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the higher order functions. To find these, we choose a
set of 2n coordinates at random and let A be any opera-
tor of the form

A=X E&+&(x ) Ei+l(x )

+XsE&+l (x„+r) Ei+l (xs.). (A12)

The positive definiteness of the quadratic form which
results from substituting this expression in (A1) shows
that the inequality (3.14) must hold. When vector

indices are attached to the operators E&+', the same
proof leads to (5.11).

We have noted in the text that, for the particular case
of coherent Gelds, the inequalities of second degree in
the correlation functions reduce to equalities. The
reason for the reduction lies in the way the correlation
functions factorize. The factorization causes all of the
second and higher order determinants involved in the
statement of positive defrniteness conditions Le.g. , (A9) 7
to vanish.
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The cluster expansion for the free energy of the Ising model is reinterpreted as a cluster expansion for the
pressure of the lattice gas. It is observed that the free energy of the Ising model is a function of 1—E', where
R is the long-range order, so that the pressure of the lattice gas is a function of o(1—p), where o is density.
The factor 1—p comes from the prevention of more than one particle occupying a lattice site. This idea has
motivated the development of a real hard-core gas with a weak attractive tail. A cluster expansion is devel-
oped in terms of the tail alone and the hard core is treated as a metric (i.e., the hard-core part of the potential
is treated exactly in all integrals). Pressure-volume isotherms are calculated explicitly in the zeroth order
or molecular field approximation using the Lennard-Jones (6-12) potential and good quantitative results
are found for the critical parameters as well as a qualitative understanding of the condensation phenomena.
The theory of the first-order correction (spherical model) is then outlined and fluctuations of the Ornstein-
Zernicke type in the local density are found. The theory of condensation is qualitatively understood in the
sense that the Weiss Geld gives an understanding of ferromagnetism. The theory of the detailed fluctuations
in the critical region is equally difIicult for both phenomena since the problems are put on the same footing
in the present paper.

I. INTRODUCTION

' "N a series of papers, Brout and Horwitz' have
~ ~ shown how to obtain a linked cluster expansion for
the Ising model and, in particular, how to calculate the
spherical model value for the free energy as a high-
density limit of the cluster expansion. Ke note the
trivial but important fact that the spherical model
value of the free energy below the Curie point is a
function of 1—E.', where E. is the long-range order of
magnetization. Reinterpreting the free energy of the
Ising model as the pressure of a lattice gas in the manner
of Lee and Yang, ' we observe that the lattice gas pres-
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sure is a function of p(1—p), where p is the density.
Since the factor 1—

p comes about from the fact that
no more than one particle is allowed on a lattice site
(hard core), we conjecture that it might be profitable
to formulate a cluster expansion for a real hard-core
gas with a weak attractive tail using the tail alone as
the perturbation and calculating all ensemble averages
with the hard core as a metric (i.e., the cluster integrals
which occur contain the hard sphere part exactly taking
into account no overlapping of the cores).

In Sec. II, we review briefly the cluster expansion
for the Ising model and the high-density limit (spherical
model) as a sum of ring graphs (random pha, se approxi-
mation). In Sec. III, we present this cluster expansion
by a method which uses the lattice gas interpretation
of the Ising model rather than the conventional spin .

method. The advantage of this method is that the
cluster expansion for a real gas with a hard core can
be developed in a parallel manner. In Sec. IV, we show
how to formulate this linked cluster expansion for an
imperfect hard-core gas. Finally, in Sec. V we calculate
the pressure-volume isotherms for the real gas using the
zeroth order of molecular 6eld approximation to the
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cluster expansion. By formally summing the set of
spherical model ring graphs, we then show how to
obtain fluctuations of the Ornstein-Zernicke' type.

Because the fundamental idea is simple, but the for-
mal manipulations tedious and sometimes dificult, we

have put all formal cluster developments into a series
of Appendixes. The physical content of the paper is
obtainable without reading these Appendices.

&=—s Z ~el'V~—ZI'& (2 1)

The gneiss theory makes the fundamental assumption
of statistical independence.

