole at X=X„,we

have
——1 & e'"* sinhxdx

R(s,z; X„)=p„(s)
V2 „(coshx—z)'i'

half plane is not known. However, one can make con-

vincing, though not fully rigorous, arguments to show
it is at least bounded by the Born approximation in

that region. The Born term blows up exponentially
in the left half plane as X~ —~. %e shall assume
here that, excluding the neighborhoods of the poles,
A (X,s) is bounded by an increasing exponential in X as

~X
~

~ ~ in the left half X plane. We write

(A(X,s) I &(jC'(s) )/+[X))e~"'"~z, (15)

where g is positive and given by (3). Such a bound
seems to be consistent at least for pure Yukawa
potentials.

When (15) holds one can, for x) ~, close the contour
in (8) to the left and obtain

Bz(x,))=B(x,))=g P (s)e~"'*, x) $, Reh„. &0. (16)

The convergence of the series in (16) is, of course,
intimately connected with the validity of the inequality
(15). At the end of this section we shall show that in
the case of a pure Yukawa potential and for high
enough energies this series does indeed converge if
x) $ and diverges for x($.

Substituting (14) or (16) in (11) one can now
identify the contribution of a left-hand Regge pole to
f(s,z) as

p„(s) " e""*sinhx
R(s,z; X„)= dx; Rely„(0. (17)

v2 r (coshx —z)"'

This again has the correct cut in the s plane. It is also
easy to check by using (6) that in the strip —iz (Reh„
&+-,'the representations (13) and (17) are identical.
In fact, R(s,z; X) as given in (17) defines a function of

which is regular in the half-plane Reh&~. The Eq.
(13) provides an analytic continuation of R(s,z; X) to
the right half plane, and R(s,z; X) is thus an entire
function of X. The function R does not, to the best of
our knowledge, have a simple representation in terms
of Legendre functions, although its integral repre-
sentation (17) is very similar to that of the I.egendre
functions the only difference being in the limits of
integration.

For potentials for which (15) holds the scattering
amplitude can thus be written as

The sum represents the contributions from the poles
lying in the strip, —1.&Re'A&0. The exponential in
the integral in (14) is now a decreasing exponential
and if A (X,s) does not blow up fast as X-+ —~ then
one can let I.—+ 00 and obtain for BI, a series repre-
sentation in terms of contributions from the left-hand
poles.

The exact behavior of A (X,s) as
~

X~ ~ ~ in the left

7 M. Froissart, J. Math. Phys. 3, 922 (1962).

f(s,z) =P R(s,z,X„). (18)

Here the sum extends over all the poles in the right
and left half plane. For Relj,„)0, R is given by (13),
and for ReX &0, R is given by (17). The series in (18)
will converge for all physical s&0 and all s in the cut
plane.

See, for example, B. R. Desai and R. G, Norton (to be
published).
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We now take the partial wave projection of R(s,z; X„)
to obtain the contribution of the mth pole to the 1th
partial wave. We write

11

r(X,s; 7,„)=- P, ,(z)Z(s,z; X„)Cz.
2 ]

Here ) is half-integral. The integral above can be easily
performed if one uses the inverse of the representation
(6), namely,

sinhx
sV—2 X'dX' Pv g( z) —. (20)

(coshx —z)s" cosm)'

The partial wave projection turns out to be the same
for (13) and for (17) and is independent of whether
ReX„ is greater than or less than zero. The result of the
integration gives

r(X,s; X.)= —P„(s)e-'"-'"~&/(X.—X), 7 =1+-', . (21)

This result can be obtained directly when (15) holds by
applying the Cauchy theorem to the function F(X,s)
=A(7,s)e"& and taking an arbitrarily large circle for
the contour. However, (21) will still hold for the right-
hand poles even if (15) does not hold.

