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A model, in which a heavy fermion 8 is added to the Lee model and weakly coupled to U and 8 is con-
sidered. Decay amplitudes for 8 —+ U+8 and 8 —& X+0+8 are evaluated by dispersion theoretic methods.
The absorptive part of these amplitudes incorporate contributions from one- and two-boson intermediate
states. Attention is focused on the question of how well founded is the usual approximate treatment of
absorptive amplitudes, which neglects the higher mass states (here the two-boson states) with respect to
the lowest mass (here the one-boson) statesIt is ,shown that in a dispersion scheme which involves sutlrcient

subtraction to give completely Qnite results, and which involves as many arbitrary constants as the theory
allows, the one-particle contributions to the absorptive parts of the 8 —+Ã+0+8' amplitude diverge
logarithmically and that these logarithmic divergences are cancelled by the two-particle contributions to
this amplitude.

I. INTRODUCTION
' 'N a recent paper, one of us' discussed the decay of a
~ ~ heavy fermion, called a 8 particle, which had been
added to the I ee model and which was weakly coupled
to V and 0 by the Hamiltonian

sc(k)
H„=Go g (btvak+vtbakt).

k (2co )r~s

The calculation was carried out in a dressed particle
picture and the amplitudes for B—+ V+8 and B—+ X
+8+8 decay were represented as spectral sums in-

volving contributions from the one-particle (V—8) and
the two-particle (E 8 8) states—. A—lthough, as ex-

pected, the perturbative series (in g„ the renormalized
strong coupling constant) consisted of convergent inte-
grals only, the one- and the two-particle parts separately
contributed divergent terms which, however, combined
to give finite and correct results.

This situation, in the event that it also arises in the
dispersion theoretic treatment of this problem has obvi-
ous and serious implications for the approximate treat-
ment of the absorptive part of amplitudes in which the
"lowest mass" contributions are retained, whereas the
"higher mass" terms are dropped on the assumption
that they will be dominated by the former. The present
calculation was undertaken to inquire whether such
cancellations do indeed occur in a dispersion theoretic
evaluation of the amplitudes for 8 decay.

II. B —+ V+8 DECAY

(V8,&'"'&
I II„IB). Contraction on 8, gives

D„(&)=(V la,H„I B)y dt8(t)(V I A,H.
I B) (2).

It is convenient to write

where

(3a)

4 (co) =i dt8(t)e' '(Vl j(t)H IB), (&b)

and j(t) is specified by

Ak(t) =ie' &'ts(k)(2co ) '"j (t)

and by

where pi indicates summation over a complete set of
states. Since the calculation is to hrst order in the weak-

coupling constant, the complete spectrum for the strong-

coupling problem is the proper one to use. Due to the
selection rules that are operative in the I ee model, only
the sector containing the V8 and the X88 states (we
here use the outgoing states) contributes to the
sum. g(co) can be written as the dispersion integrais

The absorptive part of p(co) is given by

y.(~)=wZi8(« —ne —~)(VI j(0)lt)(tlH IB» (4)

To lowest order in the weak coupling constant
D, (co), the amplitude for B—& V+8 decay, is given by
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P (o&) = (7r)-'J'P. (o&') I
o&'—o&

—it)7-'do&'; Q (o&) becomes III. 8 %+8+6 DECAY

The decay amplitude D„(o&„o&„),to lowest order in G,
is given by

(U I g (0) I
X8&,8&, '"'&)D (o& s o&s )

(4)
k, k' o&s+o&s —

o&y —st)

D.( „,) =(1«,8,'""IH-I».

After contraction on 8~ this becomes

where D„(o&s,o&s ) is the amplitude for 8~ %+8&,+8a
decay.

To represent the amplitude D„(o&) in terms of a
renormalized weak-coupling constant it is necessary to
make a subtraction; this is because the renormalization
of the weak-coupling constant by the strong interaction
involves the renormalization of decay vertex graphs
which never arise in the Lee model itself, so that the
ratio of the renorrnalized to the unrenormalized weak-
coupling constant, (G,/Gs) cannot be expressed in terms
of the renormalization constants of the Lee model alone.
We write

D-(~.,~.) = (2) '" dt 8(t)(1l)'8,& "'&
I A,H.

