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Explicit formulas are given for the limits of error at an arbitrary point in the electron density, spin density,
and form factor derived from an approximate wave function. In the derivation extensive use is being made of
some previous results by Kinoshita. The main treatment is preceded by a short discussion of some of the
more mathematical aspects of the problem, and a simple numerical example is given in the last paragraph.

1. INTRODUCTION

l 'HE properties of an atom in its ground state can
be calculated from the solution of the time-inde-

pendent Schrodinger equation

W o= &ohio,

where Eo is the lowest eigenvalue of the Hamilton
operator H and Po is the corresponding eigenfunction
which depends on the space and spin coordinates of
the electrons. Unfortunately, however, the Schrodinger
equation is of such a complicated form that, except for
the simplest case of the hydrogen atom, it does not
seem possible to obtain the exact solution. On the other
hand, there are methods available by which approxi-
mations to Po of varying degree of accuracy can be
obtained. As more and more reined calculations had
been made, at least on small atoms', there has been a
continued interest in deriving limits of error for the
expectation value of the energy' and other quantities'
calculated from an arbitrary trail wave function P.

The main purpose of this paper is to show that it is
possible to derive limits of error for quantities of the
type lyo(a) —y(a) l. where a is an arbitrary point in
three-dimensional Euclidian space, yo is the electron
density derived from the exact solution, and y is an
approximate electron density obtained from a trial
function P. This will be achieved in terms of four
quantities; the exact ground state and first excited state
energy, the expectation value and the mean square
deviation of the energy. The derivation is based largely
on ideas to be found in a paper by Kinoshita. ' Kinoshita
estimated the error in the relativistic corrections for a

helium atom trial wave function. This required an esti-
mate of the error in the electron density at the singu-
larities of the potential. It will be shown here that these
results can be generalized to apply on one hand to an
arbitrary point in space and on the other hand to any
atomic system. From this, one will be able to conclude
that if a wave function gives good energy and small
mean square deviation for the energy the electron
density will be a good approximation to the exact
density, everywhere, even in those regions of space
which from the point of view of energy may seem
unimportant.

It is well known that the state vectors which describe
a quantum-mechanical system are elements of the
Hilbert space of quadratically integrable functions. 4

These functions form a Hilbert space only if the inte-
gration is understood in the sense of Lebesgue (von
Neumann'). From this it follows that two wave func-
tions, which differ on a set of zero measure (e.g., set of
isolated points), describe the same physical situation.
Therefore, it may at erst sight seem surprising that one
can meaningfully discuss the value of the electron
density in a given point. It will be discussed in the next
introductory chapter how the ambiguity on a set of zero
measure can be removed if not only f but also Hf
belongs to the Hilbert space of quadratically integrable
functions. This requirement seems reasonable both from
the mathematical and physical standpoint. The pre-
paratory mathematical considerations of the next sec-
tion are, however, not strictly necessary for the under-
standing of the subsequent main discussion.

2. PRELIMINARY DIGRESSION

Let us consider an atomic system with X electrons
and with nuclear charge Z. Let r; and 1; denote the
position and spin coordinates of the ith electron and
let x; stand for the collection of r; and g;. The Hilbert
space associated with this system will be denoted by
Lg'(x~, x~) defined as the set of all functions
p(xr, x~) which are antisymmetric in the variables
x; and satisfy the condition
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Since the set of Riemann integrable functions do not
form a Hilbert space but only a linear vector space, the
integration over r; is in the sense of Lebesgue, whereas
the integration over the spin variable t'; denotes sum-
mation. Two functions which differ on a set of zero
measure (zero measure in 3X-dimensional Euclidian
space') are to be considered identical. The Hamilton
operator H is given in the form

(2)

where the notation is self-explanatory. The operator H,
as it stands, is not yet well defined in the mathematical
sense. As a start one may define H for functions which
have second derivatives everywhere. It was shown by
Kato' that, provided the original de6nition of H is not
too restrictive, there is one and only one self-adjoint
extension. It is necessary to make this extension in
order to have a resolution of the identity belonging to
H, i.e., a complete set of eigenfunctions. The linear
vector space on which the self-adjoint extension is
defined is called the domain of H and it will be denoted
by D&. D& is a proper subset of I.&', i.e., DHQL&'. As
shown by Kato the domain DH consists of all functions
&QL g' which satisfy the condition

2 &"I4(P~ Pv t~ L~)l dP~ dP~&~, (3)

where p is the Fourier transform of @. This may be
written somewhat loosely in the form

(4)

where E is the kinetic energy operator. It folio~vs from
condition (3) that if PQD~ then HPgP»', that is,
(Hp, Hp) & ~. Following the suggestion of Kinoshita'
we require that an acceptable trial function f should
satisfy condition (3), i.e., we require not only iP+L»
but also HPgL»' Let us now de. fine the first-order
density function y(r&) as

y(r&) = lf(xq, . xq I 'dr2 dryden'& . df~, (5)

which is 1/X times the probability of finding an electron
~with arbitrary spin at the position r. It is a consequence
of a lemma by Kato' that if PQDrr, p(r&) is essentially
continuous, i.e., it can be made continuous by changing
its value on a set of zero measure. Here we shall be

~ J. C. Burkill, The Lebesgue Integral (Cambridge University
Press, New York, 1951).

