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Transition rates for the final states Z +n+n and h.+n+n are calculated in impulse approximation for
Z d capture from rest, taking into account the 'S0 n-n attraction and the tensor term in the Z p —+ h.n transi-
tion amplitude. Using the Z p —+ Zen and Z p ~ h.n amplitudes calculated for global symmetry by de Swart
and Dullemond, the branching ratio Zo/{Z +A) obtained is 0.24, compared with the observed ratio 0.037
~0.022. The uncertainties in the comparison between the observed and calculated ratios are discussed in
detail, especially those concerned with the validity of the impulse approximation, in view of the near-reso-
nant ZS interaction in the global symmetry model, and the question of the appropriate form of the spin
average, in view of the strong electromagnetic spin-orbit forces in the Z d atom. It is concluded that the
appropriate spin average is qtN/{z0+A. )gg ~tg+)Lz /(z+h. )jg ~~~ within corrections of about 10%.
Agreement with the experimental ratio appears unlikely with global symmetry, even when these uncer-
tainties are taken into account.

I. INTRODUCTION The calculated ro and ro(H) were, therefore, expressed
in terms of three adjustable parameters

I
two for each

final hyperon, less one because r o and r&(H) are ratios].
Still, it proved impossible to reconcile the two measured
numbers.

Chen4 improved the calculation of reference 2 in two
respects: He used a more accurate deuteron wave func-
tion, and (more important) he included the effects of the
'So force between the two final neutrons. Since the
energy release in the Zo case is so small (0.94 MeV), the
two neutrons always emerge with low relative momen-
tum; the strongly attractive forces at these energies
enhance iV(Z') by a factor of about 5. He could then
obtain a fit to the experimental r o(H) and ro.

The present paper is motivated in part by a new
consideration. Recently, there has been considerable
interest in calculating hyperon-nucleon scattering from
first principles. de Swart and Dullemond' ' have related
YX scattering to nucleon-nucleon scattering by means
of global symmetry, and de Swart and. Iddings~ have
calculated the YE scattering amplitudes as a function
of the m YlV coupling constants. This work indicates
that, in channels containing final A particles, tensor
forces can contribute as much to the rate $(A) as do
the terms (1.3). Already from one-pion exchange one
obtains a strong tensor force. Accordingly, in Sec. 2 we
calculate ro from a matrix element for Z +p ~ Fo+io
having the form

N experimental work on the processes

Z +d~Zo+ri+ri,

Z +d —+A+n+n, (1.1b)

the quantity convenient to measure is the branching
ratio

r=1V(Zo)yLiV(go)+iV(A)] (1 2)

where iV(Yo) is the number of final F' hyperons. The
experimental value of r for capture at rest, i.e., from
bound states of a Z—d atom, is'

r o(exp) =0.03'7+0.022. (1.3)

Day, Snow, and Sucher made a calculation of r& by
means of the impulse approximation. ' They assumed
capture from initial s-wave Bohr orbits, and that the
relative ZA. parity is even and wrote the amplitude for
the reaction Z +p ~ Fo+n as

ao(Fo)+ai(Fo)e~ er, (1 4)

where ao(Fo) and ai(Fo) are constants and equi (er)
operates between initial and final nucleon (hyperon)
spinors.

From the amplitude (1.4) one can calculate also r(H),
the ratio for Z—capture in hydrogen. For Z coming to
rest in hydrogen, the experimental value is'

(1.5
&Pr-'I 3-f

I P")
Xf[A s Ps+A r "Pr

Uni- +Dr(pr„'oe~ ~ er —3pr„' ~ e~pr„' ~ er)/2 I ]Xi. (1.6)

r o(H; exp) =0.33+0.05.

4 Y. Y. Chen, Nuovo Cimento 19, 36 (1961).' J. J. de Swart and C. Dullemond, Ann. Phys. (N. Y.) 16, 263
(1961).

6 J. J. de Swart and C. Dullemond, Ann. Phys. (N. Y.) (to be
published).

7 J.J. de Swart and C. Iddings, Phys. Rev. 128, 2810 (1962).
J.J.de Swart and C. Iddings, preceding paper, Phys. Rev. 130,

319 (1963).

327

*A thesis submitted to the Department of Physics, the
versity of Chicago, in partial fulfillment of the requirements for the
Ph.D. degree.

is work was supported by the U. S. Atomic Fnergy Com- ere A, Az, and D ar, in ge e al, functio ns f
mission at the University of Chicago.

f National Science Foundation Predoctoral Fellow.
II Present address: Department of Physics, University of Cali

fornia, Berkeley, California.
'O. Dahl, N. Horowitz, D. Miller, and J. Murray, Phys. Rev

Letters 4, 77 (1960).
~ T. B. Day, G. A. Snow, and J. Sucher, Phys. Rev. Letters 2

468 (1959).
3 R. H. Ross, Bull. Am. Phys. Soc. 3, 335 (1958}.



DONALD E. NEVILLE

energy. I'8 and P& are singlet and triplet spin projection
operators:

&s=4(1 (rx—ar),

Pr ~i (3+a))( (rr).

(1.7a)

The 6rst two terms of (1.5) are readily seen to be the
earlier matrix element (1.4) rewritten so as to be more
easily comparable to references 5—8. Since the tensor
term is proportional to pr„", it need not be considered
in computing N(Z'), where the momentum available to
the final state is small.

We wish to point out that in the earlier work the
ratios r for capture from bound state were calculated
from formulas which actually apply only to capture in
fhght Lwe denote the latter ratios by ry and r~(H)]. In
Sec. 2 this situation is corrected. As a result of this
change the conclusion reached by Chen, 4 that the data
can be fitted only if values of ap(A), ai(A) differing con-
siderably from ap(Z'), ai(Z') are employed, is found no
longer to hold. In fact, these data could now be 6tted if
the parameters were similar in magnitude.

In Sec. 3 the parameters of Eq. (1.6) are obtained
from the calculations of de Swart and Dullemond, ' and
r~ is calculated and compared to experiment.

Section 4 discusses a spin-orbit e6ect which might
alter the theoretical expression for r~ by introducing
transitions between initial bound states of diGerent
total spin.

For clarity of presentation, we discuss in the body of
the paper only Z capture in deuterium. Results for Z
capture in hydrogen have been collected together in an
Appendix.

II. CAPTURE RATE IN DEUTERIUM

The impulse approximation considers reaction (1) to
occur in two steps,

Z +d —+ (Z +P)+n-+ (FP+n)+n. (2.1)

The 6rst step, the virtual breakup of the deuteron into
its composite particles, is governed by the wave function

(r I d) =X(e " e e")/r——— (2.2)

in the Hulthen approximation; or in momentum space

(pld&=4 &I (o'+p') '—(P'+p') 'j (23)

The second step, reaction of the Z hyperon, is taken to
be determined by the matrix element equation (1.6) for
the two-body process Z +p —+ F'+n; such approxima-
tion is justiled if that matrix element is not sensitive to
the small extrapolation o6-energy shell which is made
and if no serious "multiple scattering" eftects occur,
i.e., the intermediate neutron is on the average well re-
moved from the point of interaction between p and Z .'

In momentum space, which is more convenient than
configuration space for integration of the tensor term,

9 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952); G. F.
Chew and M. L. Goldberger, ibid. 87, 778 {1952).

