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The minimum principle for single-channel scattering obtained previously required the introduction of
channel radii for an incident relative kinetic energy E greater than zero. The channel radii, which greatly
complicate the numerical calculations, no longer appear in recent formal theories of reactions and they
need not appear in the minimum principle formulation. By projecting out aQ of the open-channel com-
ponents from the full wave function, it is possible to eliminate the continuum states of the total Hamiltonian
II originally present below E. The closed-channel Hamiltonian K has only a discrete spectrum below the
inelastic threshold. By appropriately subtracting the contributions from the discrete portion of the spec-
trum, 3'. can be used to obtain a minimum principle for k coty, where q is the phase shift. This minimum
principle provides a rigorous criterion for determining the parameters in a trial function and for choosing
among the numerical results obtained with diferent trial functions. The method requires that one solve
exactly the static approximation equation, which plays a particular role in uncoupling the closed-channel
equations from the open-channel equation. Finally, contact is made with the results previously obtained
at zero energy and a generalized Levinson's theorem is brieQy considered.

1. INTRODUCTION
' 'N the minimum principles for scattering theory that
& ~ have recently been developed, ' ' a sharp distinction
must unfortunately be made between the case for which
the incident relative kinetic energy, E, of the two sys-
tems is zero and that for which it is not. For single-
channel scattering at E'=0, the minimum principle is
applicable to the true systems, and the calculations are
either precisely of the form of the usual variational
principles or only very slightly more complicated, re-
quiring some additional integrations which are no more
difIIcult to perform that those that arise in the varia-
tional principles. For E &0, the minimum principle is
applicable only if some of the various potentials are
truncated and. if some potential barriers are erected.
(The conditions on the potential can be relaxed some-
what, but not signihcantly. ) The minimum principle
will not generally, therefore, be applicable to the true
problem, but this by itself would not be a serious handi-
cap, for the various potentials can be truncated at such
large distances that the sects of the truncation are
negligible; the more serious difIiculty is that because
of the erection of the potential barriers the trial function
must satisfy certain rather arti6cial boundary condi-
tions which can for some problems make the calculations
extremely diTicult.
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The primary purpose of the present article is to de-
velop a minimum principle for single-channel scattering
for E')0 which does not require the introduction of
artificial potentials. Before doing so, it will be useful
to review briefly the previous work to understand the
origin of the need for arti6cial potentials in that work.
Since the need appears even in the simplest cases„ it
will sufIice to consider the zero angular momentum
scattering of a spinless particle by a short-range static
potential, V(q). For potential scattering, the incident
relative kinetic energy E' is, of course, equal to the total
energy E of the system.

For E'=0, we are interested in the determination of
a variational bound on the scattering length, A. It is
simple to prove the identity

where

—(A —A g) = NgHNgdq wHQldq-
2p

+V(q)
2p dq

u is the exact solution, u~ is the trial function, and
m=u& —u. Both u and u& vanish at the origin, and they
behave asymptotically as

u(q) ~ —q+A, N, (q) —+ —q+ A, .
m(q), therefore, vanishes at the origin and approaches a
constant asymptotically. If one knows experimentally
or in any other fashion that the potential cannot support
a bound state, it is trivial to show that (w,Hw)&0.
(The bound would be an immediate consequence of the
Rayleigh-Ritz theorem if zo were a quadratically in-
tegrable function. It is a very simple matter, using a
limiting process, to extend the theorem to include the
class of functions which asymptotically approach a
constant. ) A bound on A, or better, a minimum principle
for A, follows immediately, then, on dropping the last
term in Eq. (1.1).

8j.
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The possibility of obtaining a minimum principle for
3 is then in the above case a consequence of the fact
that the spectrum of H is bounded from below by the
value zero. If V(q) can support one bound state with an
eigenfunction q i and an eigenvalue E~, then H is not a
positive de6nite operator and it is not necessarily true
that (w, Hw) &0. We can, however, proceed as follows. '
%e seek an operator inequality of the form H&B,
where 8 must satisfy the following requirements:

(1) B must contain only quantities that are actually
known, as opposed to quantities that are only known
formally.

(2) Since the bound is no longer zero, the inequality
relationship

(w, Hw) & (w, Bw)

still involves m, and we do not have a useful result unless
we can eliminate zv. This can be done if an H appears
adjacent to each m, for we can then eliminate m by using
Hm= HN~.

In summary, then, we seek an inequality of the form

H&HCH,

where it must be possible to give C in a usable form; the
inequality has meaning for functions co(q) with bound-
ary conditions ~0(0) =0 and cu(q)~constant as q

—+ ~.
In seeking such a relation, we begin by defining the

projection operator II~ for the compound state q i, which,
operating on the arbitrary function f(q), gives

operating on the arbitrary function f(q), gives

Diff(q) = s ii(q) s ii(q')f(q')~q'

It can be shown' that

H &HII„H/E„,

provided only that q && is sufFiciently accurate to generate
a negative E~&. Since the class of functions for which the
above operator is positive definite includes functions
which approach a constant asymptotically, we have
finally

(w, Hw)& (w,HIIigHw)/Eii=
~ (pii, Hsi)

~
/Eii.

Since the proof depends upon the Rayleigh-Ritz theorem
and modi6cations of that theorem, which are not re-
stricted to static potentials, the generalization of the
above results to single-channel scattering by a compound
system is trivial.

The extension to the case for which it is known, ex-
perimentally perhaps, that there are precisely E bound
states is also straightforward. It is then possible in
principle and it will not generally be dificult in practice
to 6nd X orthonormal functions y„& such that

(p„i,Hp~i) =E„,5„; E„, 0; 1&m, m&X.

It can then be shown that

Ilif(q)—= a i(q) v i(q')f(q')dq', n 1 +ng
(1.2)

and noting that it, then, follows that H(1—IIi) is a
positive definite operator, that is, that

in the space of quadratically integrable functions and
of functions that approach a constant asymptotically.
Since

HIIg = II iH =Ei IIi,
we can write

H &HII,H/E„

which has the prescribed form, but unfortunately p&

is practically never known so that we do not really
know II&. To overcome this diS.culty, we introduce the
normalizable function q i~, de6ne Ei~ as

Eit (Pl( HPlt)/(Pit 'Pit)

and define the known projection operator IIi&, which,

4The proof to be outlined is rather more compact though
entirely equivalent to the original proof of reference 2. There we
subtracted off approximate bound-state functions from m, whereas
here we subtract from the operator H. This slightly diRerent
viewpoint had its origins in a comment by Dr. B.Lippmann.

so that we have a minimum principle for 2 even when
an arbitrary but known number of bound states exist.

Now consider an incident energy greater than zero.
Ke again restrict ourselves to the J=0 scattering of a
spinless particle by a static central potential. The
starting point now is the Kato identity

A2—fk cot(il —8)—k cot(q, —e)7= u(H E)Nidq—, (1.3)
2p

ol

A2—Lk cot(il —8)—k cot(iJ, —e)7
2p

u, (H E)u&dq w(H—E)wdq —(1.4—).
u and 0& are the exact and trial scattering functions.
They both vanish at q=O, while asymptotically they
behave as

N ~ cos (kq+ 8)+cot (g 8} sin (kq+ 8),
ui ~ cos(kq+8)+ cot(q, —0) sin(kq+8),
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where q and qt, are the exact and trial I.=0 phase shifts,
respectively, and 0&8 m. m is again the difference
function, defined by w=u& —u. Equation (1.1) is just
the E=O, 8/0 form of Eq. (1.4).

