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The response of a physical system to external electromagnetic and gravitational fields, as embodied in the
electric current and stress tensor conservation laws, is used to derive the equal-time commutation relations
for charge density and energy density.

INTRODUCTION

MONG the more important physical properties
~ ~ ~ ~

~ ~

~

in relativistic quantum field theory are the
conserved local quantities, such as the electric charge
flux vector j&(x) and the stress tensor Tl'"(x). In order
to answer questions about the simultaneous measura-
bility of these quantities one needs the commutation
relations of the operators on a space-like surface or, more
specifically, at a common time. The physical inde-
pendence of different points on a space-like surface
guarantees the compatability of any associated localized
physical properties. That is a general assertion of
commutability under such circumstances. A complete
treatment of equal-time commutators has been lacking,
however. Thus, although it has long been remarked
that the electric charge density at all spatial points
obeys

a corresponding statement about the energy density
had not been recorded until it was observed, ' for a
particular system, that

x'=x": —iLP (x),P (x')]
= —(P"(x)+P"(x'))BP(x—x').

It is our intention to supply a general basis for this and
other equal-time commutators.

The measurement theory of the electric current
vector and the stress tensor is founded upon the
specific dynamical nature of these properties as the
sources of the electromagnetic and gravitational fields,
respectively. More precisely, we exploit the reciprocal
dynamical aspect of j& and T&" whereby they determine
the response of a system to external electromagnetic
and gravitational fields. AVhat is characteristic of these
dynamical agencies, and equivalent to the existence of
the local conservation laws for the properties of interest,
is the freedom in description associated with gauge
and coordinate transformations.

ELECTRIC CURRENT

The electric current provides the simpler illustration
of the method. I et 8' be the action operator of all
charge-bearing 6elds y(x), excluding the purely electro-
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magnetic action term. The vector potential A „(x)
appea, rs as an external quantity in this action operator,

IV= (dx) Z.h(y, A„),

and the infinitesimal numerical variation

8&lV= (dx)j~(x)bA„(x)

defines the electric current vector. The requirement of
gauge invariance, applied to the infinitesimal gauge
transformation

t'A„(x)=-a„m (x),

yields the charge conservation equation

a„j~(x)=0.

The gravitational potential g„„replaces 3„ in the
analogous discussion of TI"". For that circumstance the
use of an external field is quite justified by the weak
dynamical inhuence of the gravitational field in a
special relativistic context. This argument does not
apply to the electromagnetic field, of course, and we
must remove the implication that a weak-coupling
treatment of the electromagnetic field is necessarily
involved. To do that we have only to rephrase our
procedure by replacing 8"with the total action operator

W= (dx)I Z„(~, A„+A„')yz, (A„,F„„)j
in which A„'(x) is an arbitrary numerical external
potential. Infinitesimal variations of the latter can
now be used to define the electric current vector while
incorporating the full dynamical e6ect of the electro-
magnetic field.

The charge conservation equation

Bpjp(x) = Bl,.j"(x)—
is an example of a relationship between operators, of
the type

BpA (x) =8(x),
that is maintained for arbitrary values of certain
parameters —the external potentials, in this example.
Now, the quantum action principle,
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applies, in particular, to infinitesimal alterations in the
structure of the Lagrange function, as realized by
variations of numerical parameters. It is a corollary
of the action principle that

b&~, I F(x) Io,) =&cr, Ib'F(x)+i (dx')(F(x)bZ(x'))+
I cr&,

where b'F(x) refers to an explicit dependence of the
operator F(x) upon these parameters. To maintain the
relationship between A(x) and B(x) then requires that

Bp b'A (x)+i (dx')(A (x)bZ(x'))~

we must be somewhat more specific about the depend-
ence of the current upon the external potential. The
major consideration here is locality. The current usually
does not involve the potential at relatively space-like
points, but we only insist here that j„(x)does not refer
to the potential at neighboring times, which is to say
that it does not contain the time derivative of the
potential. That restriction de6nes a certain class of
electric charge-bearing physical systems (which may
well be without exception). The immediate implication
from the conservation equation is that j'(x) cannot be
an explicit function of the external potential. The
reciprocity relation then asserts that

b'j" (x)/bA 0 (x') =b'j'(x')/bA g (x)=0.