= (2n-)' (2)r)'()(@(k—y„„')+(e-*' sinl))

4m- 1X—
k p „'—(k pp)' —p„„'+X'

x~(') (q —p,)+ (k ~ —k) (2.g)

The bracket (k ~ —k) signifies the term obtained from
the preceding one by changing the sign of k. The wave
function for the two Anal neutrons is either antisym-
metrized LEq. (2.7)j if for triplet nn spin states or
symmetrized [Eq. (2.8)] if for singlet nn spin states.
The latter wave function is an ingoing wave solution to
the 'So ne scattering problem. In configuration space,
this wave function has the form
(r I

nn; k; +)= $e'"'+ e

+2e "sinb(e 'P"—e "")(kr) '], (2.9)
where

e 'P sinh=kL —1/a+rpk'/2+ik] ' (2.10)

The term containing l~ in Eq. (2.9) takes into account
the finite range of the nuclear force. When Eq. (2.9) is
inserted into the efI'ective range integral, one finds

rp ——3/X —4/aX'. (2.11)

Here a and ro are the 'So threshold scattering length and
effective range deduced from 'Sp np and pp scattering:
u= —23.7 F, r0=2.65 F. From these we deduce the
value X=118F—' "

In this paper we consider Z hyperons initially in
S-wave Bohr orbits, or else in S wave in the continuum
at vanishingly small momentum relative to the deuteron
center of mass. In both cases, it is suitable to approxi-
mate the functions A sr, A rr, and Dr in Eq. (1.5) by
their values at zero Z p relative momentum. Of course,
as the momentum distribution equation (2.3) indicates,
"When the same momentum appears both initially and finally,

a prime will be used to distinguish the Gnal value; when both a
measurable value and a variable of integration in a sum over
intermediate states appear in the same expression, a p will be used
for the latter. These distinctions wil) be dropped when there is no
danger of confusion."1F '=197 MeV/c=1013 cm '.

the impulse approximation amplitude for reaction (1.1)
is written'

d(P) p'd(P) p
(nn F', kq; ~

I
p')

(2s)"
x&P'13'

I P&(PI z-d&, (2.4)
with

(P I
Z-d&= (2~)7-s(0)k("(Pz)(P-Id&,

&p'iaaf'I p&=(2~)'~'"(p. '—p)&p.r'13fl p»& (26)

p, is the momentum of the "spectator" neutron, non-
interacting in the second step of reaction (1.1)

(p'I nnF'; kq; —)
= (2~)'L~"'(k —p ')~'" (q—pr') —(k ~ —k), (2 7)

(pl nnFo; l q;+)
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the proton is not completely at rest. Usually the varia-
tion in M over this range of momentum is small, so that
M is assumed constant in the present section. Situations
in which an energy dependence of M could be important
are discussed in the conclusion to this paper.

The capture rate is given in terms of A& (k,q) by

r,,=2~ p fixfA~x;i'-,'(2~) 'dkdqb(E; —Ef). (2.12)

For the moment there is no need to consider the A ~, A ~
terms in (1.5). Their contribution to I';+ has been
computed by Chen. 4 Further, there are no interference
terms between them and the tensor term; these cancel
when the angular integrations in (2.12) are carried out.

The notation A, ,+ is introduced for the second-rank
tensor which results when, in Eqs. (1.5) and (2.4), the
As", Arr terms are ignored and a factor (o)t);(or); is
removed from the tensor term which remains. Then

where

(T)+To+ To), subscript +
dkdq A,,~*A oiy8 = (4tt)'1P

i 4 s i'mg(„„) (2m„„Qo)'i Di 'M*, o)X
(T)—To), subscript—

3
3f *;oi= (4tt) ' d&(&;;—3P' P, )(&o)—3Po P))/8= —P;o&, )+&'ii), o

—o&;,&o)],
40

m. ( o,) m. (m b——+m, ) (m.+m o+m, )-',

2m«Q&= m„[mt m„+m—& mA -B—]—

(2.13)

(2.14)

(2.15)

(2.16)

T)= 2 k' qdk( [( c)k)' +(coq)']Co+ (c)cokq)'(8Co+10Co) X ig —4c)cokq[( c& k)'+ (coq)']Cz}, (2.17)

To——2 k'qdk{[( &c)k' +( co)q']C 'o+(c&cokq)'[4C&' —10Co']X-', }) (2.18)

To= 2 k'qdk(-', [(ImH)' —(ReH)'] sin'lc+ (ImH) (ReH) cosf) sinf)}, (2.19)

C.=LD( )'-(kq)'?'-(p'- ')-'(kq)-'L(. )+( p)

1 D(a)+D(P) D(n)
C)——— L(a)— +(a~ p),

2 (kq)'(P' n') — (kq) [D(n)' —(kq)']

1 (kq)' 3D(n)D(P) — Po[D(a)/kq]
C2 ——— L(a)+ + (n ~P),

2 (kq)'(P' —a') D(n)' (kq)'—
1 P' —a'

L(n)+(n ~ P),
2 kqD(n) LD(n)+D(P)]

1 (P' ao)Po[D(n)/k—q]
C2' ——— L(n)+(n ~P),

2 kqD(a)[D(a)+D(P)]

D(a) =a'+k'+ 'q'-
D(a)+kq

L(a) = ln
D(a) —kq

c)=mo/(mo+m„); co= o (mt+2m~)//(mt+m~).

Po(x) is the ordinary Legendre polynomial.

k D(a) D(a) qReH=cP- Po[D(n)/kq]L(n) — — +2c&co L(a)—2 +coo L(n) (a ~P), -—
kq kq k

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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D(a) 2cPq
-

-', q+k~ ', q -k— ( 2q )q
ImEI= 2cP—P2[D(a)/kq]+4cic2 +

' «.-i '
~+«n-'

g kq k a j a &a+XI k

c 7 2 (a2+ i q2 7 2 2 1— (a2+1q2 —li2 ci
— (k2+g2)

&&
— —

i +— +2cicmi — +cP ——3cia +4cmX —(a ~ P). (2.29)
),q 3 k q2 k q2

The factor (2m Qq)' appears in Eq. (1.13) when

quantities in the integrands of the T~, T2, T3 are ex-
pressed in units of k, = (2m Qq)'" [hence, the limits
of integration 0 to 1 in Eqs. (2.17)—(2.19)] and origi-
nates in the angular momentum barrier against transi-
tions to final D-wave states. Using it we find that these
final states contribute insignificantly to Z production;
i.e., the Z' tensor contribution is down by four orders of
magnitude from the A and the nontensor Z con-
tributions:

—dX(Z )/dt= (Q; I';g;)tV(Z ),
+d.~ (I")/«= (2'P'"g')&(~ ),

(2.31)

discuss this step more fully than is usual because in
references 2 and 4, r~ was used where r ~ applies.

In reactions in flight (capture from bound states),
each Z interacts with a very large number of deuterons
(only one deuteron). In consequence, the initial state is
a statistical distribution over spins (is a state of one
definite total spin). Therefore, in flight,

(Qz/Q~}2= (0.941/77. 1)~=1.49)(10—4. (2.30) and for a bound state

The integrals T; were integrated on an IBM 1620
digital computer; the results are presented in Table I.

A remark is in order on the value of the deuteron
parameter P which we use. It is the one found in the
older literature, P=6.2a=1.44 F ', a value which fits
the 'Si Np eRective range. '2 At an earlier stage of the
present calculation some work was done with a value
/=1.20."Apparently this latter value was intended by

TABLE I. Tensor force integrals T; for final A states. Tensor
force terms for fina] Z0 states are too small to affect the Z rate
measurably.

T'I+I'2
T1 T2

&I+T'2+ &g

4.067
3.79
5.274

its authors to furnish a better fit to the data on elastic
e d scattering. These data require a repulsion between
nucleons at small distances, " and small distances
(r &0.2 F) are indeed suppressed by decreasing t7. Simul-
taneously, however, the asymptotic region r) 1/P F is
unduly enhanced. The effective range calculated with
this wave function is in error by +16'Pc. A more
sophisticated parameterization would leave the asymp-
totic region unchanged while enhancing only the inter-
mediate region, 0.2 F&r &1/P F. Of course, behavior of
(r ~d) for r&0.2 F is hardly important to the present
problem; in fact, it is dif5cult to imagine a problem of
any sort to which a two-parameter wave function would
apply when it is inaccurate in the asymptotic region.
The inclusion of this parameterization into the deuteron
literature is to be lamented.

The expressions for r~ and r ~ can now be derived. %e

"I,. Hulthdn and M. Sugawara, in Pandbzrch der Physik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39.

'3 M. J. Moravcsik, Nucl. Phys. 1, 113 (1958).
14 J.I. Friedman, H. W. Kendall, and P. A. M. Gram, III, Phys.

