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Non-Abelian Gauge Fields. Lorentz Gauge Forxxtulation
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Non-Abelian vector gauge theory is given a first-order Lorentz gauge formulation and then transformed
into the radiation gauge. The result agrees with the independently constructed radiation gauge theory. There
is a brief discussion of the axial gauge.

HE major purpose of this note is to prove the
formal equivalence between a manifestly co-

variant Lorentz gauge formulation of non-Abelian
vector gauge 6eld theory and the independently devised
radiation gauge formulation. ' The Lorentz gauge
version is analogous to that introduced by Fermi for
the electromagnetic Beld, in which a supplementary
condition on states is used.

LORENTZ GAUGE

Let us consider the following scalar Lagr ange
function:

Ln&(B„—i'Tp„')+Pmlg= 0.

Note that the Lorentz condition 8„&&=0is an operator
equation. This is no source of difhculty in a theory
based on first-order di6erential equations, as contrasted
with the more usual procedure employing second-order
difl'erential equations. Apart from the explicit con-
struction of G~i in terms of PI, and @~, all the 6eld
equations are equations of motion. This is emphasized

by the structure of the time derivative term in 2,
GP»bg» Gb+P+—,'g 8pP, —

where

~ /pG"" Lb@" b&p+t(&~@~)j which also exhibits the pairs of complementary canoni-
+4~""G&.—G&4"+4»k"+&(P), cal variables. The nonvanishing equal time commu-

tators are
~(4)= pi4' (~"b.+Pm)4

k.p(x) =g (x)apT.&(x)

refer to a Dirac 6eld. The notational conventions of
reference 1 are employed. The response of this Lagrange
function to the numerical in6nitesimal gauge transfor-
mation

G„,—+ (1+i'tX'b)G„„, G » (1 +i' Xtb')G,

P„—+ (1+i'tbX')P„+b„bX, f—» (1+i'Tbh')Q,

while

i[y». ( ),xG (px') j=b.pb»'b (« «'), —

i' P(x),Gb(x')f=b, b(« —«'),

(0-(x),A(x') }=b-sb(« —«')

Gp»= (d«)r Gb phd bXBpG G—i'khp'Q—)

Infinitesimal numerical gauge transformations are
generated by the operator

is given by
2 ~ 2—G(b„—i'bt „')B~bh. in the sense illustrated by

One should resist the impulse to conclude that the
Lagrange function would be invariant were the infini-
tesimal gauge function to obey

(8„i'kt„')b—pQ =0,
for this could not be a numerical gauge transformation.
The Dirac part of the Lagrange function is gauge
invariant, which implies the differential conservation
law

(8„i'@„')k~=—0

The 6eld equations derived from the action principle
are

aA.—ay„yi(4„8.)=PG„„
(8,—i't4, ') .G~' —8&=k~,

B„Q"=0,
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The composition law of successive infinitesimal gauge
transformations is expressed by the group commutation
property

where

—iLG»», ,G»»,]=Gp»„,

bh»p
———i(Q.»tbsp).

The following equal time commutators can be regarded
as specific implications of this group property:

and
LG(x) G(x') j=EG(x),b pG(x') j= o,

LbpG (x),bpG (x')g = —'tb pG (x) 'b («—x').

A particular solution of the commutation equations
obeyed by the gauge group generators is G&z'=0, for
all Q, . Hence, there should exist special gauge invariant

' C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).

402



NOX —ABELI AN GAUGE F I EL DS 403

states that obey

or
G(x)e=O, a~(x)+=0.

Furthermore, this property is not confined to one time.
It is a consequence of the extended current conservation
b'av and the field equations that

(a„—i't4„')a~G(x) =0.

Accordingly, the second, and every higher time deriva-
tive of G(x) also vanishes when applied to a gauge
invariant state, and the latter are characterized by the
eigenvector equations

G(x)4=-0

for aH space-time points x. It is these gauge invariant
states with which we are concerned. Note, incidentally,
that if 4 is a gauge-invariant state so also is Pk, where
I" is a gauge-invariant operator, for

GoiF4'= [Goy,p+=0.
The energy density operator of the system is given by

0= T~ @[o(—,a i't4,—')Go" k'5 —y'a—,G, .

in which P (x) is the gauge invariant operator

T = of' [(G'")'+o(G~i)']—oil [o'(ai —i T4o )+etio)4

Similarly, the momentum density is

Oo, = To, @,[(a, i ty—, )Goi k—o] boa„G,— —

where

P'o= f'G ' Goi os. (.ao —2'Tdo')P+ o a—'pa otic

is gauge invariant. It is not difficult to verify the
fundamental equal-time commutators

i[0~(—x),O~ (x')]= —(0'"(x)+0"(x') )a i 8 (x—x')

and

—i[P (x),P (x')]= —(P'"(x)+ T""( x)) aib( x—x').