To obtain a minimum principle for cot(g —8), we
must now obtain a bound on (w, $H —E)w). Un-

fortunately, the spectrum of H —E for E/O contains
negative as well as positive eigenvalues, even when
bound states do not appear. Since the spectrum of H is
continuous, there will, in fact, be an infinite number of
negative eigenvalues. Now, whereas we know how to
"eliminate" a finite number of negative eigenvalues, we
do not know how to "eliminate" a continuum of nega-
tive eigenvalues. (It is not possible simply to replace
the summation by an integration. ) The procedure that
was used to bypass this difficulty was to truncate the
potential and to erect a potential barrier. 3 It was then
possible to recast the problem into a form which in-
volved only a finite domain, that within the barrier;
not surprisingly, the fact that we are now in a finite
domain enables one to work with a discrete spectrum
and it is then possible, at least in principle, to "elimi-
nate" the negative eigenvalues.

As already noted, this barrier can introduce serious
difficulties. The situation is really not very troublesome
for potential scattering, but as one generalizes the
barrier technique from potential scattering to single-
channel scattering by a compound system and, then, to
multichannel scattering, the difficulties become pro-
gressively worse. We have, therefore, to seek some other
approach. It is, then, worthy of notice that we have done
more than was necessary in having truncated the poten-
tial and. erected a barrier, in that the spectrum was made
discrete everywhere, though it would have sufFiced to
make the spectrum of H discrete only below E. The
situation is depicted for potential scattering in Fig. 1.
Unfortunately, we do not know for potential scattering

how to avail ourselves of the less restrictive condition
that can be placed upon the modified spectrum.

Let us, however, examine the situation for the single-
channel scattering of a particle by a compound system.
The spectrum of H, then, contains discrete eigenvalues
if there are composite bound states of the incident
particle plus target which lie below the ground-state
energy ET o of the target. In addition, there will be con-
tinuous spectra beginning at ET o and at ET ~, ET 2,

~

the excited-state energies of the target system. We
would have the desired situation in which the spectrum
of H could contain at most discrete eigenvalues below
the energy E if it were possible to eliminate the branch
of the continuous spectrum bounded from below by
Er, . (See Fig. 2.)

Now it is in fact possible to eliminate this portion
of the spectrum by utilizing recent developments in
the formal theory of the optical potential. ' There are
two (not unrelated) reasons why these developments
might be expected to be helpful for our present purposes.
First, in these treatments the term in the expansion
of the full scattering wave function that is proportional
to the target ground-state function is isolated from all
of the other terms, and is treated quite diBerently from
the other terms. Second, channel radii need never be
introduced in these treatments. (In our previous work on
single-channel and multichannel scattering by systems, '
an adaptation of the Wigner-Eisenbud formal theory
of reactions was used. The truncations that we intro-
duced were similar to those that arise in their theory,
where channel radii do appear. ) The optical potential
formalism has been used previously' "to show that one

Energy

E-
Energy

(b) (c)

Fro. 1. Spectra for a static potential. Spectrum (a) is that as-
sociated with the original II. Spectrum (b) is that associated with
the potential truncated at R, and with the problem recast into a
form that involves only the (6nite) interval 0 to R; for R large,
the negative energy eigenvalues will be very close to those in (a)
and the positive energy eigenvalues will be very closely spaced.
It would sufFice to have a spectrum of the form (c), but we do not
know how to obtain such a spectrum for potential scattering.

(0) (b)

FIG. 2. (a) represents the spectrum of H for a target system
with energies Ez 0, Ep~, ~ ., and an incident particle. (b) represents
the spectrum of states with angular momentum I.=O of QXQ—=X,
where Q projects out the ground state of the target. The number of
discrete eigenvalues need not be the same for H and for X. The
point of primary interest is that the continuous spectrum of X
begins at Ez& which lies above E by the assumption that we are
dealing with single-channel scattering processes.

~H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287
(1962);L. Fonda and R. G. Newton, i&d. 10, 490 (1960).

6 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 128,
932 (1962).

"Reference 6 overlooked a paper by I. C. Percival, Phys. Rev.
119,159 (1960),who arrived, using the box-variational principle, at
some of the conclusions that were proved in reference 6. Percival's
approach contains a number of limitations; in particular, it cannot
allow for the Pauli principle and it assumes that various potentials
vanish identically beyond some point.
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can often obtain a lower bound or a few progressively
better lower bounds on the phase shift. (In that paper
we restricted ourselves to energies below the first reso-
nances. We have subsequently been able to eliminate
this restriction. This point will be elaborated in a
future paper. ) We are, of course, here interested in
obtaining a much more useful result, a minimum prin-
ciple, that is, a variational bound.

It follows from the above discussion that we can ob-
tain a minimum principl. e for compound systems that
does not involve truncation, while being unable to do
the same for the simpler case of potential scattering.
The paradox is a spurious one, however, for we shall see
that the development of the minimum principle for
single-channel scattering by a compound system re-
quires that one Grst solves a speci6ed static potential
problem exactly. (The static potential may, in fact, be
nonlocal but with modern computers that need not
necessarily be a serious obstacle. )

In the following section, Sec. 2, the minimum principle
is derived, and is given by Eq. (2.17). Just as at zero
energy, the results are found to be conditional, requiring
a certain number of subtractions be made. The extent
to which this condition represents a real limitation is
discussed in Secs. 3 and 4. Appendix A is a slight
generalization of the minimum principle. A simple and
quite crude application of the method to the e+B
problem is given as an example in Appendix B.Further
comparisons with the previous results at zero energy
are made in Appendix C.

2. THE MINIMUM PRINCIPLE

For the purposes of simplicity, we assume that the
incident particle is spinless and is distinguishable from
the target particles, that the target has a total angular
momentum of zero and is in~rlitely massive as compared
to the mass of the incident particle, that there is no net
Coulomb force between the target and the incident
particle, and that the incident relative orbital angular
momentum of the particle is zero. The extensions to
include various spins, orbital angular momenta, recoil
and Coulomb sects proceed as in our previous paper'
and will not be repeated. The eGects of the Pauli
principle are not for present purposes completely con-
tained in that paper since a Green's function will appear
here that did not appear there. The construction of the
Green's function, which is a matrix, is a tedious but
rather straightforward matter, and will be discussed in
detail in a future paper on an application of the mini-
mum principle. We will, therefore, no longer concern
ourselves with the Pauli principle in the present paper.

We use the same notation as previously. e r represents
the target particle coordinates and q the coordinate of
the incident particle relative to the (fixed) center of
mass of the target. fr;(r) and Er; represent target
eigenfunctions and eigenvalues, P is the projection oper-

ator onto the target ground state, ' and Q= 1—P projects
onto the target excited states. It will be assumed that
lf ro and Ero are known, but it need not be assumed that
the target excited-state wave functions and energies
are known.

The problem is to determine the phase shift q,
modulo ~. g(mods-) is defined by the equation'

(H E)%—=0, (2.1)

where 0' is regular at the origin and subject to the
boundary condition

(H E)E%=——(H —E)Q%',

and since PQ=O, we can write

P (H —E)E%= PHQ%', —

Q(H —E)PI = QHP%'. —

Inversion of the operators then leads to

(2.3a)

(2.3b)

E%'= PHQC +2%~,
P(E H)P— (2.4a)

Q+= QHP4.
Q(E—H)Q

(2.4b)

Pk is the exact static approximation scattering wave
function defined as that solution of

P(H E)~~=0, — (2.5)

which is regular at the origin and which has the
asymptotic form

Pe~ —+ Pro(r)Leos(kq+8)

+cot(q~ —8) sin(kg+8)]/q, (2 6)

where q is the static approximation phase shift. It
will be assumed throughout that 0'~ is known, having
been determined numerically on a computer. LSince
Eq. (2.5) is effectively a one-body Schrodinger equation
in the coordinate g, this is a relatively simple matter. 7
Substitution of Eqs. (2.4b) and (2.4a) into Eqs. (2.3a)

7 It should be clear that I' operates in the space of the target
particles, while II used in Sec. 1 operated in the space of all the
particles. G commutes with the full Harniltonian B(r,q) whileI' commutes with Hz (r).I As opposed to the discussion in Sec. 1, the factor j./q is retained.