Rev. 120, 992 (19M).

—dÃ;(Z )/«=I';16, (Z ),
+dX; (Y')/dt = I';:l';(2—). (2.32)

These equations can be integrated readily to give

r =[P,X,(xo)]/{P; [tV, (Zo)+ X;(A)]),
«= (2' g'I'*')/(2' g'I'~),

r =2'(g'p. '/1. ).
(2.33)

(2.34)

The g; appear in the equation for r & because of the
boundary condition X,'(Z )/1V(Z )i o=g, .

It is easy to see that Eqs. (2.33) and (2.34) can differ
widely in their predictions for special cases. For example,
if there are two spin states and I'~ =I'~&)I'2)&I"2~, then
Eq. (2.33) predicts that almost all final hyperons will be
Z", while Eq. (2.34) predicts that at most the fraction gi
will be Zo.

e compute r~ and r~ when the initial states i are S
wave, total Z d spin S= 1/2 (subscript D for doublet) or
S=3/2 (subscript Q for quartet). For this choice of
initial states i, Eqs. (2.33) and (2.34) become

r,= (-', r *+-',r, ')/(-', I,+-',r,},
r ~= l ÃD'/I'o)+ l(1'o'/I'o)

The tensor terms involve the spin sums

g~r= P (2S+1) ' Trace[cr ~g "Px(Z d)

(2.35)

(2.36)

QS
318 1/4

XI'i(rip)oa~oirI'r(vari)M;; „]. (2.37)

TABLE II. Spin sums for the tensor terms. ax+ is defined by
Kq. (2.3/). The subscripts X and Y refer to the multiplicities
(2S+1) associated with the total spin of the Z d system and the
total spin of the final neutrons, respectively; Q, T, D, and S stand
for the multiplicities quartet, triplet, doublet, and singlet.
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The P (ab) are projection operators for those states of
the system ab with total spin n. The ux& are given in
Table II.

Collecting together the tensor results and including
nontensor contributions, me get

~c'= ~a-'+~ a+'
= (4/n) 1P i)P„s(0) i'mr(„„)P(I,—I2) iA r" i'

+ (2m „Qr)' (Dr ('

XL-', (T).—T2)+-', (T)+T2+ T3)j, (2.3g)

I o"=ro r+I'D, '
=(4/~)X' i)P s(0) i'mr( )L—,'6(I(—I2) iAr"+3As

+—;,(I,+I,+I,) ~A, r—A, r
~2

+ (2m~~Qr)' iDr I'—'(T(—T2). (2.39)

The integrals I; can be obtained from the integrals T;:
set c~=0, c2=i, and remove a factor q4 from the
integrands of Eqs. (2.17)—(2.19).Their values are given
in Table III. The numerical results of reference 4 differ
a little from those of the table because of an algebraic
error in computing the ee force terms. In Eq. (A.1) of
reference 4, the nn force terms, i.e., all those involving ro
and a, should be multiplied by an over-all factor 2;
further, all arctangents involving the parameter X (P in
the notation of reference 4) should be multiplied by an
additional factor 2. With these corrections, the expres-
sion (A.1), when expanded for small values of X and k,
has the behavior which mould be predicted for it upon
examining a similar expansion of the original nn wave
function.

III. YN REACTION PARAMETERS

In this section we compute r(, and rf, using Z p
scattering parameters calculated by de Swart and
Dullemond' under the hypothesis of global symmetry.
To take into account a major effect of the symmetry-
violating interactions, de Swart and Dullemond obtain
the FX scattering matrix from a Schrodinger equation
in which the kinetic energy terms are written with the
observed AZ mass difference; while the potential energy
terms are those linear combinations of the ÃE poten-
tials prescribed by global symmetry. Their calculations
are carried out for three choices of XÃ potentials. The
first two agree remarkably in their predictions. The
third, an "antiglobal symmetry" potential seems to be
excluded by data on low-energy 'S~ AX scattering. ' In
the examples of this section we use the results obtained
from one of the first two, an ÃX potential due to
Hamada.

TABLE III. Nontensor integrals I;.

These authors do not take into account in the wave
equation the mass splittings between the Z hyperons.
They can, then, employ isotopic spin conservation to
reduce considerably the number of independent parame-
ters in their problem; however, near threshold ("thresh-
old" in this section always refers to that for Z p ~ Yoe)
the reactive and kinematical efIects of the mass di6er-
ences are important.

To correct for these effects, these authors use, in their
expression for the scattering matrix T near threshold,
the scattering length and effective range matrices calcu-
lated for the case of zero mass difI'erence, but momenta
and energies calculated from the kinematics appro-
priate to the actual case, namely,

pre = (2mr~Qr)'".

(3.1)

(3.2)

They have applied this procedure to deduce Z reactions
in hydrogen. ' "We apply the same procedure to the Z
reactions in deuterium, except that we change the
energy release Qr from 3.1 and 79.3 MeV to that ap-
propriate for deuterium, 0.94 and 77.1 MeV, to take
into account the deuteron binding energy of 2.2 MeV.

We neglect the effective range corrections to the
scattering length. In reference 6 the T matrix is calcu-
lated both with and without inclusion of finite-range
effects. The two calculations are referred to as Case I
and Case II, respectively. If any element of the scat-
tering length matrix is large, that element is modified
considerably by these effective range corrections, but
the scattering matrix T is modified hardly at all, and r &

and rf by at most a few percent. We do not quote the
results for Case II in deuterium, but for a detailed ex-
ample, see the discussion by de Swart and Dullemond
for Z reactions in hydrogen. '

The expression for the scattering matrix is

T= —A (E)[1+ip"+'A (E)j
The relation between T and M, Eq. (1.6), is

(3 3)

(1)I'I' ~T ~XI )
i (EA E1'EN'Er')( 2 (E~(')r) '(&"I '

~1' p'&)
= '( . ')'" '(1PF' iM iSF). (3.4)

The last approximation holds in the nonrelativistic
limit.

A(E) is obtained from the effective-range expansion
of the K matrix,

p'+'('E 'p'+'('= A '+m'('R-m'('(E —E,)— —
= —(A(E)1 ' (3.5)

In accordance with our approximation, we set A (E)=A
in Eq. (3.3), with A obtained from the expansion of K '

II+I2
II—Ig
II+I~+II

4.74
3.33
4.90

0.100
1.19X10 '
0.557

"Such an approach, together with the assumption of zero-range
forces, has been used in XE scattering to obtain the effect of the
EOK mass difference: R. H. Dalitz and S. F. Tuan, Ann. Phys.
{N. Y.}8, 100 {1959}.
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Ps„———P,'ms/(ms+m„) (3.6)

initially; and for the final momentum either

for the case Q =0. The results of de Swart and
Dullemond are given for channels of definite isospin, so
that a unitary transformation to basis states of definite
charge must 6rst be applied to T, K, and A (E) before
the momenta can be changed.

In evaluating ps„and Py„as in Eqs. (3.1) and (3.2),
we have picked only one set of values of the many which
these momenta can assume in deuterium. The spectator
neutron can carry off a varying amount of momentum.
The general formulas for ps~ and py ', therefore, depend
on P~,

Eq. (3.4), and then insert M into formulas (2.38) and
(2.39) to find r q and y~, also given in Table IU.

No experimental information is available on r~. It is
seen that the calculated r b is larger by roughly a factor 4
than the upper limit on the experimental value 0.037
~0.022.

IS I

= la++ s-
I

= 1/2 or 3/2, (4.1)

IV. SPIN-STATE MIXING

Because the spin-orbit electromagnetic interaction in
the Z d atom is not symmetric in the spins of Z and d,
the total spin

Py-'= L2my. (Qy —P"/2m. (y.))1"'
(6nal plane waves),

or

Py '=qy'+P. 'm /y( my+m„)
(6nal mn spherical wave).

In Eq. (3.7) we have anticipated a constraint which
will be imposed on the final momenta by conservation of
energy when the amplitude is inserted into the 3-
particle phase-space integral. In Eqs. (3.8) and (3.9),
we again invoke the convention of Sec. I that momenta
written with a p (q) are virtual (observable).