It is interesting to note that r(X,s; 7 „) has the same
analytic properties in s as the full partial wave ampli-
tude for physical l. Namely, it is analytic in the cut
s plane with the cuts on the real axis. The right-hand
cut extends from zero to in6nity and the left-hand one
from —~ to —rn'/4. The left-hand cut is due to
/= cosh '(1+m'/2s). In general, P (s) and lj,„(s) have
only right-hand cuts.

Another property of r(X,s; X ) is that, for the Rek„)0
poles, it has the correct threshold behavior as s —+0.
It is known that for Rek„)0, P„(s) s'"'" as s-+0,
where l„=h„, 'Substit—ut—i.ng this in (21) and using
(3), we can easily check that r(X,s; X„) s' as s —+0.
This threshold behavior is of course the same as that
of A (lj,,s) for integer I, l= X—z'.

Finally, we make a few remarks about the high-
energy behavior for the case of pure Yukawa potentials.
In general A (X,s) approaches the Born approximation
as isi ~ ~ for Relj.)0. For pure Yukawa potentials
the Regge trajectories, X„(s), approach as is i ~ ~ the
trajectories of the corresponding Coulomb potentials,
and we have

lim7 (s)= n+i~, —n=1, 2, 3, ~

8~00

For a simple Yukawa potential, —ge "/r, A (X,s) takes
the following asymptotic form for Reh&0,

g m'
A(X,s)=Qg ) 1+—,isi ~ ~.

2$ 2$
(23)

9 V. N. Gribov aIId I. Ya Pomeranchuk, Phys. Rev. Letters 9,
238 I', 1962).

The Legendre function Qq 1 has the following expansion

Q&(g) = —e ' P P'„ i(g)e-" /n+l], coshn=q .(24)
n=l

Substituting this in (23), and comparing the result
with the sum of the contributions (21) to a given partial
amplitude, we get

P (s) (—g/2s)P„g(1+m'/2s), is i ~ a&. (25)

This asymptotic behavior of the residues P„gives us
a consistency check on (15) for high energies. From
(22) and (25) one can easily see that the series (16)
will. converge absolutely for high energies as long as
x) $, and the series will diverge for x&(. The con-
vergence of (16) for x) $ is as we have mentioned
earlier directly connected with the validity of the
conjecture (15) on the asymptotic behavior of A(X,s)
as ReX~ —~.

III. APPROXIMATION OF SCATTERING AMPLITUDE
BY CONTRIBUTIONS FROM LEADING POLES

The technique of using complex angular momenta
was first applied by Sommerfeld to the problem of the
scattering of radio waves by the earth. In that problem
the partial wave series was converted into a series sum
of contributions from complex angular momentum
poles. The latter series turned out to converge much
faster than the original partial wave expansion. The
question arises whether a similar situation holds for the
series (18).Of course, it is well known that for large isa
one term dominates in (18) and that is the one with the
largest Reh . It is also true that if we have a resonance,
i.e., a pole 7„(sn) with Rel near an integer and Iml„
small, then as s —+sg the contribution from the pole
giving the resonance dominates. We shall investigate
below whether the results of the previous section can
lead to an approximation of f(s,z) by one or several
terms of the series (18) for any z and s lying in a low-
energy domain.

The basis of such an approximation is the repre-
sentation (17). The presence of the exponential in the
integrand of (17) leads us to the conclusion that each
Regge pole with Reh„&&0 gives a small contribution to
f(s,z) in the domain where $) 1. This will be true if the
residues P„(s) do not grow as Reh„becomes large and
negative. Let us for the moment assume that the I9„'s
do not grow for large X . In fact, reference (8) contains
plausible arguments which show that the P„'s decrease
fast as X„becomes large in the left half plane. We shall
return to a discussion of the P„'s at the end of this
section.