%(r,q) ~ pro(r)(cos(kq+8)

+cot(q —8) sin(kq+8)]/q. (2.2)

k is defin«by &'k'/2p= E=E —Erp, wh—ere Era is the
ground-state energy of the target. Since P+Q is the
unit operator, we have
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and (2.3b), respectively, leads to the results

P H+HQ QH E—~=O,
Q(E—H)Q

IC=Q H+HP PH EQ, —
P (E H)P— (2.8)

(2.9)

a= QHP4'~;—

we can, then, rewrite Kq. (2.7b) as

Ex=a.

(2.10)

(2.11)

Since 4"~ is known, a is also known. It should be noted
that the Green's function in E and, therefore, that E
itself is known; thus, with

H(r, q) =Hr(r)+ T (q)+ V(r,q),

with Hr the target Hamiltonian and V(r,q) the interac-
tion between the incident particle and the target par-
ticles, we have since

HzP=PHg ——Eg pP,
that

[P(E—H)P] '= (P[E' T(q) V«(q)—]) ', —
where

V«(9) = 4'»(r) V(r %)4'»(r)«.

We are, thus, dealing with the known Green's function
for scattering by the static potential Voo(q), that is,
taking into account the boundary conditions on the wave
functions,

[P(E—H)P] '= —(2p/4wh'k)[u, ~~(q&)N ~~(q&)
—cot(q~ —8)e,~~(q&)e,~~(q&)]P,

where q& and q& are the smaller and larger, respectively,
of q and q'. N,~ and I;„~ are solutions of the Schrod-
inger equation with the potential V«(q) and with the
asymptotic forms

N,~~(q) ~ sin(kg+a~)/q,

Ijppeg (g) + cos (kg+ad )/q.

Q H+HP PH E—Q%'= QH—E%~. (2.7b)
P(E H)P—

Equations (2.7a) and (2.7b) are uncoupled, that is,
independent equations, each equival. ent to the original
Schrodinger equation. Equation (2.7a), which was the
basis for the determination of a bound of the phase
shift itself, ' is not used in the present paper where we
see a variational bound on cot(q —8).

For later convenience, we define the symbols

The second term in the definition of the Green's function
above is included to make it asymptotically proportional
to sin(kq+8) as is required. N, ~~(q) is, of course, the
function that appears as the factor of pro(r) in +~.

It follows from a comparison of Kqs. (2.7a) and (2.2)
with Kqs. (2.5) and (2.6), and by use of the monotonicity
theorem, that q) g if Q(E—H)Q is a negative de6nite
operator. This is the bound discussed previously. ' The
minimum principle that we are presently concerned with
will be developed not for s but for cot(g —8). In seeking
an explicit expression for cot(q —8), we will avoid the
use of any of the equations which contain the operator
[Q(E—H)Q] ', for while this operator is perfectly well

defined, it cannot actually be written down in a usable
form. The most convenient pair of equations to consider
is Kq. (2.3a) and Kq. (2.5). We proceed canonically by
multiplying Kq. (2.5) by%', Kq. (2.3a) by %~, subtract-
ing, integrating over the full space, applying Green's
theorem, and using the boundary conditions as given
by Kqs. (2.2) and (2.6) to arrive at an expression of
standard form,

4x(A'/2y) [k cot(g —8)—k cot(g~ —8)]
= (O', PHQ%') = (QHP@,Q% )= —(a,x), (2.12)

where in the last step we used the notation defined by
Kqs. (2.9) and (2.10). Since we are seeking a minimum
principle, it is natural to attempt to find a form for
the quantity of interest, k cot(g —8), which involves
the unknown elements in a quadratic form, the bound
following if the operator appears with the unknown
element on either side and if the operator can be shown
to be negative or positive definite. More precisely, we
want the error in% to appear quadratically, so that the
term to be bounded will only be of second order. The
above remarks make it clear that we should seek a
variational formulation of the expression for k cot(g —8)
in which the second-order error term is given explicitly.
We can easily do this by appealing to the abstract
formulation of Marcuvitz' of the linear form of the
variational principle of Lippmann and Schwinger. '
Thus, if Ex=a, where K and a are given but x is not
and where E is a symmetric operator, and if we wish to
determine X= (a,x), where the inner product does not
involve complex conjugation, we have a variational
expression P,] for X given by

) = [X]=2(x„a)—(x,,Kxg),

where x,=x+8x. For present purposes, where we are
explicitly interested in the second-order term, we write
the identity

X= 2 (xg,s)—(x„Kx,)+ (8x,K8x) .

It is then obvious that, whereas we have only a varia-
tional principle for an arbitrary (symmetric) X, we

OL. Spruch, in Lectgres ie Theoretical Physics, Boulder, 1N1
PInterscience Publishers, Inc. , New York (to be published)),
Vol. 4.' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
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have a minimum principle for E. a non-negative oper-
ator. Identifving xi with the trial function Q+, (r,q),
which vanishes faster than 1/8 as g

—+ ~, and identify-
ing bx with the error term

by Eqs. (2.13), (2.8), and (2.7b), we have, inserting a
minus sign,

&'
~
(C.,o, K+,+QHP+~) ~'—(n,Kn) & —Q (2.16)

n=l Q

QQ—=Q%'i —Qc',

we have our basic formula

(2.13)
The use of this inequality in Eq. (2.14) gives us the
sought for variational bound on k cot(g —8)

4'(fi'/2p)[k cot(g —8)—k cot(gp-8)]
= 2 (QC, ,HP4'~)+ (Pki, (K E]g—ki)

—(QQ, [K—E]QQ, (2.14)
where

SC(E,8)
1

=—BC Q H+HP PH Q=K+EQ. (2.15)
P (E H)P—

As was our intention, the situation at this stage is
very similar to the situation for zero incident kinetic
energy. Since the term containing [P(L' H)P] "—is a
potential term which vanishes for large separations, the
continuous spectrum of K is bounded from below by
E», the energy of the 6rst excited state of the target.
E is, of course, less than E». The operator X may
or may not have discrete eigenvalues below Eyi. If there
are no such discrete eigenvalues below E, we can simply
drop the last term in Eq. (2.14) and we remain with a
bound on k cot(il —8). If there are DO=Do(E, 8) such
discrete (real)" eigenvalues b„o=8„o(E,8) below E,
with eigenfunctions C„o=C o(E,8), the effects of the
discrete states must be "subtracted out" in a fashion
similar to that used in "subtracting out" the effects of
the discrete bound states for zero incident kinetic
energy. Our result, then, is the following:

If, for a 6xed energy E, there exist X@ eigenvalues
h „o&E of 3C, where K=BC(E,8) is defined by Eq. (2.15),
and if one can find X@ orthonormal functions 4„i@(r,q)
such that

(C.io,K4 io)=b.go8, h. io E, 1& ri, m &~o,

then, since K=BC EQ, —
~q

( (C.,o,Ka) ~'

(QQ, PC —E]QQ)= (Q,KQ)& Q
h gQ jv

Since
Kf7,=K+, K% =K+,+QHE&—r

"The operator X, of Fonda and Newton Csee reference 5,
Eqs. (2.9) and (2.10)j is not the same as our 3'., even for a partial
wave decomposition. The diGerence lies in the meaning of
LP(E—H)Pj '. For one thing, our Green's function contains an
arbitrary 8. More significantly, we have used standing waves,
whereas it is customary in studies of the formal theory of reactions
to use outgoing waves. X is not, then, Hermitian, and the eigen-
values of X, are complex, with the imaginary component related to
the width; the case for which an eigenvalue of X, is real is, then, a
very special one and corresponds to a bound state of infinite
lifetime (zero width) embedded in the continuum. Our 3C, on the
contrary, is Hermitian and its eigenvalues are real; for a partial
wave decomposition and for 8=m'/2, the eigenvalues of X are the
real parts of the eigenvalues of X,.