In the case of the 6nal ne, spherical wave p, ', hence
py„', can assume all values since it is related to p„„', the
variable of integration which occurs in the Fourier
transform of the spherical wave, Eq. (2.8):

A. Mixing During Collisions

At the moment of nuclear capture, it is likely that the
atom will be in a strongly polarized state "'~ While the
Z—d atom is polarized, transitions l —+ 1'&I are allowed.
Therefore, via intermediate states l/0 a hyperon bound
in a 45 state can change to a 'S state, or vice versa, e.g.,

S3/2 ~ ~3/2 ~ +3/2 ~ SI/2 ~ (4.2)

in the initial state is not a good quantum number; that
is, the initial atomic eigenfunctions are mixtures of

(3 7) quartet (S=3/2) and doublet (S=1/2) spin eigen-
functions. (Though not those with 1=0, since there is no
spin-orbit interaction for I=O.) In this situation, one
can conceive of two mechanisms whereby the expression

(3.8) (1.32) for rq would be distorted from its simple form.
Ke take them in turn.

(3.9)

The choice Py„'= (2my„Qy)"' is obtained from the
general formulas (3.6)—(3.8) by selecting 6nal plane
waves and setting p.'= 0. This value was chosen because
the deuteron momentum distribution favors small
values of P.'.

Table IV gives the values of T calculated from Eqs.
(3.1)—(3.3) and the A matrix given by de Swart and
Dullemond. ' One can then convert from T to M using

ThsLE IV. T matrix at threshold and Z' branching ratios rf, and
rf calculated from the A matrix of de Swart and Dullemond
(reference 6).The initial states are either (Z; 'SI) or (Z; '50) for
6nal J= 1 or 0, respectively. The last coluInn gives a shorthand
notation for the T-matrix element in column 1.

The spectroscopic notation is ' +'I.~, i.e., 'Sa/2 is total
spin S=3/2, orbital angular momentum /=0, total
angular momentum J=3/2. Therefore, the rate of
change of the number of doublet spin states depends on
the number of quartet states. Equation (2.32), and in
consequence the expression (2.34) for rb derived from it,
is not true exactly if i indexes total spin.

The error suffered in using states of definite spin will
be small if

(D~ I
I'I Q~"&(Q~"

I
I'I Qo'&

(4.3)I ~ (gn (0) Eq „(0))(En (0) E,(0))
t

The o. are the quantum numbers other than spin, and
superscript (0) denotes quantities computed in the
absence of V.

Final state (» (F)
—1.18i+0.197

3.47i—1.47
0.534i+0.328

—0.0722i —0.244
0.363i+0.133
0.24
0.25

Notation

Zp
Z8
Az

~s
AgD

(4.4)

Following Breit,"one can write the spin dependence
of the Z d electromagnetic interaction as

' T.B.Day, G. A. Snow and J. Sucher, Phys. Rev. Letters 3, 61
(1959).

"M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962).'8 The Breit equation is discussed in Sec. 42 of H. A. Bethe andE. E. Salpeter, Quentsm Mechanics of I- and 2-E/ectron Atoms
(Springer-Verlag, Berlin, 1957).
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V= 't/rs+ I/ ~s, (4.5)

8~
Vs=g+g —vs" —s+ s S'"(r)+(s+ s —3s+ rs r)

3

TAsLE V. Estimate of the coupling factors occurring in the spin-
dependent part of the electromagnetic interaction in Z d and Z p.
The X hyperon is taken to have the same magnetic moment as the
neutron.

1
X—+l (g+' —g-')ns' —I, (s++ s-), (4 6)

r3 r3

1 1
Vss =-(g+'+g-')n~' —I' (s+—s-).

2 rs
(4 7)

n.v ——sa/2m, c, (4.8)

In Eq. (4.3) terms of first order in (V) have vanished.
Because of rotational symmetry about the s axis, taken
along the line from. neighbor nucleus to Z d center of
mass, /, is a conserved quantum number. Only states
with /, =0 will be able to decay, and (1,=0I Vs sI 4= 0)
=0

Matrix elements of V s preserve total spin S; so also
do some elements of Vq s, if s+'/s '. In what follows,
we shall ignore spin-preserving elements if they are
diagonal in 5 and u ', such elements can only help by
further removing the degeneracy between quartet and
doublet states.

The g factors are defined in terms of the proton Bohr
magneton p, .~,

C+C-

k (a+' —z-')
k {z+'+z-')

—3.6
44

—2.4

—20.5
8.8
5.0

Finally, there are the coupling factors si(g+'~g '),
g+g . The g factor for a Z hyperon is not known. If one
chooses it equal to that of the neutron, one gets the
values given in Table V. Thus, for l= 1 in deuterium, the
typical spin-mixing matrix element is

I(1nI VssI 1n)I =4X10'4/n' sec ' (4.14)

and falling off rapidly with l.
For the estimate of F we can use the T-matrix

parameters calculated by de Swart and Dullemond for

p —+ Ass scattering. These parameters are not unusual
in order of magnitude and are consistent with the scanty
data on the total cross section in hydrogen. "%e ignore
the contribution from 6nal states, as Eq. (1.3) indicates
it is small. Using formulas (2.38), (2.39), and (3.4), and
the results of Tables I and III, we get

(4.9)
Q

g~= &2 for a Dirac particle, +5.4 for a proton, —3.7
for a neutron, +0.957 for deuterium. The g+' include
factors of inverse mass coming from the orbital motion
as well as a factor m„because the unit of magnetic
moment was chosen to be the proton magneton.

7.52 && 10»
L3.33IArI'+15.0IArnI'j sec ' (4.15)

n3

7.52 X10»
L0 208

I
Ar+3As

I

'
n3

+0.918
I
Ar —As

I
'+3.27

I A»
I
'3 sec '. (4.16)

g~'= m, [1/mg+2/mp$gg. (4.10)

Equations (4.6)—(4.10) would look more familiar if
taken to various limits. Two of these are m+)&m and

g /m„~g /m, (hydrogen); and m+=m, g+= —g,
g+/m„~ g+/m+ (particle-antiparticle, e.g. , positronium).

We estimate (V) and I' in turn. The order of magni-
tude of (V) is determined mainly by the factor

2@x
p~'(ln Ir-'I fn) = (4.11)

(assn)' l(1+1)(2t+1)

9)&10" 1
sec '. (4.12)

n' l(l+1) (21+1)

Note that in baryonic atoms the distinction between
fine and hyper6ne structure disappears. The angular
factors are of order /, e.g. ,

(I., 5= -'„ l.S.
I
I, (s+—s ) I

I., 5= —,', l,&1,5,&1)
= &3iL(t&l,) (lal, +1)(-,'%5,) (gwS, )J", (4.13a)

(I., 5=-'„ l., S,
I
I (s+—s ) I

I., S=$, l., S.)
=-'1 L(3)'—5 'J". (4 13b)

For the key to the notation, see Table IV, The results of
de Swart and Dullemond give

I
A

I

"s all of order 0.1 F',
so that

I'o = 1X10"/n',
I' =3X10"/n'

(4.17)

The estimates (4.14) and (4.17) must be transformed
from the representation diagonal in l to a representation
in which the a are diagonal. The eigenfunctions IaS)
will be linear combinations of, in general, all l values
l&n —1. In computing (aSI VssIa'5') we neglect con-
tributions from D and higher waves. Then F and Vg s,
when evaluated in the (a,S) representation, will be
proportional to the fraction of 5 and E waves, re-
spectively, in the eigenfunctions IaS). We assume that
the fraction of 5 wave in each IaS) is of the same order
of magnitude as the fraction of P wave. Then estimates
(4.14) and (4.17) may be used directly in Eq. (4.3).
That criterion is seen to be very well satisfied.