I 8&

We will refer to the two terms on the right-hand side
(r.h. s.) of Eq. (7a) as n(o&„o)&and P(o&„o&„),respec-
tively. n(o&„o&~) can be written as —u(p)L2+o&„7

—'
xx(o&, ; o&„) and x(o&„o&~) then becomes

x(~„~.)=i dt 8(t)e'"~'(N8 &'""
Ij (t)H„I B&. (8)

(Vl j(O) I
V8,t- »D„(~,)

co s (co s—M &
—2rt)

The absorptive part, x, (o&„o&„)is written

X.(o&„.o&„)=7r Pt 5(o&,+m+o&, 8,)—
xpa '""Ij(0) It&(tlH„la(I I j(0) I1&1'8k8a'""&D (~1, ros )

+~~ Z (~)
(o&s+o&s ) (o&s+o&s —o&y —irt) where the summation again extends over the V—0, ÃH

sector of the Lee model. The dispersion relation leads to
and set F(0)=G,. The matrix elements appearing in
Eq. (5) are easily expressed in terms of T„(o&) and R(o&),
the transition matrix elements for the elastic process
V+8„—+ V+8„and for the inelastic process V+8„-+
1V+8,+8s, respectively, both evaluated on the energy
shell. We 6nally write the integral equation

u(p) (R(q; k)D„(o&„)
Q GOBI & GOy

2(o&&) t & o&s—o&q —cd' —$17

S(q; k,k')D. (o&s,o&s )
. , (9)

» & o&@+o&s' o& s o&y st&

(2o&s)'t' T„*(o&s)D,(o&s)
I'(~n) =G.

u(k) o» (o» roy sr&)— —

L2(~.+~')7'"—M

u(k, k')

(o&s+o&s )Dn(o&r. ,o&i, )
X

(o&s+o&1: ) (o&s+o&1 o&r st&)——

where (R(q; k) and $(q; k,k') denote (X8,'""
I j(0) I

X V8&,&'s'» and (X8 &'"'&
I g(0) I

1V8&8& t'"'», respectively.
Integral equations for (R(q; k) and S(q;k,k') can be
written by systematically commuting the outgoing
boson annihilation operators from the left of j(0) to its
right, and writing dispersion relations for the resulting

(6) commutators which later disappear at t=0.' These
integral equations are

u(q) (2o& s)'" 1 1
(R(q; k) =g,fi, , &,+ g, T.*(o&s) —+

(2o&,)'ts u(k) o& s o& k o& s itt——

(2~ )1/2 1
+P T„*(o&.)(R(x; k)—

u(K) —o& s o&L
—co &

—sr/ o4—
o& &

—'Lt]

(10)

The quantity R(q; k) is almost identical to F(cy,co') in R. Amado, Phys. Rev. 122, 696 (1961); F(&o,&v') differs in being defined for
"in" instead of "out" states, and by trivial multiplicative constants,
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and

S(q; k,k') = —(2)-i/s g, ,
(2~k)'" (2o) ), )'/'

T *(~k)+i)q, k T.*(~a )
u(k) u(k')

u(q) I
2(o) k+&dk ))'/' 1 1

1/2
@*(~k+~k ) —+

(2(d q)'" u(k, k') -rd q rdk+O) k O) q

(2~.)'" 1
+Q T„a(o)„)s(qq; k,k')—

u(K) -4) k+rd k~ o) z
—

&d q
—sr/ Q) &

—o) q
—sr/-

(10a)

to
)fl(o)„' rd y) is evaluated by contracting on gq. This leads

p(rd, ; rd„)= (2) '/'L(/VIuqayH I8)
+(1V

I A,ayH„
I 8)]. (11)

The first term on the r.h.s. of Eq. (11) vanishes, since
H„ is linear in boson operators and since ak I 8)=0.' The
elimination of this term is essential. Dispersion schemes
which circumvent this step and culminate in equations
which still contain (XIaqayH„I8) implicitly lead to
trivial, useless identities instead of soluble integral
equations.

It is convenient to write p(o)q', rd&)=u(q)L2V rdq] '
)&)p(&dq; cdy) in WhiCh CaSe lt (&dq; cd„) beCOmeS

The absorptive part, p), ( o„)o„)),is given by

P.(o), ; o),) =qr P i b(o),+yN Ei)—
&&9'I i(0) I t)«I ~.H-

I », (»a)
where the summation in this case extends over the V,
Ã—0 sector. It might seem, super6cially, that the re-
placement of ayH„by the commutator )a„H„]in the
matrix element (lI ayH„I8) would effect a substantial
simpli6cation, especially since in this calculation the
dressed and bare 8 operators can be used inter-
changeably. However such a move must be avoided
since it would introduce the bare weak coupling con-
stant into the calculation, thereby obstructing further
progress. Instead, (tIayH„I8) is written as the sum

)P(rdq o)y)=s dt g(t)e'""(1V
Ij (t) I &)(t I oyH~I 8) (12)