A2)
4ir —~[k cot(g —8)—k cot(rl~ —8)]

2pi
&2(yu„QH~ )+(~„PC—E]Qe,)

l(~. o, [~-EQ]~+QH~') I'
+2 (2.17)

%=1 jV g,Q

Just as for zero incident energy, it is possible to recast
the above result into a more appropriate form.""To
begin with, one shows that Eq. (2.17) is entirely equiva-
lent to a M'riationu/ principle in which the trial function
contains terms proportional to the functions C„~@.
Secondly, the functions, 4 „&& need not be constructed
explicitly. Rather, one can introduce trial functions
with an increasing number of terms whose coefFicients
are determined variationally. With the introduction
of each term, one sees whether the variational estimate
of k cot(il —8) increases or decreases as compared to the
previous result. It can be shown that the estimate will
increase X& times, after which it can only decrease.
This procedure is equivalent to the construction of the
C'nt ~

As a way of picturing how a Kohn-type variational
calculation of the type just described converges to the
exact value of cot(it —8), it is most convenient to think
of the successive improvements in the trial function as
being continuous rather than discrete. [This would

happen, for example, if one were to introduce an ex-
ponential parameter into each term in order to span the
gap, and if this parameter were varied in such a way
that the estimate of cot(g —8) always moved in a
dowmward direction. $ The approximation to cot(g —8),
which begins at cot(g~ —8), will then decrease continu-
ously, apart from X@ increases which occur when the
cotangent function has one of its usual discontinuities,
as our approximation to the phase shift increases con-
tinuously from q~ toward the exact p. This picture will
be discussed further in the following section.

One general remark about the procedure that we have
introduced is in order at this time. As contrasted to the
zero incident energy case, 0 P plays a fundamental role.
It would be preferable to be able to avoid this, for we
then immediately require the use of a computer, but
it does not appear possible to do so because of the es-
sential way in which + appears in the basic equations
upon which the formalism is based.

~ T. Ohmura, Phys. Rev. 124. 130 (1961).
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3. POTENTIALITIES OF THE MINIMUM PRINCIPLE-
THE ZERO-ENERGY CASE

The results of Sec. 2 represent a rigorous variational
bound on k cot(p —8) (a) if and only if the number Ko
of eigenvat. ues of 3C which lie below E is known exactly,
and (b) if and only if one can ind a trial function which

eGectively subtracts out the contributions of the as-
sociated K eigenfunctions. Point (b) is a limitation in

practice but if X~ is known it will often not be a serious
limitation and we will not consider this point further.
Point (a), on the other hand, is a limitation in principle
since X& will rarely be known exactly, and it might seem
that the advantages of our approach over a standard
variational approach are more formal than real, but
this is not the case. %bile a minimum principle which

did not contain any elements of uncertainty whatever
would only too obviously be preferable, we would like
to discuss why the present approach will often have,
from the practical point of view, most of the advantages
associated with such an ideal minimum principle.

A consideration of the zero-energy problem will

throw some light on this question since a comparable
problem has previously been met at zero energy. Ke
shall see that for E'=0, and for E' close to zero, the
number K~ is a rough measure of the failure of the static
potential as an approximation to the actual interaction
Lsee Eq. (3.18)). The experimental evidence of reso-
nances can also provide information about X@, but we
will not discuss this point.

Ke will 6rst establish the connection between the
present results when specialized to E'= 0 and the results
previously obtained at E'=0. The connection should
be made if only for general interest, but it will also
enable us to develop some insight into the question of
the number of eigenvalues of 3C below E for small
incident kinetic energies.

I,et@'~ be the E'=0 trial function in the formulation
of the present paper, and let 4& be the E'=0 trial func-
tion in the previous formulations. "The connection
between the two formulations is then made by choosing,
for a given%'~,

4=Qq.'~+pq.'r+ PHYSI g. (3.1)
P(Erp H)P—

Before proving the connection, we would like to
motivate the above choice somewhat. For one thing,
the exact wave function 0' satis6es

+=PI+P% =Q%+Pq. P+ PHQ%', (3.2)
P(Ero H)P—

where the exact function 0' satishes

0 =4+G t/'4, (3 2')

with C and G representing the wave function and the
Green's function when the interaction between the
incident particle and the target is neglected, one
establishes the connection by choosing the Kohn-
Hulthen trial function 0'&KH, for a 6xed Lippmann-
Schwinger trial function 0'~~~, to be

+~EH =++G~+~r.s. (3.1')

3'.p=X(E=Ero, ex0)

=Q H+HP PH Q, (3.6)
P(Erp H)P—

and where 0 and 3 are the E'=0 scattering wave
function and its associated scattering length in the
static approximation. 0 is normalized as

0'r —+Pro(r)( q+Ar)/q as q—~ ~, (3.7)

Since the present minimum principle formulation in-

volves a Green's function, LP(Ero —H)P] ', whereas
the previous formulation did not, the choice of 4t, as
given in Eq. (3.1) is, then, a very natural one. It should,
however, be remarked that, whereas the connection
between variational principles neglects second-order
terms, the connection between minimum principles
that is our present concern does not.

To explicitly exhibit the connection, we start with

kr(A /2p) (A —A )= (4,H4' )—(Q,HQ), (3.3)

where the inner product is now over the full space
(hence the factor 4s), and where

q'~ ~ 0'»(r) (—q+&~)/q as q ~ ~ (3 4)

(The above result is the readily derived generalization'
to the scattering by a compound system of the results
for the special case of potential scattering discussed in
Sec. 1.) This is to be compared to the limit as E' —+ 0
of the results of Sec. 2. The form of the limit obtained
depends upon the choice of 8. To obtain the desired form
we can choose any value of 8 other than 8=0; it is
simplest to choose 8=~x. Dividing by k' and letting
k' —+ 0, we 6nd" from Eqs. (2.14), (2.2), and (2.6), that

(4rA'/2p) (A —Ar)
=2(e, ,QHPq )+(Q4', , $3Co—Erp]PI, )

—(QQ, PCp —Erp]QQ), (3.5)
where

where the second form follows from Eq. (2.4a), so that
the choice is certainly not an unreasonable one. Sec-
ondly, one knows that it is possible to connect the
Lippmann-Schwinger variational form, which contains
Creen's functions, with the Kohn-Hulthen variational
form, which contains only differential operators. There,

"In the notation that follows, we will not bother to distinguish
between k=0 functions that are the limits of k&0 functions,
such as u;,~, and functions such as N„g which contain a factor
of 1/k in the definition of their k=0 limit, that is, functions de-
fined as

Qreg (q; k=0) =lim ur (qpk)/k-
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which satisfy
P(H Er—o)Pur =0, (3.9)

u, oop(q) —+ (—q+Ar)/q as q -+ oo,

u; os'(q) ~ 1/q as q -+ oo.

(The term in the Green's function proportional to the
product of regular functions vanishes as k ~ 0.)