If the Z d atom is small compared to the distance to
the neighbor nucleus, then the 6eld at the atom is ap-

G. Alexander, J. Anderson, F. Crawford, %. Laskar, and L.
Lloyd, Phys. Rev. Letters 7, 348 {1961).
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B. Mixing between Collisions

In general, a Z—d atom passes through the polarizing
field of a neighbor atom su%ciently quickly that some
hyperons remain uncaptured after several mean collision
times. Suppose there were more doublets than quartets
remaining at that time because the quartet capture rate
happened to be the faster. Between collisions the spin-
state mixing goes on (not prevented by any complex
en.ergy di6erence, since I)0) and tends to restore the
number of quartet and doublet states to the statistical
distribution. The net result would be that the fraction
of hyperons captured from quartet states would be
greater t.han the factor of 2/3=go, used in Eq. (2.34)
for r~.

The spin 5 amplitude will tend to increase at the ex-
pense of the spin 5'WS amplitude as sin(5'~ Vae~S)t.
Therefore, expression (2.34) for ro is an excellent ap-
proximation if (5

~
Vae

~
S)r is small; r is the mean time

spent outside a polarizing 6eld, between initial polarizing
collision and final capture.

1. Simp/e Model

The collision problem is too complex for 7- to be
computed exactly, but the following simple model of the
collision should give the order of magnitude. We con-
sider a Z d atom which collides with a polarizing source
of effective radius Eo. Recoil is neglected and the path of
the Z d atom is taken as a straight line. The radius E'o is
taken to be that at which the polarizing field first be-

TABLE Vl. Factors for corn'outing the amount of mixing of oppo-
site-spin amplitudes (S

~
Vga S), during transits in 6eld-free space.e'I' =3)&10"sec '. The factors missing from ~ ' and (S'

t
V g 8 j S)

decrease (5'~ Vae~S)r by =(5/a). ri ' and (S'~ Vae~5) are in
units of 10'0 sec '.

5
8

13
20
30
37

~o/ao

1
2
3

5
5.5

gEp

50
14.7
3.82
0.964
0.234
0.114

1.0
0 99
0.88
0.46
0.14
0.076

32
130
250
240
110
74

2p, g(again) '
(S'j V~s ts)

630
150
40
12
3.4
1.8

proximately constant. The eigenfunctions in such a field

(those of the linear Stark eifect) are well known and
may be used to check the assumption that the fraction
of 5 and P waves are comparable. Every Stark eigen-
function with t,=0 has exactly the same fraction of 5
wave, 1/e; the fraction of P wave varies from 0 to 3/rr,
the average value being =1/n.

An approximate degeneracy

(o) —E,(o)+0((V))

would reduce Eq. (4.3) to first order in (V). Even were
this fortuity to occur, the correction due to spin mixing
would still be small, of order 10"'/10'"= 10 '.

comes strong enough to overcome the energy splitting
oo —,'i-F between

~
rr, 0) and all states

~
e, I)0). Inside Ro

the eigenfunctions are assumed to be of Stark form.
Bethe and Leon, '~ who have solved the Stark field
eigenvalue problem for various decay rates I' and ex-
ternal fields F, show that the decay rate of a Stark
eigenfunction has reached 0.9 of its strong-field limit
F/is when the following criterion is satisfied:

', ear-eForr' =0 66(.,'F)-, (4.19)
Rp

Fo= F(Ro) = eR &
—2 p jaop2dpa 3

1+2(—)+2(—) e ' '&". (4.20)

We use Eqs. (4.19) and (4.20) to determine Ro.
If the Z d atom moves along a chord of length d inside

the polarizing region, the fraction of hyperons with
l,=0 captured per pass is

f(n) = 1—exp (r)d/2),

i) = 2F/n Vth,

(4.21)

(4.22)

( 12+1) /f(n) (4.26)

collisions to depopulate the level (t,n) Now th.e (mean
free time) —' between two successive collisions, ri ', is
calculated from a familiar formula to be

—y,h~R0'X

where X=4.3)&10'2 cm '. Then

(4.27)

r '= ri—'f(e)—/(2l+1)
=3.4X10"(Ro/a )'f(rr)/(2l+1) sec ' (4.28)

We compare r ' and (5'
~
Va s~ 5) in Table VI.

It is simpler to choose a value of Eo and then calculate
n rather than vice versa. This treats n as a continuous
variable; the n value given in Table VI has there been
rounded ofI' to the nearest integer.

A number of considerations determined the range of n
values to be emphasized in the table. To begin with,
n& 38 should not be important because this corresponds
to a Z d radius &ao and we expect the Z hyperon to be
captured initially into a Bohr orbit approximating the
size of a deuterium atom. Small n values should not be
important either. Bethe and Leon'~ have shown that for

V,s——thermal velocity= 8.5X 10+4 cm/sec (Z d), (4.23)

or averaged over all impact parameters,

f(n) = 1—2t 1—exp( —i)Ro) (I+r)Ro) j(r)Ro) ' (4.24).

For small i)Ro (r)Ro(0.2), we use the approximation,
good to better than 10jo,

f(n) ~ -'sr)Ro as r)Ro ~ 0. (4.25)

Since 1,=0 is only a fraction 1/(2l+1) of the total
number of states with angular momentum /, it should
take of order
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Z. Effect of Rotating Coordhnate System

We designate the polarizing interaction by Vz.

Ve= —e(r+, —r ) F,

F=m.
(4.32)

(4.33)

In order to use the symmetry of Vz about the Geld
direction, we chose R as axis of quantization. This is a
moving axis, so that a spatial coordinate in the wave
function becomes an explicit function of time: 8=8(t),
where 8 is the polar angle between R and a fixed axis in
the plane of collision. Then on taking the time deriva-
tive in the wave equation, one gets what is in e6ect a
new interaction term in addition to V~,

8
V, = 28 =8(1.„+S„)—,

—
88

(4.34)

where y is the axis normal to the plane of collision. The
term 8S„can change neither r nor

I
S

I
and in the ensuing

discussion will be dropped from Vt/. Vg is not symmetric
about the s axis, and in contrast to Vg its matrix
elements obey the selection rules Al, =&1, Al=o.
Further, Vg is Coulomb-like in its R dependence and
will eventually predominate over V~ for large R:

8& Vg,/R
=2X10ts(ao/R) sec ' (4.35)

K p essentially all mesons have been captured by n= 4,
the captures occurring with roughly equal probability
from every n value 4&n&23 (the latter corresponding
to a Epr'adius of ao). They show that for 2r p, on the
other hand, the captures are bunched toward smaller n
because I' is smaller and Auger de-excitation faster. %e
expect the trend indicated by K p to persist to Z d,
with perhaps m=5 the lower limit.

Since the hyperon awaiting capture changes its l
value at each collision, the average over l should be used
in computing (S'

I
Va a I S)r .

2/+1 1 -', @2[/(l+3/2)]t" 2
(4.29)

&=t n' 1—2/+1 l(l+1)(2/+1) n

Therefore,

(&S'I V»IS) &-
=[rt/f(n)][2t N'(a. «) '][2(g+'+g-')(2/n)] (4.30)

In Eq. (4.29) we have used

&'I-~+tt 211 (s+—s-) I'I'+v2&
= (2v2/3) [l(l+3/2)]'~2, j = l+ 1/2,
= (2v2/3)[(/+1)(l 1/2)]' ' J=/ 1/2 (4 31)

Thus, to compute (S'I VoeIS& from Table VII, one

should take the ratio of the last two columns, then
multiply by the factor 22 (g+'+g ') (2/n) = (S/n). Then it
follows that spin-mixing need be taken into account only
for those mesons which survive down to n&8.

5
7
8

11
17
25
38

Ro/ao

0.5
1

nRo

1X10'
64

18.8
4.86
1.23
0.30

1.0
1.0
1.0
1.0
0.92
0.54
0.20

8.0
32
(56}.
128
267
280
162

2~„

/(appal)

~(S'I vasjS)
840
310
175

72
20
5.6
1.6

a By linear interpolation.

As R increases, it mixes more of the (/)0, /, WO)
states into the state (/) 0, l, =O), so that the latter is
less able to couple to S wave. As a result, V|/ decreases
the interaction radius Rp in the model of subsection B.l
to a smaller value Rp' determined by the new criterion
Vy= VE.