Under these assumptions about the P„'s, we can see
that in the series (18), for g) 1, we have to take the
poles in the right half plane and only those left-hand
poles near the imaginary axis to get a good approxi-
mation to the amplitude.
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TABLE I. Location of the leading Regge poles at low energies
for a pure Yukawa potential. '

Re) I
Reh2
ReX3
ReX4
Re) ~

Redo

s =0.01

0.6—0.4—1.0—1.5—2.5—2.1

s =0.5
0.5—0.8—1.5—2.6—29—3.7

a See reference 10.

f(s,s)=Q R(s,s; ),„). (18')

Here E is given by (13) if Rely, &0 and by (1'7) if
Reh &0.

A similar approximation holds for the other two
values of g calculated in reference (10), g=0.05 and
g =5. For the weak coupling case one pole contribution
sufFices. On the other hand, for the stronger coupling,
g=5, the situation is worse and one might need an
extra term in (18') to keep the same accuracy. For the

I A. Ahmadzadeh, P. G. Burke, and C. Tate (to be published).

The usefulness of this approximation will depend on
the distribution of the poles near the imaginary axis
for ()1.At 6rst sight it might look that this procedure
is doomed since $ is given by

(=in{(1+ms/2s)+[(1+m2/2s)' —1y ).
This means that $ becomes large only for very small s.
It is known that as s —+ 0 there are an in6nite number
of poles near the line ReX=O.' However, these poles
fall away rapidly from Re) =0 as s starts to increase
from zero, and for pure Yukawa potentials there is a
domain in s with $)1 and with the poles well away
from ReÃ=0.

I.et us take a speci6c example of a Vukawa potential
with m=1, V(r)= ge "/r—Ahmad. zadeh, Burke, and
Tate" have computed the first six Regge trajectories
for this potential for several values of the coupling
constant g. As in (22) the poles were identified by their
high-energy limits.

In the domain 0.01&s&0.5, ( is larger than unity
and 1.3&)&4.6, where the upper limit goes with the
lower value of s. We consider the case g=2, and tabu-
late the results of reference 10 for Reh„at s=0.01
and s=0.5. For n&6 the trajectories will lie farther to
the left. One sees from Table I that already at s=0.01
the poles have moved away from the line ReX=O. It is
evident from (17) that the contributions for n) 4 would
be small compared to the contributions from the 6rst
three poles. For example the contribution of X4 at s=0.5
will be proportional to a factor e~ 5.

In the region 0.01&s&0.5 we can thus write the
following approximation

strong coupling cases we could conclude that a one pole
approximation would not be valid.

An actual calculation of the residues P„(s) for the
trajectories computed in reference 10 would be
necessary before one could make a more definite
statement on the number of terms needed in (18'). If
it turns out that for certain energies a few terms are
enough, we would then have a basis for experimentally
determining some properties of the trajectories that
are not associated with any resonance.

If an approximation like (18') holds for any physical
scattering process, then one can by comparing with the
data perform a pole 6t at different energies instead of
the usual partial wave analysis. Such a pole analysis
would be more diflicult than the partial wave analysis,
would require better data, and probably would not
lead to unique results. However, it might still give us
some information on the existence and position of the
invisible trajectories which do not demonstrate their
presence by producing resonances at some energy or
dominating the amplitude for asymptotic values of the
energy in the crossed channel.

Finally, we discuss the behavior of P„(s) for small s.
Again the region near the threshold might seem to be a
danger zone because of the centrifugal barrier. As s —+ 0,
A(X,s) s" &. This is true for physical X and it is also
true for all Reh) 0. From this one can conclude that if
Rek„)0, P„(s) s""@' & as s ~ 0. If this same threshold
behavior holds when Reh„(0) &0, then we would be in
trouble for then P„(s) will start growing as s~ 0 for
the left-hand poles. However, this is not the case and
in fact, for ReX&0, A(),s) cannot blow up like s"—&

near threshold.
It is easy to see from the unitarity condition for

A(X,s), given in Eq. (28) below, that for real
and excluding the neighborhoods of the poles,

~

s&A (X,s) ~

&1.This inequality holds for all real X where A (),s) is
regular and for all real s)0. Thus ~A(lw, ,s)~ never
increases faster than s—& as s —+0, no matter whether
X is positive or negative. This is most likely true for
complex X also, and P„(s) will have the corresponding
threshold behavior.