Taking the asymptotic forms Eqs. (3.4) and (3.7),
it follows from Eqs. (3.1) and (3.8) and from the fact
that pro(r)e, .op(q) =4 r that

A, = Ap+ (2p/4'') (0'g,QHEKP). (3.10)

We substitute Kq. (3.1) into Eq. (3.3), use Eq. (3.10),
and use the relation

1
P%'r+ PHQ%'g, (H Ero)—

P (Ero H)P—
1

X ~P+ PHQ%' g

P(Ero H)P—
1~r+ PHQ4'~, (—)PHQ4'g

P (Ero H)P—
which follows from the fact that the square bracket
efI'ectively contains a factor of P and from the subse-
quent use of Kq. (3.9). We, then, Gnd that Eq. (33)
becomes identical with Eq. (3.5), but with the last term
replaced by (O, (H —Ero)O), that is, we have

(O, [H Ero]O) = (QO, L«——EroQ]QO). (3.11)

This relationship can also be established directly; by
subtracting Eq. (3.2) from Eq. (3.1), and using

O=C'g —O', QO=—Q4'g —(%,
we obtain

O=QO+ PHQO,
P(Ero —H)P

(3.12)

from which Kq. (3.11) can readily be shown to follow.
Having found the connection between the two forms

exhibited by Eq. (3.11), we would now like to exploit
this connection and any knowledge that we may have of
the properties of H to prove some properties of 3CO. To
begin with, it does not follow from Eq. (3.11) that«—EroQ has as many negative eigenvalues as does
H —Ez 0. One reason is that 0 is not an arbitrary func-
tion, even apart from the usual boundary conditions,
but is restricted by Kq. (3.12); thus, for example,
operating from the left on Kq. (3.12) 6rst with Q and

LP(Ero —H)P)
= (—2u/4o'A')Pu„op(q&)u;„, or(q&), (3.8)

where the regular and irregular functions are solutions of

then with P, we 6nd QO= QO and

PO = kP (Ero H—)P) 'PHQO

the relation between PO and QO clearly exhibiting the
lack of arbitrariness of Q. If then H —E~o has a given
number of negative eigenvalues, it does eotI follow that
there exists that nuxnber of negative eigenvalues in the
restricted space of functions of the form of Q.

There are, nevertheless, properties of Ko which do
follow from Eq. (3.11).Thus, assume that it is known
in any way, experimentally in general, that there are no
composite bound states of the target and the incident
particle, that is, that X=0. This result is entirely
equivalent to the statement that H —E~o is a non-nega-
tive operator in the space of functions which decay or
approach +ro(r)/q as q ~ oo. H Ero is, th—en, a fortiori
a non-negative operator in the restricted space of func-
tions of the form of 0™.Finally then, we see that«—EroQ is a non-negative operator if there are no
composite bound states of the target and incident
particle.

Now let us assume that it is known that (a) there are
E such composite bound states and (b) that there are
EI composite bound states in the static approximation;
in other words, H —Ego has Ã negative eigenvalues and
2'(q)+ Voo(q) hss A'P negative eigenvalues. From (a)
we expect, in practice, to be able to construct S
orthogonal functions 4 „& for which

(e„„rH Ero]C „,)= (E„—,—E„)h „,
Ero &0, 1&—m, u &X, (3.13)

and we then have

o'
) (C „„LH—Ero]4,) ~

(O, fH —Ero]O)) P Ero-
It is a one line proof, using Eqs. (3.1) and (3.9), to
show that

(3.14)

PLH Eroj4g 0;— ——
we can, therefore, insert a Q before t H —Ero+g in Eq.
(3.14). Using Eqs. (3.11) and (3.1), we arrive at the
bound

(O, L«—EroQ]O)

I (C -~ L«—E»Q)+,+QH~')
I

'

n 1 +mt Ero
(3.15)

It follows from (b), and from the proof in Appendix D,
that it is always possible to choose S of the 4 „& to
satisfy 4 „&

——P4 „,. Since «=Q«, the terms in the
sum in Kq. (3.15) containing these particular C „g
vanish, leaving only Ã—E~ subtraction terms. It
almost follows at this point, by comparing Eq. (3.15)
with Eq. (2.16) with E set equal to Ero in the latter,
that X@ is at most equal to Ã—E~, since a bound on
(O

~
X—Ero

~
O) can be obtained with A' —X terms. The
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identi6cation of the two equations, however, is not
yet complete, since the 8„, E—ro which appear in Kq.
(3.15) are defined quite differently from the 8 io E—ro
which appear in Eq. (2.16). Thus, from Eq. (3.13), we
have

Er—o= (@.~, L&—ErojC'. ~),

whereas the 8„&&—E&0 were defined by

&r—o= (C' io, L&o—EroQjC' 8)
To complete the identification, we make use of the re-
sult, proved in Appendix D, that not only can one 6nd
S of the E functions 4„~ which satisfy EC„&——4„&,
but that the remaining X—N~ of the 4„& can be chosen
to satisfy a relationship of the form of Eq. (3.12). In
particular, we choose the remaining 4„~ to be of the
form

C' ~=QC' 8+ PHQCP. (3.16)
P (&ro II)I'—

(The C „& are not then normalized, nor need they be for
our present purposes. ) It is, then, easily verified that

(C.g, LH —EroJC g) = (C „P, LKo—EroQ/ go), (3.17)

where n and ns take on S—S~ values. Setting n=m,
we have

h.F—&ro=&.~
—&ro,

so that the denominators of Eqs. (3.15) and (2.16) are
the same. The numerators of these two equations are
also the same, since it is only QC „& which effectively ap-
pears in Eq. (3.15), and from Kq. (3.16), Q4 ~= QC' go.

The identi6cation of the two equations may be regarded
as providing a construction at E'=0 of the required
subtraction functions, 4„t,~, whose number is now seen
tobe E—S" i.e.

X~(E'= 0)=X S~. —(3.18)

In addition to what this tells us about the zero-energy
case itself, 'o Kq. (3.18) will also be true for sufficiently
small energies, and shouM give a good idea of the number
of subtractions to be performed at small energies.

A Generalization of Levinson's Theorem

Returning to zero energy, we shall now show that
Eq. (3.18) together with the absolute definition of the
phase shift implied at the end of Sec. 2 makes possible
a generalization of Levinson's theorem to scattering by
a compound system, in the sense of relating the value of
the phase shift at zero energy to the number of bound
states.

The basic equations, such as Eqs. (2.1) and (2.2),
de6ne the phase shift p only to within an arbitrary
multiple of m. It is only when some procedure is adopted
to remove this arbitrariness that we can formulate a

'4 Some further comments on the zero energy case itself are
contained in Appendix C.

generalization of Levinson's theorem. t The alternative
of considering the difference g(0) —g(oo) will not be
considered here. ] The application of the minimum

principle itself, as described at the end of Sec. 2, actually
specifies p uniquely once a unique definition of the static
phase shift q~ has been adopted. (For our purpose it
will not matter what this definition is, since we shall be
concerned only with the difference q —q~.) The process
of introducing successive terms to our trial function was
regarded as a continuous one (in a realizable way) and
the approximation to the phase shift itself, determined
at any stage of the calculation, was taken to be a con-
tinuous (and. consequently a monotonically increasing)
function of the accuracy of the trial function. In the
limit, as the number of terms in the trial function is
increased indefinitely, the limiting value of the ap-
proximate phase shift is taken to de6ne the exact
phase shift p absolutely, that is, it specifies the multiple
of m in p. It seems that this procedure for specifying the
phase shift is equivalent to varying the optical potential
continuously between the static potential and its full
value, that is, to "turning on" the second term in Kq.
(2.7a) continuously. Since, as pointed out in reference 6,
this term represents an attractive interaction, the phase
shift would increase monotonically from the already
determined g~ to its 6nal value, g.

In the course of this analysis, the number of subtrac-
tion terms needed, gL~, was seen to correspond to the
number of times that e (mod or) appears between g~
and g so de6ned. Now as the energy, E', approaches
zero, both q~ and g approach multiples of x. Taking
8&0, the above interpretation of X~ implies that g will
be greater than g~ in this limit by an amount X~~.
But combining this with Eq. (3.18) for Xo we have the
result

g—g~= (x—x+)m' (3.19)

at E'= 0. This is the sought for generalization of Levin-
son's theorem for compound systems.

Some general comments should now be made. First,
while the most natural de6nition of q~ would be one
which includes the effects of the Pauli principle, the
validity of Eq. (3.19) is independent of the absolute
de6nition of q~. The only effect of the Pauli principle
with regard to our generalized Levinson's theorem
will then be the inAuence it exerts in the determination
of the number S of the true bound states.