The equal-time commutation relation supplied by the
+' conservation equation for charge now reads

But, the time derivative of the ordered Product is i (dxl)[jo(x) „(„)]bA (xi)
given by

bo(A (x)br(x'))~= (boA (x)bZ(x'))i

+h (x'—x")[A (x),b Z (x')],
and therefore,

(dx')[A (x),be(x')] I, ,"= ay'A (*)—b'B(x).

This statement supplies a general foundation for equal-
time commutation relations. Note, incidentally, that
A(x) cannot depend explicitly upon the parameters
unless B(x) correspondingly involves the time deriva-
tive of these parameters. In the absence of such a
dependence, the right-hand side of the above equation
is just —b'B(x).

When a number of parameters are involved, the
explicit dependence upon the parameters is subject to
certain integrability conditions or reciprocity relations.
We illustrate this with the continuum of parameters
constituted by the external potential A „(x). The
calculation of the second variation for a transformation
function proceeds from the action principle as

b*&,I,&=b ' (dx)bA„(x)&, I~ (x)I,)

(d*)(d*)»„(*)»,(*')[—& I(j (*)j (x'))+I &

+i&~ Ib' j"(x)/». (*')
I ~2&],

and the necessary symmetry of this result supplies the
reciprocity relation

b'j~(x)/bA, (x') =b' j"(x')/bA„(x).

In order to obtain explicit equal-time commutation
relations for components of the electric current vector,

=a, (dx)[b, j'(x)/bA, (x)]bA, (x),

and therefore, (x =x")

[j (x),j'(x)]=0,
—i[j'(x),j'(x')]= 8 [ha' j'(x)/hA ((x')]

=b~[b~'j'(x')/bA ~(x)7.

The variational derivatives that appear here are the
three-dimensional ones defined by

h' j'(x)/bA ( (x')= b (x' x")bg'j'(x)/—bA ( (x')

Despite the use of an external potential, these commu-
tators are assertions about an isolated physical system,
if the potential is set equal to zero after di6erentiation.

One should recognize that an explicit dependence of
the current upon an external potential occurs for all
physical systems. Let us use the conservation equation
again, and convert the second commutator into

[j'(x), —mo j'(x')]= a~bi'[bs'j'(x—')/», (x)],
which is symmetrical in the two points x and g'. A
contradiction to the hypothetical vanishing of the
right-hand member of this equation arises from the
positiveness exhibited by the vacuum expectation
value of the left-hand member. Thus, if y(x) is an
arbitrary real function, with which one forms the
Herrnitian operator

J(x') = (dx) q (x)j'(x),

the equation of motion

isa j'(x) =[j'(x),FO],
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combined with the null energy of the vacuum, yields

=2(JP'J) &0.

Now it is essential to call upon the relativistic principle
that any suKciently localized act must excite the
vacuum, which implies that functions sp(x) surely exist
for which the states (J have an energy expectation
value greater than zero. It can be shown that the
explicit dependence of the current on the potential is
completely local,

—bp' j'(x)/8A &(x') = b (x—x')j"'(x).

The expectation value of the symmetrical tensor j"(x)
in the invariant vacuum state is of the form

where, of course,

l s =2&" 9 gs1+~sg ~ ~~& s].
As a Grst application, consider an in6nitesimal

deviation, bg„„(x), from the Minkowski metric. The
extended conservation equations can then be presented
as

'fXv &gg

vr here

Tpv ( g)1/2TIvv givvjbg 1 Tlv+ TpXbg„gvv

Let us also observe that

8&(xvT""—x"T"~)= ——,'bg&, (x~8"—x"8~)T"'+T~"—T"v,

in which

Tyv Tvv —jbg (Tp)gvv Tvhgpv+TpvgvX Tvvgivh)

Accordingly,

(jkl(x)) bklC

2(JP'J)=C (dx)LVw(x)]'

An integration over all three-dimensional space removes
the space derivative terms and yields

Bp (dx) T'„=— (dx)-,'bgj, B„T"',

and the constant C must be a positive number,

C&o,

vrhich shows, incidentally, that a positive energy
expectation value is realized for every nonconstant
function pp(x).