To obtain Rp', we need a measure of the ability of Vy

to couple Stark eigenfunctions of diferent l,. On ex-
amining V~ and Ve written in the l, /, representation,

-(/2 l 2)(n2 /2)-1/2

V~= ~egypt ~l—j.

(2l+ 1)(2/ —1)

-[(/+1)2—/, 2][n2—(/+ 1)']-'I2
+

(2l+3) (2/+1)
at+2', (4.36)

Vo =—0{[l(/+1) —l, (/. —1)]'"ai'
2 —[l(/+1) —/, (/, +1)]"2at'~t}. (4.37)

We note that each term from VE and Vt/ comes out to be
approximately —,'eaz&Fn' and -', tIln, respectively, if the
quantities (n2 —P)'~2, etc. , are summed over /, /, by a
rough procedure, replacing l and l, by continuous vari-
ables and integrating. As criterion for determining Rp',
therefore, we take

where
~88 dFp s = ~8p s,3

8o' = V2s/Ro',

Eo'= R(Ro').

(4.38)

(4.39)

(4.40)

TABLE VIII. The interaction radius of a neighbor atom, con-
sidered as a polarizing source, changes from Rp to Rp if the region
in which V//& V~ is ignored. The last column gives the maximum
increase in (S'~ Vse~S)r to be expected from this decrease in
radius. n'F =3X10"sec '.

Ro/ap Qpn/geag~rIl ptP Rp /ap (R,/R, ')3

37
30
20
13

5.5
5

3

32
16
4.0
0.98

3.6
3.5
3.25

3.6
2.9
19

TABLE VII. Factors for computing the amount of mixing of oppo-
site-spin amplitudes (S'~ Va s ~ S), during transits in field-free space.
n'I'=1)&10' sec '. The factors missing from r ' and (5'~ Vgg~S)
decrease (S') Vae(s)r by = (5/e). r& ' and (S'( Vae(sl are in
units of 10"sec '.
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TABLE IX. The interaction radius of a neighbor atom, con-
sidered as a polarizing source, changes from Ro to Rp' if the region
in which Vy& Vg is ignored. The last column gives the maximum
increase in iS' [ Vae~S)r to be expected from this decrease in
radius. n'j. =1)(10's sec '.

Ro/uo Qpn/feuydFon Rp /ao {Ro/Ro')s

38
25
17

12
3.1
0.78

3.6
3.35

2.6
1.7

3. HyPerons Surviving Io n=Z

We can neglect quartet-doublet transitions occurring
for n&8, especially since the hyperon spends even less
than a capture lifetime in any of these states, due to the
cascading. The time between arrival at n&8 and cap-
ture, however, will be sufIjlcient for thorough mixing.

One collision, after n&8, sufhces to capture the Z—

since f(n) =1 for this range of n values. During this
terminating collision, a fraction 8 of the initially doublet

will be captured from quartet states,

8= r~tlVn(8)/En(38) Xo(8)/Xa(3—8)j (4 42)

rs will be given, not by Eq. (2.36), but by

—,'(I+-',b)I'o /I'q+$(1 —b)I' */F . (4.43)

In deuterium I'q~&(F~~.. initial quartet states are
allowed by angular momentum conservation to reach
only those 6nal nn states which have triplet spin, there-
fore, I' wave or higher; while initial doublet states can
reach 5-wave 6nal nn states. Consequently, the 6rst
term in Eq. (4.43) is negligible, and it follows that

Note that V@/Vs falls oK rapidly with R, so that Re and
Ro' should not diGer by factors as great as orders of
magnitude.

Vz/Vs cc e'rrl 't 1-+2(R/ae)+2(R/as)'jR ' (4.41)

Ro' is given in Tables VIII and IX.In the Anal column
of each table we compute (Rs/Re')', which is the re-
sultant increase in (S'

l
Va e l S)r Dn r ' there is a factor

of Eo' from the collision cross section, as well as addi-
tional Eo dependence, amounting to another factor of at
most Re, from the factor of f(n)]. For levels n&13, the
criterion Vtt= Vg is less restrictive than the previous
criterion. For levels n&13 we see on referring back to
Table VI that even with the additional factor (Rs/Rs')',
(Sl VaelS)r is still not of order unity. Therefore, our
previous conclusion, that spin mixing will be important
only for those which survive down to n& 8, is unaltered.
However, in the remainder of this section we will include
the factor (Rs/Rs')' in our estimates of r.

IA = IA

where we use
for Gxed hn= n' n, —(4.46)

~=e'6 /nan, s

and we conjecture the dipole moment goes as

(r) ~ n'rn,

(4.47)

(4.48)

since the nth Bohr radius is proportional to n~. The n
dependence (4.47)—(4.48) fits well the tables of r~x&
compiled by Bethe and Leon using exact (n'l r

l n); e.g. ,
for An=2, n&5&14, 0.37&1(Po sec—' &I'&&430)&10xo
sec ' the rule I'g~& ~ n" is good to within a factor of 4;
for An=1, 5&n&11, 2.5&(10"sec ' &I"g~&&290X10"
sec ' it is good to within a factor of 2. To obtain Fg~",
then, we first compute min (hn), the minimum n —n'
which supplies 15.2 eV, for each n, for Z—d. There will be

TABLE X. Auger rates for levels in Z d; extrapolated by means
of formula (4.51) from Auger rates for levels in E p with same
min(hn) =minimum change in n value which produces sufFicient
energy to ionize a neighbor electron. The rates are in units of
10" sec ' and are evaluated at the mean of the corresponding n
ranges; the Fg~& are the interpolated values when the mean n is
half-integral.

inelastic collision with ejection of an electron, important
for 5&n&28 (Auger effect); and (b) inelastic collision

with dissociation of the neighbor molecule, important
for 28&n&38.

Bethe and Leon" have calculated in Born approxima-
tion Auger rates F~ for x p and E p. We shall scale
their results for the case of the Z d system. Writing only
the factors in F~ which depend upon the characteristics
of the atom being polarized, we have

r~~ Zt. t l(n'I'lr*el»)
I
sL~-+3 7 evj "' (443)

The 6rst factor comes from the coupling of the Z d

charge distribution, approximated by its dipole moment,
to a virtual Coulomb photon. The radical comes from
numerical integration over factors containing (electron
momentum)'~EExe. a phase-space factor times a
squared matrix element, from the coupling of the virtual
photon to the deuterium electron. Since ~~d&15.2 eV
(here we use the ionization energy of the deuterium
molecule rather than 13.6 eV, that of the atom), we can
neglect the 3.7 eV in computing the scaling factor. Then

mrs/re=5. (4 44)

The depletion 1V(8)/A (38) is computable if r ' and
the rate of cascading are known. The two cascade
mechanisms which predominate for large n are (a)

Min (~n) E P n range

21
20

19-17
16-15
14-12
11-10

9
8
7
6

Z d n range

28-27
26-24
23-21
20-19
18-15
14-13

12
11
10
9

15
41
70

125
310

2400
960
470
210
85

p Zd

8.5
18
27
55

150
1200
600
350
190
102
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=Ty n n) (4.51)

where f„,(n) is the fraction of hyperons which arrive at
the nth level. We estimate

f„,(n) =1/min (hn)

The fraction of Z surviving to nano is

(4.52)

38

X(no)/X(38) = g (1—hn).
n& ap

(4.53)

Table XI presents the life history of a Z from n= 38
to n=8. For each n range in Z d a value for r„' was
obtained from Table VI or VII by means of linear
interpolation where required. From Eqs. (4.42) and

TABLE XI. Capture schedule for Z hyperons. (1—b,) gives the
probability E(ep —1)/$(ep) that a Z in e=ep mill survive to
e&ep, calculated for the mean value in the e range of column 1,
and p is the number of levels in this range. Rates are in units of 10M
sec '. Values of min (b,e} in parentheses are calculated from the
energy of molecular dissociation.

range min(be} F~
38 (6) 16
32 (4) 11

28-27 (3) 8.4
26-24 5
23-22 4
21-19 3
18-15 2
14-13 1

12
11
10

e'I' =3X1017
sec 1

r&» &„-~ (1—b,)~

0.5 0.97
1.0 0.92

8.5 2.1 0.93
21 3.0 0.91
29 4.5 0.93
35 6.9 0.89

150 10 0.88
1200 18 0.98
600 19 0.97
350 18 0.95
190 18 0.91
102 17 0.86

N'(26)/X(38) 0.83
X(8)/E(26) 0.47
X(8)/X(38) 039

e'P = 1X10'8
sec '

&„-& (1—S)~

1.6 0.91
3.7 0.83
5.4 0.80
6.5 0.87
9.5 0.88

11 0.84
16 0.82
14 0,98
13 0.98
12 097
10 0.95
8.0 0.93

0.55
0.43
0.24

a corresponding range of n values for E P with the same
min (hn). Picking the mean n of each range, we multiply
I'~x& by the scaling factor from Eq. (4.46) to obtain an
average F~~~ which we use over the range of n values
in Z d. The numbers involved in the calculation are
collected together in Table X.