Second, regarding the possiblity of bound states
in the continuum, the definition of the phase shift
adopted above seems to be equivalent to assuming it
to be a continuous function of the (optical) potential
strength. It then follows, as mentioned in reference 6,
Appendix, that in the remote case there should be a
bound state imbedded in the continuum, the phase
shift thus defined would, as a function of energy, become
discontinuous at that energy, but Levinson's theorem
would not be affected.

Finally, it should be noted that generalizations of
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Levinson's theorem have been given previously. "Since
these generalizations consider phase shifts at E'=0 and

at E'= ~, they involve the complicated energy domain
in which multichannel processes are possible, and the
proofs, therefore, necessarily contain statements about
the eigenphase shifts. Some of these proofs pertain to
more general situations than those which we have
considered in that they allow for production processes
for example, but they do involve some approximations.

4. POTENTIALITIES OF THE MINIMUM PRINCIPLE-
THE GENERAL CASE

At energies sufficiently close to zero, we have seen
that the number of subtractions, X@, will be known

exactly if only we know the number of bound states for
the true as well as the static problem; hence our bound
on tanp can be made completely rigorous. We would

now like to face up to the more interesting question
as to how to proceed in the general case. The natural
procedure is to introduce trial scattering functions 4&

with one, then two, etc. , terms, which might include
nonlinear as well as linear variational parameters, and
to proceed as described at the end of Sec. 2, seeking the
minimum value of k cot(g —8) for each form of 4'&. We
would obtain a bound on k cot(g —e) for the number of
parameters "sufficiently large, " but if the number of
eigenvalues X~ of X belov E is not known there is no
way of actually specifying what sufficiently large" is
to be taken to mean. To put it bluntly, a rigorous bound
on k cot(rl —8) cannot be obtained. It is, nevertheless,
possible to deduce completely rigorous and useful conse-
quences from the minimum principle. When combined
with some qualitative ideas, it should, in fact, often be
possible not only to obtain good estimates of k cot(q —8)
but to be reasonably certain that the estimates are, in
fact, good.

Thus, let us assume that we use a trial function of
the form

where the g,. may contain nonlinear parameters. For any
fixed J, we would vary the parameters so as to cause
k cot(rl —8) to be as small as possible. It is possible, in
principle, to pass down through —~ K& times, but of
course we do not know what X is. It may be possible in
practice to pass through —00 by varying the nonlinear
parameters, but it is not necessary actually to do so.
The passage is signaled if there is a sudden upward
jump in k cot(g —e) as we add an additional term, and
represents the fact that the trial function now electively
contains one more trial bound state function C „~@which
gives an expectation value of K below E, and that this
state has been "subtracted out. " The addition of one

'~ R. G. Newton, J. Math. Phys. 1, 319 (1960); M. T. Vaughn,
R. Aaron, and R. D. Amado, Phys. Rev. 124, 1258 (1961);
L. F. Cook, Jr., and B.%. Lee, ibjX 127, 283 (1962).

term can at most account for one such state, so that we

must have J at least equal to X&, if we are to have ac-
counted for all such states. (The number of terms re-

quired to have accounted for all such states may be
significantly reduced if we allow the nonlinear param-
eters to vary, though there must be at least K& terms. )
From this stage on, the estimate of k cot(g —0) can only
decrease.

If then a number of di6erent calculations have been
performed, with diferent g, and with diferent J, and
we wish to judge which of the results is "best, " or if
we ourselves are performing the calculations and wish
to determine the "best" possible values of the param-
eters, the objective and rigorous criterion for "best" is
the following. The "best" result is the one for which the
number of passages through —~ is the greatest; if the
number of passages for a number of calculations is the
same, the "best" result is the lowest one. It should
clearly be understood that the "best" result as just
defined is not necessarily the one that is closest to the
true value.

The above results can be pictured as the observation
of a race in which the path is the curve of y=cotx
versus x. (We here choose 0=0 for convenience. ) The
starting point of the race for all runners is at x=g~.
When a runner reaches a position x which is a multiple
of m, at which time he is at y= —~, he is moved in-
finitesimally to the right and then reappears at y=+ ~ .
At some unknown point xo, yo= cotxo on the path there
is an invisible marker. [This marker will appear on the
(Do+1)th branch of the curve, but Xo is not known
either. ] For some reason the runners can never get
beyond the marker. The objective of the observer is to
make the "best" possible estimate of the value of
yo= cotxo. He would clearly only be concerned with the
position of the runner who is furthest along. It is, of
course, quite possible that some other runners might
be closer to yo than the front runner but that would be
entirely accidental.

As contrasted to ordinary variational calculation, we
then have an objective way of judging diferent results,
and a particular "direction" in which to proceed if we
ourselves are doing the calculation. We have not given
an objective way of deciding when we are close to the
true answer. That decision must be made in some quali-
tative way. For one thing, it should generally be possible
to estimate X& to within perhaps one. For another, if
the runner is approaching the finish line, his motion is
necessarily quite slow and will generally be rather
smooth. The converse is, of course, not necesssarily
true. If a particular class of functions have been omitted
in the choice of trial functions, the slow and regular
motion could signify no more than convergence to the
wrong limit.

Though there is no new physical content involved,
the above results can be stated much more succinctly
in terms of phase shifts. If we let q~ be the phase shift
determined at any stage of the variational calculation
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APPENDIX A

In the development of the bound on g, it was shown
that

if Q(H —E)Q) 0, (A1)

where the latter inequality is to be understood to mean
that the operator is positive definite. More generally,
one can define the target operators P+ and Q*, where P+
includes not only the ground state but some of the
excited states, and where Q* includes some but not
necessarily all of the excited states not included in P*,
so that P* contains P, Q* is contained in Q, and
P*Q*=0, but we need not have P*+Q" equal to the
unit operator; P* and Q* must, however, be projection
operators.

~
P* Q*+)~

P* if Q'k (II g)Q*)0 (A2)

which includes Eq. (A1) as a special case.
It is a trivial matter to derive a minimum principle

which involves P+ and Q* rather than P and Q, and
which includes the choice P*=P and Q+= Q as a special

"See also, A. Temkin, J. Math. Phys. 2, 336 (1961).

in the manner just described (beginning with q~ when
Q%'~ ——0), we have that g~r &g. It is assumed in this dis-
cussion that the multiples of ~ in the definition of the
phase shift are accounted for (gsr and g can actually
remain arbitrary to within the same multiple of s).
This is, of course, precisely the advantage of talking in
terms of phase shifts, for one then knows automatically
which branch of the cotx vs x curve one is on. The ques-
tion of the determination of the appropriate multiple of
~ is discussed in some detail in references 1 and 6."In
references 1 and 16, the definition of the phase shift
involves a comparison of the projected wave function
with the free wave function. Ke have subsequently
realized that this definition leads to a phase shift which
is a discontinuous function of the potential strengths
and of the energy when there is a resonance and perhaps
under certain other conditions. In reference 6, therefore,
where continuity in the potential strengths is assumed
throughout the paper, the definition involving the
projected wave function should not be used. The main
result of that paper, however, that the phase shift
increases as additional states are introduced, is still
valid, although the application in practice will now be
slightly more difFicult. The question of the definition
of the phase shift will be elaborated upon in a future
paper.
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case. In general, there is no point to this generalized
form of the minimum principle, for if P* includes m
states, one ha, s to solve m coupled differential (or
integro-differential) equations as the starting point of
the calculation, rather than simply the one differential
(or integro-differential) equation that arises in the P
or static approximation. This is bad enough, but then
in all the subsequent calculations that involve the trial
function %'~, the work will be much more laborious. In
fact, the great virtue of the minimum principle as op-
posed to the bound is precisely that the excited states
do not have to be introduced one at a time; rather, some
arbitrary functions containing variational parameters
are to be introduced, where the functions contain the
excited states in some perhaps complicated way, and
the variational parameters are chosen to minimize
cot(g —0), the contributions of the various excited
states being thereby adjusted to produce the best results
for the specified form of +~. The above remarks are rele-
vant with regard to the determination of numerical
values. From a heuristic point of view, however, it is
desirable to consider the generalization to P* and Q*,
and we will now proceed to do so.