Z i «l~, lt')(t'IH. I»
The resulting expression for )g(o)„o)y) is

—u(q) g, (2o) )r/2 2' s(o) )( gag (out)
I /ry I

Vg (ou&))-

p( „.)= 2 —(VI, Ivg '"")+&
2+rd q k -o) q q u(/r) q

Cf (2(d„)'/' T„*(rd )(Sg i'"")
I

/ry I
A gkg """')

+ P —(VIa IcVgkgk -'')+Q
k, k' u()r) G)N, GO g $'g

In Eq. (13) matrjx elements of ri, taken between various outgoing states, arise and must be evaluated. Let us, «»
example, consider (V

I ay I
Vgkf'""). We know that

(Vg &'"")
I
Vgk/'"")) =i),k=(V

I ay I
Vgkl'"'))+u(p) (2o)„)-'"5(~k,o)y),

where

$(Mk & My) S dtg(t)e'-"(VIq(t)
I
Vg, & "')).

Writing a dispersion integral for &(o)k, &dy) leads to
u(p) (2o) k)t/' T.*(td) )

(VIG I
vg /'""')=8 +

(2(d„)'/' u(k) rdk o)y ir/— —
Similarly, we can show that

u(P) /t2(o)k+o)k )] / R (o)k+o)k )
(VIa, Ixg,g, - )=

(2~ )1/q
7

o)k+ o)k I —rd y
—sr/u(k, k')

fR(u; 1)—u(p)
(Qg (out)

I
rr

I
Vg lout))

(2o)y) / o)k —o)& rdy sr/

aIld
s(~; k,k')u(p)

()&'g,'""
I

/r y I
&gkgk '"')= (2) '"I g. , key, k +g .k gy, k]—

(2rd y) / &d q+G) k~ —(d„—o) y
—'L'g

4 The "exact" states sre not stationary with respect to the weak interaction, IB)„therefore, contains no virtnal e particles.

(15a)

(15b)

(15c)
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IV. ITERATION OF DECAY AMPLITUDES

The preceding sections have led to an inhomogeneous system of two coupled linear singular integral equations
for the decay amplitudes D„(~&) and D„(co&,a» ).The kernels for these equations are either explicitly known, or else
are functions for which other soluble integral equations have been derived. The integral equations for the decay
amplitudes, as well as for the auxiliary variables, all have at least an iterative solution which can be explitly
generated. In some cases an exact solution can explicitly be given, either in terms of scattering amplitudes alone,
or in terms of scattering amplitudes together with other decay amplitudes. For the question of primary import,
however, it suffices to generate an iterative solution for D„(&oi) and D„(s&~,cv&, ) to the first few orders of g, . Before
proceeding with the iteration we note that due to the asymmetric treatment accorded to the A~' ') and A~'"'~
operator in D „(&0„'~~), the expression for the latter amplitude lacks manifest symmetry in ru, and ~~; we, therefore,
symmetrize it in co, and co„.

The lowest (zeroth) order of D, (cu„) is the inhomogeneity in Eq. (6) and is given by D„&0&(~~) =u(p) (2' i) '"G,.
Iterating this equation to the next order gives

u(p) «(o„'~'
D &2&(~ )=G. g 'i—

(4 ') k2

k'dku~(k)

(d i'(M p
—67,—$g)

(16)

Further iteration of Eq. (6) requires the amplitude D (&a&,cei ) to first order in g, (D„(co) is an even function of g„
D„(co,&u ) an odd onej, which is obtained by iterating Eq. (7a); Lcf. also Eqs. (9) and (13)j.The quantities which
play the roles of inhomogeneous part in this iteration are integrals involving D„&'&(co). There are two terms which
contribute to D (co&„&ui ); one originates from Eq. (9) and is contributed by the part of &R which is linear in g, and
is the inhomogeneous part of Eq. (10).The other is obtained from Eq. (13) and has its origins in the 8-function part
of (U~a,

~
Ve&,&'""). The combined contribution of these two terms gives D„&i&(co„co,)=G,g„u(I7)u(p)$2a&, &o„j @'

X (so,+~„).We now use this value of D „&'&(co„co~) together with the previously computed value of D„&2& (&u) to obtain

u(p) ar

D.'"(~n) = G, a,'—
(4m')' 2

jpgpg2gg

&0 QCV „(My+ M„—&L& &
—'&rl) (Gl g

—M &
—Zg) (M„—Gl y

—Vg)

(17)