For fixed mass m, ~ and increasing n, Fg eventually
begins to decrease because the concomitant increase in
hn implies the initial and final wave functions in

(n'irwin) differ more in radial extent and number of
nodes. In fact, above n=28 we expect F~, the rate of
de-excitation by molecular dissociation, to predominate
over Fg on the basis of the following estimate of the
former rate:

I'~ = -', 1VV,gn ao'(n/38)' (4.49)

(the factor 2 appears because X is the density of
deuterium atoms).

From each n level the fraction of Z captured will be

6„=f„,( n) r '$~ '+P—g+Pmj ', (4.50)

(4.44), and the results of the table, it follows that
Ar q/r q = 10%%u&.

V. CONCLUSION

In cases such as global symmetry, in which one or
more of the two-body scattering lengths are large, one
can list three assumptions of the present calculation
which might be poorly satisfied, so that the calculated r ~

would not be accurate. We discuss at any length only
uncertainties springing from the present calculation.
The uncertainties in the calculation of reference 6 con-
cern mainly the treatment of the short-range forces,
which there are approximated by a hard core in the
potential.

The corrections for the Z Z' mass difference were
carried out as though the forces were zero range. The
corrections to A —', the inverse scattering length matrix,
which most probably are of order —,'R(2rnhM), would be
appreciable for large A. In fact, the effective range cor-
rections of de Swart and Dullemond, which are of this
order, change the sign of the 'S0, I=3/2 A-matrix ele-
ment: from A3/2 +22 F to A3/2 —20 F.' That is,
after the A matrix is transformed from basis states of
definite isospin to basis states of definite charge and
corrected for finite range effects, the A matrix appears
as though it had been calculated directly from an A
matrix in isospace with a large negative Asi2.

This change does not greatly affect either T or rq
[when a single scattering length is large, it dominates
both the numerator and denominator of Eq. (3.3) for T,
and its precise magnitude and phase tend to cancel out
in taking the ratio); however, taken in conjunction with
effects 8 and C to follow, the mass-splitting correction
could lower r b appreciably.

We note that A3/2 is required to be negative if it is
large, since a large positive value would imply a Z n
bound state which has not been observed.

A large A3i2 is characteristic of global symmetry
solutions, since this hypothesis relates 'S0, 1=3/2,
ZN —+ZN scattering to 'SD, J=O, NN —+NN scat-
tering, which is quite strong at low energies.

The two-body amplitude was approximated by its
value at the most probable momentum. However, the
spectator particle carries off a varying amount of the
momentum from the site of the FN interaction.

In the A channel the effects of this momentum varia-
tion should be small for small scattering lengths even
though the kinematics allow a large spread in q, ',
0&q,'&1.6 F '. The q,

' momentum distribution

i(q i d) i'&&phase space

=L '+V "j 'V "(2 -&")0 —V")'" (51)
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is sharply peaked at q, '=n&n=0 23. F '&0.23 F ' (the
limits give the half-maxima). The corresponding values
of pr„and qq„', from Eqs. (3.6) and (3.7), are 0.1
&0.1 and 1.40&0.2 F ', respectively. For compari-
son, in Sec. II the T matrix was approximated by its
value at ps„=0, qi „'——1.42 F—'.

In the Z' case the amplitude which leads to the domi-
nant term in the rate is that to the nn '50 state. For this
final state the integration (2.4) over virtual spectator
momenta p, 'Q q,

' is nonvanishing. One can estimate the
average p, ' by inspection of the several factors in the
integrand (approximated by their leading terms),

T(p') d"'p'

pna qadi & +ps
(5.2)

Very roughly, p, '2(p "—q„„") '=1 for large enough

p, '
Lsee Eq. (3.9)j, so that eventually the integral goes

as " T(p. ')
dp. '+i qir

~2+p
&2

dQ„„. (5.3)
g+p &2

The second term comes from the pole at p„'= q
'. In

this term, T becomes averaged over values of p, '
lying

in the physical range, 0&p, '&0.18 F '. However, in the
first term there are important contributions to the
integrand from values of p, ' of order a.

We estimate the effects of spectator recoil by adding
an effective range term sR3/2(pp ) to A3/2 . Choosing
R3/2 3 F (the value given by reference 6), and p, '=2a,
so that from Eq. (3.8) px„~a, we get -', R3/2pr„'=0. 08.
Since —A3/2 '=0.05 after the mass difference effects of
part A above were taken into account, we find A3/2

roughly halved in magnitude to A3/2= —8 F.
This value is still too large to bring one within the

experimental upper limit on r q. If one were to repeat the
calculation of rg with smaller Ag2 but with all other
A-matrix elements kept as before, one would reach the
experimental upper limit at Ag/2= —1 F (or +5 F in the
positive direction) and the mean experimental value for
any A 3/2 in the range A 3/2= —0.5 to +1 F. The experi-
mental r~ is quite consistent with A and Z' scattering
parameters comparable in magnitude.

Multiple scattering effects were not taken into ac-
count in computing the amplitude by impulse ap-
proximation. In order for multiple scattering to a6ect r ~

strongly, two conditions must be satisfied. "
(i) exp(ipz~)(Z'~ T~Z )/R must be of order unity.

E. is a typical internuclear distance in the deuteron. We
can neglect contributions exp(ip/i~)(A

~
T~ Z )/R from

rescattered A particles, even were (A
~
T~Z ) large: On

integration over E, contributions from different E
largely cancel one another due to the rapid oscillation of
exp(ipse R). Contributions from rescattered Z do not

Nl L. H. Schick, Rev. Mod. Phys. 33, 608 (196k).

TAsr.E XII. T-matrix elements (in F) for estimation of multiple
scattering effects; from global symmetry results for the '50 channel.
The Z Z' mass difference is taken into account according to the
method of Sec. II.

&~ l~lz p)
i/in[ T[z'n)
izoN( T (z-p)
izow

f

2' [zon)

—0.072i—0.24
—0.042i+0.026

3.47i—1.47
5.34i—2.22

aGect rb since final A and Z' channels will be enhanced
proportionate to their values in the impulse approxima-
tion limit, and the multiple scattering effect drops out in
computing the ratio r/, Con. dition (i) is certainly met in
the global symmetry case.

(ii) The returning Z' must interfere constructively
with production of one hyperon, and destructively with
production of the other; or at least its effect must be
appreciably different in the two channels. Otherwise the
effect will again drop out on computing the ratios r~
and rj.

In the global symmetry case, the amplitude
(Y'e~ T~ Z"n) for production by the returning Z' inter-
feres constructively with the(F"n~T'~Z p) amplitude in
both final channels (Table XII), so that the effect C
may not be too important in this particular case.