Starting with the equations satisfied by + * and by
0"*+@*,we arrive at an equation of the form of Eqs.
(2.14), with g replaced by sl

"+&*and with P replaced
by P*, both as an operator and as a superscript, with Q
replaced by Q*, and with 4 in Eq. (2.1) replaced by

%~*+& . If then

K+—Q*E

1
=Q* ~+aP* P H P. Q*)0, —(A3)

P+(P. H)P*—
we obtain an upper bound on the left-hand side of the
analog of Eq. (2.14) by dropping the last line. If the
inequality (A3) is not satisfied, we proceed with the
subtractions in the usual way. We then have the gen-
eralization of Eq. (2.17). If finally we choose Q*%',=0,
we have if the inequality (A3) is satisfied that

cot(q~*+o* 8) & cot(q—~* e)—
It should be noted that there are conditions on 8 that
follow from the fact that the Green's function in Eq.
(A3) is 8 dependent.

Equations (A3) and (A4) are, of course, analogous to
Eq. (A2), the difference between the conditions given
by Eqs. (A1) and (A3) being a refiection of the fact
that we are obtaining bounds on the one hand on q

*+@*
and on the other on a trigonometric function of g~+&*.

It should be noted that it follows from the above
derivation that the best bound that can be obtained on
cot(sl —8) from a trial function which includes only the
m target states included in P* is the value cot(g~*—9)
obtained from an exact (numerical) solution of the set
of m coupled differential equations defined by P*.



392 HAHN, O' MALLEY, AN D SPRUCH

APPENDIX B—AN EXAMPLE

A fairly serious calculation of some low energy J.=O
and 1 scattering phase shifts for the scattering of posi-
trons by hydrogen atoms is now in progress, ' in which
the target can be excited to superpositions of excited
s states, of p states, and of d states, where the super-
positions are not broken down into states with specihed
principle quantum numbers, that is, into eigenstates of
H~. The calculation has not yet been completed and we
will, therefore, not discuss the results here other than to
say that they are very encouraging. We would, however,
like to record the results obtained for J„=O and for an
incident energy of 3.4 eV (kup ——0.5) by using the mini-
mum principle in a very simple but very ineScient way,
with the static approximation solved numerically and
with Q+ being the very restrictive operator which pro-
jects onto the hydrogen 2s state; we then expect to
get a bound on the 1s—2s approximation. Q+'was taken
to be the 2s function of r multiplied by Ce &, giving us
one linear and one nonlinear variational parameter. Let
us make the reasonable but unproved assumption that,
(for 8=~/2 and E=3.4 eV)

1
Q+ H+HP PH EQ*&0, —

P(E H)P—
in the space of total orbital angular momentum zero,
with H the total Hamiltonian of an electron and a posi-
tron in the 6eld of a proton. It then follows from the
discussion in Appendix A that the result obtained should
be better than the 1s approximation (tang p= —0.2696),
but not as good as the 1s—2s approximation (tansy~"
= —0.2602)."It is very satisfying that with our quite
simple trial function we find, using 0 =0.5, that
tan&/""& —0.2612, which accounts for nearly 90'P~ of
the difference. We would like to comment on a recent
paper by Rotenberg" on e+H scattering in which phase
shifts are obtained that considerably exceed those of
Schwartz. " Rotenberg expands in a complete set of
functions, Sturmian functions, diGerent from those
used in the usual close coupling approach. Ke want to
observe that our proof that for Q*(E—H)Q*&0 in the
close coupling approach the phase shift approaches the
exact value monotonically is rot valid in the Sturmian
approach.

APPENDIX C—THE ZERO INCIDENT ENERGY CASE

While the primary purpose of the present paper is to
extend the minimum principle to nonzero incident
energies without having to alter the potentials, the
question naturally arises as to whether the zero incident

'~ For a preliminary report on this work, see Bull. Am. Phys.
Soc. 7, 492 (1962).' K. Smith and P. G. Burke, Phys. Rev. 123, 174 (1961)."M. Rotenberg, Am. Phys. (N. Y.) 19, 262 {1962).See also
A. Temkin, Proc. Phys. Soc. (London) ASO, 1277 (1962).

20 C. Schvrarta, Phys. Rev. 124, 1468 (1961).

energy limit of the present formulation is an improve-
ment over the previous formulation. For EI'=Ã, the
answer is that in a formal sense it is an improvement,
but that from the practical point of view it will almost
always be preferable to perform the calculations using
the previous formulation. The comparison between the
old (n) and the new (P) minimum principle formulations
is almost exactly the same as the comparison between
the Kohn-Hulthen (u) and the Lippmann-Schwinger

(P) variational principle formulations. In both cases
formulation P is better in the sense that it generally
gives a better answer for a given trial function; as can
be seen from Eqs. (3.1) and 3.1'), the trial function for
formulation o that gives the same answer as does formu-
lation P is an iteration of the trial function of formula-
tion P. Nevertheless, since n does not involve a Green's
function while Q does, it will generally be preferable to
use a rather than P since one can perform the necessary
integrations for trial functions of o that are so much
more complicated than those for which the integrations
can be performed for P that the initial advantages of
P are more than ofhet.

There are, nevertheless, some additional remarks
that should be made about the zero incident energy
limit of the present minimum principle formulation.
Thus, from the discussion in Sec. 3 and Eq. (3.16) we
obtain the quite pretty result that

BCp—ErpQ&0 if XP=1V. (C1)

The remark that QVQ is small since V is small concludes
the qualitative argument.

We would like 6nally to record a small generalization
of a result obtained previously. It has been shown"
that

(gP if gP (C2)

"L.Spruch and L. Rosenberg, Nucl. Phys. 17, 30 {1960}.

It is obviously not true that B—Ego&0 if 1V"=X,
unless X=0. In the new formulation, therefore, one can
obtain a bound on A for an arbitrary 4& without having
to perform any subtractions. Unfortunately, in order
to know that EI'=Ã, one would have to construct
X orthonormal trial functions for which the expectation
value of I'HI' —EpoI is negative.

The inequality (C1) can be qualitatively understood
quite simply. If %~=S, the static approximation is a
very good one, or, equivalently, excitation from the
ground state is not too important. The mathematical
equivalent of the above remark is the statement that
QHP and V are small. But, neglecting only terms of
second order in QHP, we have

3Co—ErpQ=Q(H —Erp)Q.

Since QTQ&0 and since QHrQ&Er', we then expect
that

~o—EroQ& (Eri —Ero)Q+QVQ.
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This also follows from Kq. (3.15). If S~ is less than X,
it may be possible to account for the additional X—X~
states by including some excited states of the target,
that is, by replacing P by P".Since the entire formalism
remains valid under this replacement, we obtain

A &A~* if E~*=X, (C3)

where S~*and A~* are, of course, the number of nega-
tive eigenvalues and the scattering length associated
with P (H Ego)—P*. If X =X, in which case we
automatically also have X~ =X, Kq. (C3) simply
represents an improvement upon Eq. (C2) rather than
an extension which is applicable to new situations.

p 0)—pp (()

which satisfy Eq. (3.13) with cV replaced by f(7~. It is
not immediately clear, however, once one has chosen
S~ such functions that it is always possible to find
X—E~ additional functions such that the entire set
of E functions satisfies (3.13). We will now show that
not only is this always possible, but that the E—S~
additional functions can even be chosen to be of the
particular form

p(2) —Qp+ PHQf.
P(Ero H)P—

To begin with, we note that the totality of functions
P&'& and P('& form a complete set of functions in the
space of functions which are regular and which vanish
at least as rapidly as 1/q as q

—+ ~. Secondly, we notice
that

(Q(() [H E jg(2&) = (P(2) $H Er +0))—P

If then we place all the functions of form f('& before
those of form f(2&, the matrix of H Ero reduces to-
block diagonal form; more precisely, we find

H(I)
(H Era)=—

0

0

H(2) E )
(D3)

where the superscript indicates the class of functions
with respect to which the submatrix is constructed.