The next step in the iteration, is the evaluation of D„&'&(~„&o„);Eq. (7a) gives many contributions to this order;
we will separate D„&3&(or,co') into two parts LD„&3&(~,u&')], and LD &'&(ao,ao')j&, in the following fashion: All contribu-
tions to D„&'& which originate from integrals involving the amplitudes D„&" or D,&'& will be grouped into )D„&3&$,.
The contributions that have their origin in integrals involving D„(&0,&u ) itself to first order in g, will be grouped into
PD„&'&(ar,ra') ji,. We note that the former group is obtained from the one-meson (V—8) part of the absorptive
amplitude while the latter is due to the two-meson (1V—8—8) part. Our earlier stated objective will, therefore, be to
examine whether PD~"&(co,co')g. and (D &"(co,o&') jz are separately finite.

%e note that iteration gives

LD.&"(~.~.)3 =
—G,g, 'u(I7)u(p) 1 1 ) 1

k'dku'(k) —+—
~

47r'(8co geo „)'" Q)~ CO~) (dp(Mi. G7~ M~ farl)

~ ~ ~

1 1 1

&0 y
—(d q

—Zrl M y
—M ~

—$'I& M p (M i—M q
—

CO ~
—Zrl)

~ ~

(0&& 1 cog& 1

. + —
I

Mq) My (&di My —
$&&) (dye Mi (COy M& 'i'g)

.g, (v) (p)
LD-"'(~.,~.)l ~=

4&r' (8(o qcu„)'~'

6 'I I 1
k'dku'(k) —+

&0 y (&0 g (d & $'g) M i (G) y
——(0 q

——
$'&&)

co pc@ i2 (07 i (d q
—

$'&&) 4) &M P (co i—cd &
—'ll/)

It is apparent that both of these terms contain logarithmic divergences, in the sense that, as the cutoR implicitly
contained in the function u(k) recedes to infinity (in the limit of u(k) = 1), the integrals become logarithmically
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infinite. D„(t)(o)„~„),the sum of the two, however, is given by

(~ o)(du) =
k'dk«'(k) [to t ((o,+(o„)—((o ot+(d „')]

Cot (o)t—(o&—zt)) ((dt —too —tt)) (tot —too —(o&—
2YJ)

and remains finite even in the limit «(k) = 1.D „(t)(o)„o)„)
moreover agrees with the same value for this quantity
as computed in the dressed particle picture' as well as by
ordinary renormalized perturbation methods.

V. CONCLUSIONS

We can conclude from the preceding calculation that
cancellations of divergent integrals between one and
two-meson parts of decay amplitudes do occur. Although
such cancellations do not take place in the evaluation of
the (subtracted) equation for D„((d) [Eq. (6)j, they enter
already in the third-order iteration of the unsubtracted
equation for D „((o,(o'). It is, of course, important to know
whether this cancellation is a general feature of this
method or whether it is specific to this model, particu-
larly because the equation for D„((d,o)') has no actual
inhomogeneous parts, but is "driven" as it were by the
D„((d) amplitude. ' However, this feature of the calcula-
tion seems to be more specifically due to the linearity of
the weak-decay Hamiltonian in the boson operator than
to the limited number of intermediate states in the I.ee
model; it, therefore, seems likely to us that this calcula-
tion reQects something deeper than merely an aspect of
the I.ee model itself. It is, of course, necessary to under-
take further investigations before such a conclusion can
be drawn with any con6dence; however, it would seem

5 The authors are indebted to Professor S. B.Treiman for this
remark.

proper even on the basis of this evidence to regard this
type of approximate treatment of absorptive decay
amplitudes with caution.

VII. APPENDIX

In the Appendix we address ourselves to a question,
raised in Sec. III in connection with the derivation of
Eq. (12) from Eq. (11);namely, why in writing a dis-
persion relation for P((d, ; co„) we choose to contract on
both boson operators instead of writing, much more
simply-,

p((d .~ ) 2—1/2[+ (gg (out)
~(ty~ ygk(out))D (&o&)

+g)t )t, (~g (out)
I (iu I

~gag), (out))D ((ot. (t)t,)) (A1)

This is of some interest, since Eq. (A1) besides being
much simpler than Eq. (12) is entirely independent of
any dynamical assumptions, whereas Eq. (12) follows in
part from the linearity of H„ in the boson operator, and
to that extent depends on the specific form of the
Hamiltonian H .

As noted in the body of the paper, Eq. (Ai) leads to a
trivial and useless identity. Substitution of Eqs. (14)-
(15c) into (A1), and symmetrization in or, and (o~ leads
to

Equation (7), thus, reduces to the trivial identity
D((o„a)~) =D ,„(coo,co „).