An interesting conceivable source of extreme three-
body effects would be a ZA'X T=1 metastable bound
state. A discussion using impulse approximation would
not be relevant if such a hyperfragment existed, al-
though some remarks on observable consequences are
appropriate. The most probable mode of formation for
the conjectured hyperfragment would be by electric
dipole transition from an 1=1 Bohr orbit. (Ke are as-
suming all internal angular momenta of the final state to
be 1=0.) For a photon of energy id, the rate goes as
~(r) ~'cv', where (r) is a typical nuclear dimension,
probably at least a factor 10 down from the Bohr radius
of the Z /f system (37 F).Therefore, in order to compete
even with radiative nI'~ 1s transitions, the binding
energy should be such as to give rise to a photon of
energy at least of order co=10'i'~g=4. |jeep, where ~g,
the Rydberg energy, is 19 keV for Z d. It is likely that
qd will be weakly bound if it exists at all, however,
especially in view of the fact that the lighter hyperfrag-
ment ~e has not been found. Therefore, it would be
entirely reasonable to expect few transitions to this
hyperfragment and consequently no great e6'ect, arising
from its subsequent decay via strong interactions, on the
spectrum of final A particles. This conclusion might hold
even in the case of a moderately large branching ratio,
since the momentum spectrum of A's from the hyper-
fragment could be very similar to that of the A's directly
from Bohr orbits, if the momentum distribution of the
nucleons in the hyperfragment were still deuteron-like.
(The end point of the spectrum would, of course, be
somewhat lower. ) Thus, if such a metastable state ex-
isted, it would probably not show up until such time as
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TAsLE XIII. Effect of F~ ~ GF~ on depletion of Z hyperons during cascade.

N (26)/N (38)
n'F=3X10" sec ' n'F=i)(10" sec '

N(8)/N(38)
n'F=3X10'Vsec ' n'F=i)(10' sec ' orb/rb

1/2
1/4

0.95
0.83
0.73
0.59

0.84
0.55
0.43
0.24

0.44
0,39
0.36
0.28

0.36
0.24
0.18
0.10

0.05
0.10
0.12
0.12

the y spectrum of this process became available for
study.

EGects A and 8 together have brought A3/2 from
+22 F to = —8 F. Our estimates were crude, and it is
entirely possible that more accurate ones would reduce
A 3/g still further. However, it seems unlikely that these
effects would reduce A 3f2 as far as the values A 3f2& —1 F
which 6t the experimental r ~.

It is heartening to note that the observed ratio can be
well fitted using small scattering lengths, for which
eRects A, 8, and C above are not expected to be
important. "

r~ is affected not only by a possible large nuclear
scattering length, but also by electromagnetic spin-
orbit couplings which cause transitions between initial
states of diGerent total spin. For captures from n) 8,
these couplings are so weak that formula (2.34) is an
excellent approximation to r~. For captures from n&8
uncertainty in estimating the eGect of spin-state mixing
stems from the uncertainty in estimating the depletion
of Z during cascade down to n&8. We discuss three
sources of uncertainty.

1. The Estimate of o.

If the cross section for de-excitation via molecular
dissociation were reduced by a factor G from the
geometrical assumed in Sec. 4,

obr ~ Gzrabz(zz/38)z (5.4)

Ar b/r b should increase. Decreasing G increases the time
spent in n& 28, where quartet and doublet states diRer
greatly in their values of 7 '. Consequently the spin
distribution becomes shifted farther from statistical.
Table XIII shows, however, that the eRect is small.

Further, unlimited reduction in t" does not lead to
unlimited error in rb,' for G&1/2 even the more slowly
captured state will become seriously depleted while in
~»8.

Z. The Estimate of V,b

As the subscript indicates, we have simply taken the
thermal value for the Z d translational velocity. Bethe

"de Swart and Iddings, who calculate VN scattering from
meson-theoretic potentials with hard cores, 6nd such small scat-
tering lengths for a wide range of ZZ~ and AZm. coupling constants
and reasonable values of core radii x0. They obtain values of
rb &0.6 for —0.05 & fgy. & +0.1 and 0.25 & fgg &0.35, with 0.3 &x,
&0.4 (in units of pion Compton wavelength). These values include
unitary symmetry (fzp=O, fpp=0. 28) but not global symmetry
(fzz= hz=0.29}.

and Leon, however, use a velocity about Gve times
thermal, arguing that the immediate past history of the
Z d atom is one of de-excitation via molecular dis-
sociation, from which the Z d atom should emerge with
about 1 eV translational energy. Since F~ ~ Vo~, while
r, is independent of V for all e and r„'is roughly inde-
pendent of V for zz& 28 )because approximation (4.25)
for f(n) holds for these zzl, taking V —+ 5V has the same
eRect on depletion from e& 28 as taking 6=5 in Eq.
(5.4). The depletion for G= 5 is given in Table XIII. If
now we examine low n,, 28& n& 8, we find depletion will
increase as V increases; r„'~

V f(n) goes over to linear
dependence on V as f(zz) b 1. Therefore, in both zz

ranges, the increase in U should bring about a decrease
in Arb/rb If we ap. proximate the change in depletion
from 28)e&8 by the change in depletion from m=9,
where U~5V produces the greatest eGect, we get
1V(8)/zV(26)&0. 33 for both I' and, therefore, orb/rb
&0.02. We have not taken into account the eGects of
the increase in Vg with V. Increasing Ve slows but does
not reverse the trend towards more depletion from low

n, so that we still expect a decrease in Arb/rb Furthe. r,
we have not taken into account that, when V~SU,
spin mixing may be neglected for an additional level,
zz= 8. Thus, our previous estimates for orb/r b may have
been too high, especially since it is di%cult to imagine a
mechanism which would lower V from V~,.

3. Estimate of I'~

Bethe and Leon note for E p that Auger rates near
n=11 exceed the geometric value XV~ao' by as much
as a factor of 10, and suggest that a treatment more
accurate than Born approximation would reduce Fg~"
in this region. Likewise in Z d near e= 14, F~~" exceeds
geometrical even when V= 5 V„b (5 V Vbzrab'=160)&10'"
sec '). If I'~-' were reduced in this region, there would
be greater depletion from the spin states which under-
went less depletion in 38~&zz~&28, so that Arb/rb would
decrease.

In summary of our eiforts to estimate tsr b/r b, then, it
is impossible to calculate exactly the effects of spin
mixing on r~, but, however, we have estimated it;
Drb/rb appears small enough that comparison between
the experimental and theoretical numbers is still pos-
sible.

If the Z d reaction were observed in a diffusion
chamber, so that the density X were reduced con-
siderably, then complete equilibration of spin states
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I' =1X10"/e',
I'r=5X10"/n'

would occur between each collision. The branching of [Qq(H)/Qq(H)]'"=[3. 1/79.3]'"=I/5. Taking jA('
ratio for capture from 38&~@~&8 would lie between rf =0.1 F', we get
and rq, while for capture from m&8 the appropriate
branching ratio would be r b.
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APPENDIX CAPTURE IN HYDROGEN

For convenience, we list some formulas and results for
capture by the free proton.

I' s"——m '(f„,(0) ('mr„[2mr„Qr(H)]'I'~As" ~',

I'r"——gr
—'(P„,(0) ('rlr„[2mr„Qr(H)]'"(A r"(' (A1)

+[2mr Qr(H)]'~D" ~'

I' s= (1.19X10"/I') ~As~' sec '
(A2)I'r= (1.19X10is/~s)

I
A&j'+4 33

I
A» I' sec '

Contributions from
~
Z z, r ~

' terms are down by a factor

In Table XIV are given the results of a calculation of

TABLE XIV. Depletion from Z p.

&PAL

N(23)/N(33)
N(6)/E(23)
X(6)/E(33)

1X10

0.81
0.39
0.32

$X 10»

0.48
0.37
0.18

we get

[ hrq(H)/r q(H) ( &
[ B(H) [,

~
dry(H)/rg(H)

~
&11%%u~.

(A6)

depletion from Z p, for V= V~h and G= 1. Using

b(H) =—,'[Xs(6)/Xs(33) —X(6)/JV(33)], (A4)

z F z-
Ar ~(H)/r b(H) = ~~5 (H) — +

FB Fp

-1 F8~ 3 Fp~-+-, (AS)
4 F, 4 F, '