The latter is the reduced version of the O~ commutation
relation for gauge invariant states. This follows from

(O~oo Too)@ 0 (O~o„To„)@

and the remark that P 4 is also a gauge invariant
state, so that

0~ (x)0~ (x )O'= P (k)P (x )4.
The equation of motion and I.orentz transformation
properties of any gauge invariant operator Ii can be
calcu1ated from P, for gauge invariant states, since

[F,O~je= [F,Tw+.

This remark does not apply to any field operator,
however, since none of these is gauge invariant, in a
non-Abelian gauge theory.

RADIATION GAUGE

The energy operator constructed from O~ is a linear
functional of the complementary field variables 6 and

@ . If no restrictions are imposed on the vector space,
the energy spectrum ranges continuously from +~ to
—~, since these variables can be subjected to arbitrary
linear displacements. That freedom of translation must
be suppressed to form a subspace of physically ad-
missible states, and this is accomplished by considering
only the gauge-invariant states. But such states, as
eigenvectors of operators v ith continuous spectra, have
no finite norm. Only hy eliminating the field variables
that are superfluous in the physical subspace can
vectors of finite norm be obtained.

It is convenient for that purpose to decompose the
complementary fields po (x) and G o (x) into longitudinal
and transverse parts, as in

@o(x)=pi(x)~+pi(x)r, yo(x)~=ao) (x), ai4" (x)r=o

The canonical commutators decompose correspondingly,

i[iko(x) G"(x') ]= (b&'$(x —x')) = aia'(4s ~x—x'~) '

i[4li (x) r,G"(x')r] = (bi'5(x —x'))
8$'a (x—x') —aia' (4or

I
x "

I )

VJe also adopt a partial representation of the gauge
invariant states, which is labeled at a particular time
by the eigenvslues of Po(x) and @&(x)~. The comple-
mentary variables are represented by three-dimensional
functional differential operators

G.(x) ~ i(bo/&. o(x)'), G."(x)~ —+ i(bo/Q&. (x)~)'
Thus, the supplementary condition G(x)4=0 becomes
the wave functional equation

(b,/g. o(x)')e=O,

and + is independent of the eigenvalues P,o(x)'.
The introduction of three-dimensional vector nota-

tion (G'" —+ G) permits us to write aoG as

—(v o'ty') —G+k'=(v —i' y't) L,

where L(x) is a longitudinal vector,

L= —GO+VX)o((v i'tP') Gr——k').

This is presented in a symbolic notation, with
defined by

—(V—i'tP( )x') VSo(x,x')=b(x —x').

It is taken for granted in this work that X)4, exists and
is unique. %ith the aid of the equal-time commutator

—i[(v—ittt(x) ) L(x) 0(x)]
= —(V—i'ty(x)')8(x —x'),

we find that

[(v—i'ty(x)') L(x), (v' —o'ttt(x')') L(x')]
't(V i'tp(—x)') L—(x)'8(x—x')
—(v—i'ttt(x)') [L(x),L(x')] (—V' —i ty(x')'),
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where the last differential operator acts to the left. A
comparison with the commutation relations obeyed by
BOG shows that they are replaced by

LL(x),L(x')]=0,

which facilitates the use of the second supplementary
condition in the form

L(x)4=0.

The longitudinal variables can be eliminated from
the physical quantities P and P'~. This is carried out
in several stages. Evidently,

6+= (6'+6')+= 6&e
with

G, =$1+VS,(V i'ty')—] G' V. S,—k',

but this does not sufFice to eliminate Gi from

Go-(*).G (x)e=-', LGo-(x)G' (x)+G'. (x)G -(x)]e,
for example. AVe must also include a commutator term:

( One Gk ql —G Om Gk ++1LGom G Om Gk

Now
6 6,=— VS—,I (V i'ty—') G ko]—

and

LGg (x), (V—i'tP( x)').6(x')]=i'tGg„( x)'5(x—x'),

so that

LG'"(x)—Gyo™(x),G' (x)7e
= —tr(tB'"S~(x,x) )G'„(x)+,

where
a"S~(x,x) = lirn 8"S~(x,x').

X ~X

This gives the replacement

Gom Qk + { Om Gk

with
G2(x) =Gi(x) —-', tr(tVSq(x, x)).

The analogous elimination process for P involves

(GOk)~ —(G Ok)~+ LGOk GO

and

(6"(x),GPI, (x)Q = —tr(tB"S~(x,x)QPp(x)+.

The result can be written as

LG'"(x)]%=LG2" (x)—-' trta'S~(x, x)]
&& LGs'g(x)+-,' trt8gS, (x,x)+.

The second supplementary condition supplies the
dependence of 0' upon the longitudinal field eigenvalues

through the integrable functional diGerential
equation,

i(8,/bgr'(x)') V(dx') S~(x,—x')

XL(V' —i'tlt(x')') 6'(x') —ko(x')] e =0,

in which

&(')= o(*)'+s(')'
Ke shall write the solution as

~= v(y')
I ),

where the operator V obeys the initial conditions

V(0) =1,
and

I )& is independent of the longitudinal eigenvalues.
The isolation of all tt~' dependence in tbe operator V
is characteristic of any gauge invariant state and,
therefore, applies also to X~%' and P'%'. Thus,

v~(y')e= v(@i')T«(0)
I

which states, in effect, that Pi can be set equal to
zero in P and P'~ after GI' has been eliminated.