6T. Kato, Trans. Am. Math. Soc. 70, 195 (1951).' T. Kinoshita, Phys. Rev. 105, 1490 (1957).
Incidentally this result is far from trivial. As it is stated by

Kato that for E&1 there exist functions which belong to D~ and
are still essentially discontinuous, it apparently does not hold for
the wave function itself.

interested to estimate the quantity I y&(a) —y(a) I, where

po is the exact density and a a 6xed point. The ambiguity
on zero measure can now be removed by the following
argument: In reality one never measures the electron
density at a point but only in a small volume, let us say
hV. It seems, therefore, reasonable to consider instead
of

I go(a) —p(a) I
the quantity

lim yo(r)dr — y(r)dr .
dV o,dV&a gy gy

Because of the essential continuity of yo and y, the result
is independent of the way the limiting procedure is
carried out and of possible discontinuities on a zero
measure. This is equivalent to rede6ning the densities
so that they become continuous everywhere. In the
following we shall, thus, be able to assume that the
densities had been chosen continuous.

0= (1 n') "Vo+—nf (6)

where P~ is a ground-state eigenfunction to the Hamilton
operator H given by Eq. (2) (the ground state may be
degenerate), f is a function orthogonal to the ground-
state solutions, and g is a constant which can be chosen
real and positive. For typographical convenience we
assume all three functions to be real. The constant g
satis6es the inequality'

n'& (~—Eo)/(Ei —Eo), (7)

where X= (H»P) and Eo, E~ are the exact ground state
and first excited state energies. The inequality

I (1—~')(AfoA o)—(A»!J')
I

&~l (A»f)+(Af 0) I+~'I (Af,f) I (g)

can easily be obtained from Eq. (6) for any linear opera-
tor A. If A is self-adjoint and positive definite, the
identity A = (A)"'(A)"' and Schwartz's inequality
allows us to put this in the simpler form

I
(1-n')(AAA o)—(A4A) I

&2n(W A4)"'(f Af)"'+n'(f Af) (9)
Let us now put A=b(a —r~), where b(a—r~) is the
Dirac 8 function in the point a working on the coordi-
nates of electron 1. One thus obtains

I
(1-n')vo(a) —v(a) I

&2q[y(a) j'~'[b(a —r)f f]+rP(b(a —r&)f,f) (10).
Our aim is to maximize the right-hand side of (10) in
terms of Eo, Ei, X, and o, where o[(HQ, HQ) X']"'.This—

' C. Eckart, Phys. Rev. 36, 878 (1930).

3. LIMITS OF ERROR FOR THE
ELECTRON DENSITY

Let P(a~, . aN) be an approximate atomic wave
function which satisfies conditions (1) and (3). It can
always be written in the form
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will be achieved in two steps. First, it will be shown that
the unknown expression (8(a r—1)f,f) can be maximized
in terms of (Kf,f) and (Kf,Kf), where K is the kinetic
energy operator. Secondly, the integrals (Kf,f)'and
(Kf,Kf) o'n their turn are bounded by an expression
which contains only the above-mentioned four quan-
tities. Let us, therefore, consider (b(a r1—)fj) By. the
definition of the 5 function

The kinetic energy operator K is invariant under trans-
lation by a and therefore

1(~(a—r1)f:f)
I

=
I (~(r1)g,g) I

3' 1/2

(Kf,f)(Kf,Kf) . (16)

Substitution of this into (10) yields

(~(a r)—f,f) =(g(r )g g)
where

g(r1,f 1,X0, x/v) = f(r1+a,{1,X0, X~),

and 5(r1) is the Dirac 8 at the origin. The identity

(&(r1)g,g) = &(r/)[g(r1, {'1,x0 ' ' 'xN)]'dr

(11)
I
(1 1/')v0(a) v(a) I

3v2 I/2

&2[y(a)]'/' — r/(K—f f) 1/IIKfll
x E

342
+ ~(K-f—f)'/0~III fll (»)

m. S
(12)—V1 [g(14$4X0~ X~)]dr~

4m rg

where dr= dr1 drNdf1 df~ .ca.n be proved by partial
integration provided

g dfrtN1d{ rdx0' ' 'dx~
drq2

exists everywhere except possibly on a set of isolated
points.