We stress that in our proposed approximation we
have anyway to take s sufFiciently large to allow the
trajectories that go to ReX=O as s-+ 0 to move away
appreciably from that line.

IV. AN ITERATION SCHEME FOR CONSTRUCTING THE
WEIGHT FUNCTION B(x,s) FROM UNITARITY

AND ANALYTICITY

We consider again the case of potentials satisfying
(1). We shall show in this section that unitarity gives
us an iterative procedure for calculating the weight
function 8 (x,s). The nonlinear equation that one
obtains is much simpler than the corresponding equation
for the weight function of the Mandelstam repre-
sentation. '

For large enough s all the Regge poles move to the
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sinhxdx.

left and the representation (7) becomes

1 +" B(x,s)
f(~,s)=-

VX „(coshx—s)I/'
(26)

Here we have used the following integral:

+goo

2%i
1 1

8(coshx —s). (32)
V2 (coshx —s)'"

Here we have
B(x,s) =Bi,(x,s), x) &

=0, x($. From (31) one can see that for a fixed x, B is not analytic
in s, since the 8 function depends on s. However, by a
simple change of variables one can get a closely related
function which is regular in the cut s plane. Let us
introduce the new variable y given by

The second equality follows from the fact that we are
considering s large enough so that all the poles are on
the left.

A representation similar to (26) holds in every order
of perturbation theory for all values of s&0. If we
write f„and B„for the nth Horn terms of f and B,
respectively, we get

1 " B,(x,s)
f-(~,s) = slnhxt&.

(33)y = 2s (cosh' —1),

b (y,s) =B(cosh—'(1+y/2s), s).
and write

(34)

(27) Substituting in (31), we obtain

1 ~ dt' D st'(coshx —s)~/' (, )
b(y, s) =

(2~)1/2 (y /I&)1/2
(35)For any n and physical s, f„(s,s) vanishes at least as

fast as s ' as s —& ~.' This leads to the conclusion that
A (X,s), the eth Born approximation of the partial
wave amplitude, is analytic for Re) &0, and has no
poles in the right half plane.

%e now write down the unitarity condition for
B(x,s). To do that we have to recall the unitary
condition for A (X,s),

A P.,s) —A*(h*,s) = 2isi/'A (X,s)A*(X*,s). (28)

Noting that B(x,s) as defined in (8) is essentially a
Fourier transform of A (X,s), we get

ImB (x,s) = s'/' B(x',s)B*(x—x', s)Cx'. (29)

For any finite y&n~' the integral above converges, and
this representation for b(y, s) holds for all s. It is well
known that D(s, f) is analytic in the cut s plane for
fixed ]&m' and has only a right-hand cut. Thus, for
any finite y) //P, we can analytically continue (35) in s
and b(y, s) wouM be regular in the cut plane with only
a right-hand cut starting at s=0. The discontinuity of
the function b(y, s) across the cut in the s plane is not
related to the imaginary part but to the real part of
D(s, /). This is due to the factor si/' in the integrand.
In order to obtain a useful dispersion relation for our
iteration procedure we have to dehne

b(y, s) = s'/2b(y, s) (36)

1
A (X,s) =- t' dh'

Q 1(1+—D(,1')
2$ 2$

(30)

Here D(s, /!) is the discontinuity of f(s, t) across the cut
in the t plane with s= 1+(/2s. Substituting this in (8),
we obtain after performing the P integration

1 "ck' D(s, &')

B(x,s) =
42m 2s (coshx —1—f'/2s)'/'

t'
)(8 coshx —1——. 31

2$

This last equation is the unitarity relation for B.It can
as we shall see below be used to effect a bootstrap
procedure for the calculation of B from the first-order
B~. Before we can do that, however, we have to discuss
the analytic properties of B in s in order to obtain a
way for calculating B from ImB in each successive
order.