The transformation to the subspace of physical
stat s, and the radiation gauge, has now been made.
One problem remains, however. The operator 62 is not
Hermitian. Indeed,

6,—G,t= —L1+VS,(V—i'tP')] trtVS, (x,x),

which can be exhibited in the structure of 62 by writing

62= L1+VSp(V —i'tP')]: (Gr ——', trt VSq) —VSqk'.

The non-Hermitian term is removed by the transfor-
mation

)i= expLls(0')]
I ),

where s(P) is dehned for arbitrary p by

bye/bye. (x) = —trit. BpSp(x, x),

provided these are integrable diGerential equations.
The required integrability conditions are valid,

Lb./b~ (")]Lb./b~'(*)]
= —trt. BgS~ (x,x') tg8/ S~(x',x)

= 93/~0 "(x)]Cb3/bei~(x')]'

The outcome of this last stage is the replacement of 62
with the Hermitian operator

6= [1+VS,(V i't|b')]: Gr —VS,k'—
The final results for the Hermitian energy and

momentum density operators are

T =-,'f'(6 —-,'trtVSp)(6+-,' trtVS~)
+lf'(G. )' !'4 ( (V-i-'T~')+am)O

and

T ~ fM'Ggi ,'ip——(Bg i'Tg—l, ')—p+.2—8'~+oIip, .

in complete agreement with the independent radiation
gauge treatment.

AXIAL GAUGE

There is an alternative to the radiation gauge in
which the decomposition into longitudinal and trans-
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verse components is replaced by one into components
parallel and perpendicular to a Sxed axis. We describe
the latter as the axial gauge. ' An entirely analogous
elimination procedure can be used. Let the axis be
labeled as the third direction. We write

where

and

—(V' i'—t tt') 6+k'= (Bg i—'Apg')A,

2 = —G'3+Gg~

Ggo 5)g[ko (V i'tP—') 6'],
(Bg—i'@ (xg)') Sg (x,x') = tl(x—x'),

while 6' refers to the components perpendicular to the
axis. The equal-time commutation relations for 806
are satished with

[A (x),A (x')]=0,

and the second supplementary condition becomes

A (x)4=0.

The consequences of eliminating G 3 are given by

~".G.P = t"~".G~H
Wl QI

Gggg (x)=GPg (x)+-,gtrt X)g(x,x)

(G")'0 = [Gg'gy ~g trtng][Gg" ——,
' trtng~.

The elimination of @&' is accomplished by

ch' f(x') =-', + ich' f(x')

dx' ', g-(x x—')f(x')

This description of the axial gauge must be incom-
plete, however. As x3 approaches in6nity in either
direction, the operator G ' attains the limits

xg -+ a ~: G"(x) ~ +-g,T(hgxg),
where

T(xgxg) = dxg[k' (V——z'ty') 6'](xgxgxg)

is not necessarily zero. That the resulting nonconver-
gence of the total energy is not merely a matter of an
additive constant can be seen from the derived equation
of motion,

a,y'= —f'6' —(v' —i' t tt')'. yg,

where

P'(x) = —f' dxg' —,'c(xg —xg')G" (x~x,xg')

=f' Cxg' g(xg xg )[k'—(V z'tp') 6']—(x,x,x,')

and

where
g(xg —x,') =— dxg" -', g (xg —xg")-,' g (xg"—xg')

[z(bg/hyg (x)')—GP (x)]V(yg') =0, V(0)= 1

and the net eGect in P and P'~ is to set &3'=0. At
this point the axial gauge becomes algebraically
simpler than the radiation gauge, for

Qg ——0: BgS (gx,x') = b (x—x')

and X)3 is just an integration operation, which is quite
independent of the internal variables. Therefore,

kg=0: trtmg(x, x) =0,

and the axial gauge is characterized by the direct
substitution in P and P'~ of the conditions

y, (x) =o,

G"(x)= dxg'[kg —(7—'tP'z) 6'](h&hgxg'),

'The algebraic advantages of this gauge were pointed out by
R. L. Arnowitt and S. I. Fickler, Phys. Rev. 127, 1821 {1962).

= —
g ~xg —xg'~+~.

Furthermore, an element of gauge arbitrariness remains,
characterized by inhnitesimal gauge functions Q that
are independent of x3, Thus,

yg(h)~y (g)x+(a g i'yg(x—)')Q(x,x,)=.O

Both of the operators P and P'~ are invariant under
such two-dimensional gauge transformations; and the
generators of these transformations are just the
operators T(x&xg), as illustrated by

—z[y(x) ',A]= —(7—i'ty(x)')'bX(x, x,),

A= dhgdxg P Q,.(x,xg)T.(x,x,),

so that

[P (x),T(x,'x,')7= [P"(x),T(xg'xg')7=0.

Further consideration of these points will be required
before the axial gauge can be used electively.