This leads to the inequality

1 1
I (~(r )g,g) I

&—
2x — rl

The 6rst part of our aim has now been accomplished.
(Kf f)'" and IIKfll are the only unknown quantities in
the right-hand side expression. A straightforward gen-
eralization of the formulas given by Kinoshita for the
helium case gives the upper bounds

&(Kf:f)"'&Z(1V/2)"'~
[Z'1Vr/'/2+ (X—E0)+r/'E0]'/' (1g)

~IIKfll &["+&'—(1—')Eo']"'
+///'/0r/(K f,f)1/',

where e is a numerical constant given by

n= [4Z'+2Z(Z —1)(1V—1)+1V(1V—1)']. (19)

If one introduces the notation

.3 v2

(, d )0d (13) C= [Z(1V/2) "&+(Z'1V r/'/2+ (/ E0)+r/'E0)'/']
xA

The application of some well-known formulas in vector
analysis gives

y {[00/ ),0—( l —1/-") E00]1/0y Q1/-'[Z(1V /2) 1/&1/

+(Z''~ n'/2+(/1 E0)+~"—E0)1/0]} -(20).

l(1 ~)v.(a) ~(a)I&24(.)]/C/+C,
which leads to the Anal formula

it will follow from inequalities (1'/) and (18) that

~1 2 1 2 1

(grad1g)0dr &(q 0g +10g)l/0(g g 0g)1/2
I y0(a) —y(a) I

& {2C'»[y(a))'/0yC+ 1/'y(a) }, (22)
I —n'

342 i/2

I (~(r1)g g) I
&-—(Kg,g)(Kg, Kg)

(—~ 'g,g) = (2/1V)(Kg, g)

(See, e.g., Kinoshita, reference 3.) From this and in- ~here C is gimme~ b F (20)
equality (13 it follows that Q"e may thus conclude that the error in the electron

density
I &0(a)—p(a) I, in any given point a, is bounded

(15) by an expression which depends besides y(a) only on
the quantities X, 0, E0, and r/. inequality (7) provides

as an upper bound for y whereas X and 0. can be calculated
from the wave function p. As for E0 and E1, one may

and either use experimental values or else it is possible to
V1Pg, V10g) & (4/1V)(Kg, K'g). give upper and lower bounds by known methods.
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It also follows from formula (21) that if a sequence of
trial functions converges to the exact solution, i.e.,
IIA—4 '"'ll ~ 0 and if in addition Il(P—Xi"&)Pi"'ll ~ 0,
the convergence to the electron density is uniform.

It is to be noted that these arguments can easily be
generalized to apply to a molecular system. The only
difference in the final formula would be that now
Z=P, i"Z, , where n is the number of atoms in the
system.

A final remark on the spin density should perhaps
be made. The spin density at a point a may be defined as

y(a)„;.= S(r,—a)y*(x,, x„)

SI&P(xi, ' ' 'xpi)dxi ' ' 'dxy,

where the spin matrix S„works only on the spin co-
ordinates of electron 1. Since IIS.II = p', it can be shown
by using Schwartz's inequality that

Tmrz I. Calculated values of (C'}'l', C', and
for helium atom wave functions. '

No. of
param-

eters —X «T ~2 2 (Cr}1/2

6 2.903 24 0.016 90 0.000 485 0.40 0.040
18 2.903 715 0.000 922 0.000 013 0.060 0.000 906
38 2.903 722 0.000 115 0.000 004 0.032 0.000 256

The values of —) and oa were taken from Table II in reference V.

which can also be written in the form

I vp(k) —v(k) I

1 1
(2~+v')+n'I v(k)

I
(24)

1—g' (2pr)oi'

I
vo(a)spiv &(a)spin

I

1
(2'(a))'"C'"+C+~'v(a)), (23)

21—g'

we have

I y(k)! ( y(r)dr=
(2pr)"' (2pr)"'

I vp(k) —v(k) I
&

(2m)oi' 1—q
(25)

where y(a) is again the total electron density and C is
given by (20). The spin density plays an important role
in the discussion of the hyperfine interaction and the
above formula might be of use for testing the reliability
of very accurate calculations.

4. LIMITS OF ERROR FOR ATOMIC
FORM FACTORS

The last two inequalities might be useful for estimating
the accuracy of the form factors used in crystallography.