For s large enough so that all the Regge poles are in
the left half plane, the partial wave amplitude for
Re'A&0 can be written as

1 "Imb(y, s')
b(y, s) = bi(y)+ — cs',

() $ —$—ZE

(37)

where bi is the first Born term for 6 and is given by

~(g/, ') 1

bi(y) = ch'
2 „1 (y—t')'/2 2QP

(38)

Here IT is the weight function of the superposition of
Yukawa potentials defined in (1). We have used the
fact that lim~,

~
D(s, t) = —m.o (g/!)/2+t.

Equations (37) and (29) are enough to define our
bootstrap procedure and to determine the scattering
amplitude completely. Returning to the original vari-
ables we get from (38) for B(x,s) in first order

—1 " dt' 0 (v' )
Bi(x,s) =

2 ~1 (2/')"' 2s(coshx —1—t'/2s)'/'

~l

)&8 coshx —1.——. 39
2s

The function b now satisfies the following simple
dispersion relation
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It is evident that B~(x,s) =0 for x((. Substituting B~
into the unitarity equation (29), we immediately see
that ImB&(x,s) =0 for x(2$. We can now use (34),
(36), and (37) to get B»(x,s). It turns out that
B»(x,s) =0 for x(cosh '(1+2m'/s). Thus in the region
$(x($~, where cosh)~=1+2m'/s, B(x,s) is identical
with the first Born term B&(x,s). Similarly we can show

that in the region P(x(b, where cosh&& ——1+9m'/2s,
only B&(x,s) and B2(x,s) contribute. Thus in general
for x($„, c osh)„=1+(I+1)' m'/2s, B(xs) is given
exactly by the sum of the first e Born terms.

The above iteration scheme for B(x,s) has two
advantages over the iteration procedure for the
Mandelstam weight function. First, the integral
equation (29) is much simpler than the one in the
Mandelstam case and contains only one integration.
Secondly, the function B(x,s) is more directly related
to the Regge poles than p(s, t).
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APPENDIX

We shall show here that R(s,s; 7) has no branch cut
in the region 1&z&cosh), for the case Re7)0. We
have from (13)

—1 & e"*sinhx

Therefore for the second term we have

P~-)(—z)
6 P(2z.X) =2sr), PP&, i(s); z&1. (A4)

cosxA

We now use the following integral representation for
P~=, (z),"for z) 1,

cosh s cos4Xx
P~;(s)=- dx.

o (s—coshx)'"

This gives for the discontinuity of the second term for
z)1

P), g(
—s)

~ p(2x))
cosm)

=(2)'"Pl
cosh 'I cos4Xx

(A6)
(z—coshx)'I'

Before we continue the first term to unphysical z we
have to do an integration by parts and write

—P r e"' sinhx
I(s,s; X) —= dx

v2 . „(coshx—z)'"

=&2P —@2' (A7)
(cosh) —s)'" „(coshx—s)'"

Now for 1&z&cosh) we have

the Legendre function is given by

1—
t P„~(—z—i») —Pq ~(—z+i»)]=coszXPq ~(z). (A3)

2i

R(s,s; Q=P(s) dx
„(coshx—z)»1'

2z.7P& )(—s)-
+

cosx)
(A1)

dx
(z—coshx)'"

cosh'Ax
=-(2)'"pl cosha= z. (Ag)

» (s—coshx)'I'

KVe want to show that

BR(s,z; X)=—LR(s, z+i»; 7)—R(s, z—i»', X)j=0;
2z

1&s& cosh). (A2)

Let us take the second term first. The discontinuity in

This is identical with (A6) except for the sign, and
hence (A2) is valid. In continuing the square roots in
(A7) we have used (coshx zWi»)"—'=%i(z coshx)'—"
in the region where z)coshx. This choice of branch is
determined by the fact that the representations (5)
and (A5) should satisfy the relation (A3).

» See reference 6, same page, formgIa (8).