A useful consequence of this is that, for a finite H
matrix, the determinant may be written

Det(H —Er0) =Det(H" —ETO) .Det(H"' —ETO). (D4)

Now v e know that the operator H —Ego has X nega-

APPENDIX D

From the assumption that there exist S~bound states
in the static approximation, it follows that one can
choose E~ functions of the form

tive eigenvalues and that H&'& —E~o has S~, since there
are E bound states and X~ static bound states. What
we would like to know is how many negative eigenvalues
the submatrix H "&—Ego has. We will show that it has
exactly X—X~ of them, as might have been suspected.
The method of proceeding will be to take the functions
one at a time and consider first the 1&1 matrix, then
the 2X2 and so on. At each stage, we will look at the
determinant, Det(H —Ero) and use the theorem that
a change in sign of the determinant as an additional
function is introduced is equivalent to the introduction
of an additional negative eigenvalue to the matrix. Since
the operator H —Epo has S exact negative eigenvalues,
and our set of P"'s and f("'s is complete, exactly S
such changes in sign will eventually be observed, as
functions are added one at a time.

We begin by introducing only functions of the type
P") until the changes in sign of the determinant indicate
that X approximate negative eigenvalues of H —Ego
(which is the same as H('& —Ero at this stage) have
been introduced. Since H&'& —E&0 has only N exact
negative eigenvalues, from this point on introducing
any number of additional P") functions cannot cause
Det(H"' —Ero) to change sign again. Now since
Det(H —Erp) must ultimately change sign X times,
it follows from Eq. (D4) that the remaining X—X~
changes in sign must come from Det(H"' —Ero). There-
fore, the infinite submatrix H &') —Ez 0 has exactly cV—X
negative eigeevuhces, which is the desired result.

To complete the proof in the form required in the
text, one further thing should be shown. So far, it has
been seen that it is possible to find E approximate
negative eigenvalues of H Ero of the for—m fo) and
also X—S~ of the form &)(('&. If X such functions have
been constructed, one simply repeats the procedure of
the last paragraph with these E functions and, thus, 6nds
that Det(H —Ero) changes sign X times, and hence
that these X functions taken together generate E nega-
tive eigenvalues.

In the light of the foregoing procedure, the reduction
of the original Hamiltonian, H, by means of the func-
tions P&'& and P('& into the form Eq. (D3), a certain
insight can be gained into the minimum principle as
derived in Sec. 2, where we begin with the Schrodinger
equation (2.1) and proceed through Eqs. (2.5) and
(2.7b) to the final result, Eq. (2.17). First, it has been
pointed out already that the submatrix H&') —E in
Eq. (D3) is equivalent to the static Hamiltonian of
Eq. (2.5). (The present discussion will not be confined
to the zero-energy problem. ) Further, if one looks at
Eq. (3.17) where the 4'„& were all functions of the form
f('&, it will be seen that this equation states that our
submatrix, H(') —E, is equal, element by element, to
the matrix 3C—EQ. That is, the operator R—EQ which
is used in the minimum principle corresponds to the
submatrix, H& & —E of the original Hamiltonian, based
on functions of the class f('&. What was done in Sec. 2
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can then be summed up in this way. The Hamiltonian
matrix was effectively reduced to the form Eq. (D3).
The first submatrix, H"&—E corresponds to a simple
operator, and represents a problem which can be solved
exactly. The second submatrix, H("—E (3'.—EQ),

though more complicated, has the property that its
spectrum is discrete below the inelastic threshold, and
so it can readily be bounded. Consequently, in terms of
an exact solution of H "& and a bound on H &'~ a bound is
found on k cot(g —0).
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Collision Lifetimes in Many-Body Processes*
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Collision lifetimes and the lifetime matrix are expressly formulated so as to include three-body and many-
body collision and breakup processes. The many-body states are expressed in the generalized angular
momentum representation, in which the principal radial coordinate is proportional to the square root of
the trace of the inertia tensor for the S-body con6guration. The physical signi6cance of the (energy-de-
pendent) three-body collision lifetime Q&3) (E) is clarihed by considering the special case where the three-
body breakup occurs by way of a metastable two-body intermediate. If the rnetastable occurs with an in-
ternal energy E and a decay time r, and the process creating it has a collision lifetime Q(') (E—E ), the
connection with Q&» is: Q(s)(E) =Q&~&(E—E )+r E /E. This result holds both classically and quantally.

A. INTRODUCTION

HE breakup of an unstable particle into three or
more fragments is an important process in many

areas of physics and chemistry: high-energy particles,
compound nuclei, and highly excited molecules provide
a variety of examples. The inverse process of three-
body collision can also be important in chemical re-
actions and in the nuclear reactions of stellar interiors.
The lifetime of the unstable particle or collision complex
is one of its principal characteristics. It is the purpose
of this note to examine some general features of such
lifetimes when three-body processes are present.

For a two-body collision in the simplest case (elastic
scattering, classical nonrelativistic mechanics, forces of
range shorter than Coulomb), the collision lifetime is
conveniently deined as the limit, as E.~ ~, of the
difference between the time the particles spend within
a distance E. of each other in the actual collision and the
time they would have spent there in a hypothetical
trajectory without any interaction":

Q.(=hmz~P(&) —to(&)j. (&)

This definition can be readily translated to quantum
mechanics, and leads to the result that the collision
lifetime is proportional to the energy derivative of the
phase shift, and thus also to the statistical density of

*This w'ork was supported principally by the National Science
Foundation and in part by the National Aeronautics and Space
Administration.' F. T. Smith, Phys. Rev. 11S,349 (1960), referred to below as
"LM"; also 119, 2098(E) {1960).See also A. Krzywicki and J.
Szymanski, Progr. Theoret. Phys. (Kyoto) 29, 3(6 {1960).

Such a definition is implicit in L. Eisenbud, dissertation,
Princeton, June, 1948 {unpublished) and E. P. signer, Phys.
Rev. 98, 145 (1955).

available states; for isolated resonances and slowly
decaying states, there is a simple relation behveen the
collision lifetime, the width of the resonance, and the
characteristic decay time of the state. ' The definition
is also easily extended to inelastic collisions —in the
quantal case there results the lifetime matrix (}related
to the energy derivative of the scattering matrix S.'
Classically, the lifetime for an inelastic collision is
defined by subtracting from the actual collision dura-
tion that of a hypothetical trajectory with two portions,
the asymptotic incoming and outgoing paths extended
as straight lines to their respective points of closest
approach.

The development of a new description for three-body
and many-body collisions was initially motivated by a
desire to include these processes in the formulation of
the lifetime matrix. This note will carry out that
program explicitly.

In treating three-body and (X+1)-body events, it is
most helpful to use a center-of-mass coordinate system
normalized so that all internal coordinates involve a
common reduced mass p"' or p, '~+" such that

p(~)'=II; (3m /P —Pm',

~(~+() =II--("+'m'/2;=( +'m;. (2)

The internal coordinates characterize a space of 3&V

'T. Ohmura has pointed out an error of a factor of 2 in LM.
The decay time ~ is & the average value Q near the resonance
and 4 the value Q at the resonance; physically this is reason-
able since the average collision lifetime Q involves two passages
through a barrier, while the decay time r involves only one. LSee
also the Appendix in F.T. Smith, J. Chem. Phys. 36, 248 (1962).]

4 F. T. Smith, Phys. Rev. 120, 1058 (1960), referred to below
as "6AM"; See also L. M. Delves, Nucl. Phys. 9, 391 (1958—
1959).