5. NUMERICAL EXAMPLE

Here we shall illustrate the use of formula (22) by
applying it to the helium atom, For helium Z= 2, Ã= 2
and so we have

Iso(a)-v(a)l
The form factor is defined, apart from an unimportant

numerical factor, as the Fourier transform of the elec-
tron density. 'p Let, therefore, yp(k) and f(lt) denote the
Fourier transforms of yp(r) and y(r). The substitution
A = L1/(2pr)@o)e 'k'" in inequality (8) leads to where

(2(C')"'Lv(a))"'+C'+n-. 'r(a)), (26)
/max

I (1—n') vo(k) —v(k) I
&

(2pr)"'
e 'k "/fdic' 3

C&C'= ——(2g *+L(4+Eo)il +P —E ))'i )
2m. K2

+ eik ryPfdr +
(2pr)"'

e 'k "f'dr

2n
Iyl! f!dr+ fodr.

(2pr)oi' (2s)oi'

1
I
(1-n'I v.(k)- v(k) I

& (2n+~",

' See, e.g. , R. E. Peierls, Quantum Theory of Solids (Clarendon
Press, Oxford, 1955}.

As g and f are normalized, Schwartz's inequality gives

as

&& (Le'+li' —(1—
n sx')Ep')""

+ (44)"'L2v-.*+((4+Eo)v --'+(~—Eo))'"))

0(g'(g „'=P —Ep)/(Ei —Ep).

Table I lists the values of C', V2(C')"' and i7, , ' for
a set of wave functions containing 6, 18, and 38
variational parameters, respectively. For the exact
ground state and first excited state energies Eo=—2.903 725 a.u. (atomic units) and Ei= —2.146 a.u.
were used (reference 3).

The figures in Table I indicate that for those regions
of a in which y(a) is appreciable it is the 2(C)'i'Ly(a))'i
term which is the most important in the inequality. The
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error for a given y(a) tends to zero as a —+ ~ whereas
the error limit converges to a nonvanishing constant.
Th accuracy of these limits is dificult to assess and
moreover, since formula (22) holds for ail values of a, if
a given y(a) is known to be a good approximation to
yo(a) in some regions of space, the actual error in this
region may be expected to be much less than that given
by inequality (22). If y(a) is obtained through the
variation principle, it is likely to be accurate near the
singularities of the potential and, consequently, in such
a case, formula (22) is likely to overestimate consider-

ably the error near the nuc&ei. All this, however, does
not impair our general conclusions as stated in the
introduction.
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Elementary poles are introduced as poles of physical partial wave amplitudes F&(s) which are not present
in the analytic interpolating function F(s,X). It is shown that F&(s) =F(s,l) for l&1, and that all particles
with spin larger than one must be members of Regge trajectories; only bosons are considered explicitly.
Additional restrictions are discussed which would make it possible to eliminate elementary poles also for
spin one and zero. The possibility that the physical s-wave amplitude Fo{s) is not determined by the inter-
polation function F+(s,0) could be used to avoid the ghost associated with the vacuum trajectory. The
problem of branch-point trajectories is discussed briefly.

1. INTRODUCTION

HE possibility of describing particles as members
of Regge trajectories" in the complex angular

momentum plane raises the important question whether
all particles should be represented by these moving
poles. As an alternative, we can envisage a description
of certain particles and resonances in terms of "ele-
mentary poles"' of the relevant amplitudes, where these
poles are not related to the moving poles of the inter-
polating partial wave function at all. The two ways of
representing particles suggest a possibility for making
a qualitative distinction between "elementary" and
"composite" particles. Although one may dislike such
a distinction on "philosophical" grounds, it is of interest
to see to what extent it may be excluded on the basis of
the general notions of relativistic dispersion theory as
well as specific experimental information. In this note
we will be concerned mainly with strongly interacting
particles, but the two ways of describing particles may

*Work supported in part by the U. S. Atomic Energy Com-
mission.
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also be of interest in connection with the distinction
between strong and weak interactions (and perhaps
electromagnetic interactions).

In an earlier publication' we have already described
how elementary poles can be present in a physical
partial wave amplitude F~(s) such that these poles are
not related to a singularity of the interpolating function
F(s,X).' We have also given an argument showing that
F(s,l)=F~(s) for /&1, and that all particles with spin
larger than one must be members of pole trajectories in
the X plane. However, this argument depends upon the
existence of a Sommerfeld-%atson representation of the
invariant amplitude F(s,t), or a related representation
which is valid for t—+ ~ and for some interval on the
negative s axis or around s=0.

It is the purpose of this paper to give a more detailed
description of elementary poles as compared to Regge
poles within the framework of relativistic dispersion
theory, and to give a more general proof for the fact
that particles with spin larger than one must be manifes-
tations of angular momentum trajectories. Further-
more, we show that any information to the eGect that
the high-energy limit (3, u ~ ~ ) of the invariant ampii-

4 We dehne here elementary poles independent of perturbation
theory. For a de6nition within the framework of perturbation
theory, see S. C. Frautschi, M. Gell —Mann, and F. Zachariasen,
Phys. Rev. 126, 2204 (1962); this paper contains further references.