&p (dx) (x„T'„—x„T'„)

(dx)[,'bgj. (x„B,-x.8„)T"—" T„„+T„—„]

Through the agency of an external gravitational
6eld, the stress-energy-momentum tensor T&"(x) is
defined by the variational equation

These forms lead immediately to commutation relations
between the components of the stress tensor and the
generators of the special relativistic infinitesimal
coordinate transformations,

in which

b,W= (dx)( g)'~' ,'T~"bg„—„, -

g= detg„„.

I'„= (dx)TP„, J„.= (dx) (x„T',—x,TP„),

namely,

The role formerly played by gauge invariance is now
taken over by the requirement of general coordinate
invariance. The infinitesimal coordinate transformation

x~= x~+bx~(x)
induces

Bg„,=bx"8)g„,+g)„8„bx"+g„),Rgb",

from which we infer the extended conservation equa-
tions

Alternative forms are

~ (g~. T)=kT""(djg —
&1 g apl g p)

and

and

$T1",J„„]= p(x„8„x„8„)T—""—
p&(b XT v b XTv+b vT 1 b vT%)

These commutators, representing the transformation
properties of the stress tensor, produce, through
integration, the commutation relations of the ten
in6nitesimal generators of the inhomogeneous Lorentz
group. In this way special relativistic kinematics
emerges from gravitational dynamics.

To obtain more detailed information, let us choose
the special gravitational Geld

gpg
——bp(, &pe =0, —gpp(x) W 1,

so that properties of the energy density can be inferred
by variation of gpp(x). The extended conservation
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equations are motion for (—g00) T now implies the equal-time
commutator

and

g L( g )1/2Tok7 g L( g )1/27%/7

+ 2 ( gDO) ~~kg00y

where each form is chosen to avoid the explicit appear-
ance of Bogoo. Ke confine our attention to the class of
physical systems which are such that T~' does not
contain explicitly the time derivative of g&0, although
it may be an explicit function of goo at the same time. '
lt can be concluded that neither (—goo) P nor

(—goo) /2P" are explicit functions of g00 for this dis-
tinguished class of material system, which is to say
that these local quantities are the same functions of
the fundamental dynamical variables as in the absence
of an external gravitational field. The equation of

'In fact, T»' must be an explicit local function of the second
spatial derivatives of goo.

—~ (—goo~) (*), (dx') (—goo~) (*')&(—goo(*'))'"

= —~~C(—goo)'"T'"(*)h(—goo(*))"'7

—(-go )"'2 '(*)~.~(-g.o(*))'",

where, it is noted, there is no explicit dependence upon
goo(x), which indicates the consistency of the physical
restriction. On setting —goo= 1, we obtain

—it T (x),P (z')7= —$T'"(z)+P"(x')78+(x—x').

This derivation of the energy density commutator
condition, for a class of physical systems, supplies a
simple and general basis for what may well be con-
sidered the most fundamental equation of relativistic
quantum field theory.
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It is shown that the class of correlation graphs which arise in the calculation of thermodynamic properties
in the canonical ensemble can be summed to give renormalized single-particle populations. In the limit of
zero temperature the perturbation expansion of the energy then reduces to the adiabatic expansion of Gold-
stone about the correct model state. Arguments for the consistency of the expansion are developed for the
case of the nonspherical Fermi surface.

I. INTRODUCTION
' 'T is the purpose of this article to explore the physical.. consequences of the correlation bond graphs intro-
duced by two of us in a previous article. ' In the latter,
it was shown that the free energy could be expressed
in terms of graphs which strongly resembled the graphs
of Bloch and Dominicis' plus graphs which arose
because of correlations in the single-particle state
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populations, n(k). These correlations arise because of
the restraint in the trace to a summation over states
with fixed number of particles.

In the limit as the number of particles goes to infinity,
it was found that the only correlation graphs which
arise are those which are simply connected. In this
article, we exploit this property to show that the
elimination of correlation bonds by summation (which
is possible because of the rule of simple connectivity)
results in a renormalization of the populations (e(k))0.
In the limit of zero temperature, one then recovers for
the energy a series of terms which involves the re-
normalized (e(k)). This series is precisely the usually
adiabatic series of Goldstone. ' It is, thus, shown that

3 J. Goldstone, Proc. Roy. Soc. (London} A239, 267 {1957).