(1'~)=(u')( )

Alternatively, each spin feels a mean field

(2.2)

(Se .i)=g ~;;(y,;)+Be=a(0)R+X, (2.3)

where R is the magnetization and is equal to (p,;)
ensemble average. The energy is then given by

F.= ——',Nsr(0) R' —XsXR, (2.4)

where s(0) is the g=0 component of the Fourier trans-
form of the exchange integral. The gneiss theory be-
comes exact in the limit of an exchange integral of
infinite range. One calculates the free energy as 8—TS
where for S one uses the entropy of spins distributed at
random but at fixed R. Using the stationarity of E

3 L. Qrnstein and F. Zernicke, Proc. Acad. Sci. Amsterdam 17,
793 (1914);Physik Z. 19, 134 (1918).

For a review of this work see C. Bomb, in Advancesin Physics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1960),
Vol. 9, p. 191. For the applications of this work to critical phe-
nonmna see M. Fisher, Physica 28, 1/2 (1962).

II. REVIEW OF ISING MODEL OF
FERROMAGNETISM

In this section we recall briefly some of the results
known in the theory of the three-dimensional Ising
model. The point of view is that expressed in the papers
of reference 1.This set of works is incomplete and we are
still very far from a thorough quantitative understand-

ing of the three-dimensional phase transition phe-
nomena. However, we have obtained certain qualitative
understanding from the above-mentioned development.
It is to be hoped that this point of view will eventually
be juxtaposed with the numerical work of Bomb and
Sykes4 based on a term by term moment expansion of
the free energy. The advantage of the latter method is
a precise quantitative estimate of critical point be-
havior. The disadvantage is lack of a "physical picture, "
balance of energy and entropy, etc. Our present point
of view is to achieve a qualitative understanding of
condensation paralleling that of ferromagnetism.

%e Grst review the molecular theory approximation
of the Ising model. The Hamiltonian in the notation
of reference 1 is

with respect to R, we arrive at the familiar molecular
field theory equation for the magnetization as a function
of an applied magnetic field B.

R= tanh[;9(n(0)R+X)$. (2.5)

From Eq. (2.6) we find that the Curie temperature is
given by

kT.=s(0). (2 6)

(2 8)

where tt'(q)=s(q) —& and the saddle parameter, 8, is
given by the spherical condition

Q, t 1—P(1—R')io(q)$ —'=1V. (2.9)

v(q) is the crystal Fourier transform of s;;. A recently
discovered inconsistency in the spherical model indi-
cates that the fluctuation, (iis') —(ps)', is not equal to
the susceptibility (defined as dR/dH) for zero applied
magnetic field below the Curie point as it should be
from statistical mechanical considerations, although the
singularities occur at the same (Curie) temperature
defined in Eq. (2.8). This inconsistency occurs within
O(1/s') of the Curie point. Detailed examination by
Englert and Horwitz' has shown that one can reduce
the domain of inconsistency by bond renormalization.
However, the current status of consistency is by no
means clear. In this paper we shall ignore this problem
since the main point is to bring the knowledge of con-
densation as based on cluster developments to a quali-
tative understanding analogous to the Ising model
problem.

III. THREE-DIMENSIONAL LATTICE GAS

The Hamiltonian for the interaction in the Ising
model may be written as

K= —-' Q v "li li —XsRBC (3 1)

' T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
6 F. Englert and G. Horwitz (private communication); some

results will be found in F. Englert, Phys. Rev. 129, 561 (1963).

Equation (2.5) contains all the qualitative features of
ferromagnetism except a description of short-range
order, i.e., microscopic deviations in the long-range
order or magnetization. This is, of course, a direct result
of using a molecular field which is constant at all spin
sites. If the exchange potential is now considered to be
cut off at a finite distance (nearest-neighbor distance
in a crystal lattice is the usual procedure), then it can
easily be seen that the molecular field result is a high-s
approximation, where s is the number of spins in the
range of the potential. This result, as well as the ex-
pansion of the free energy in powers of 1/s (cluster
expansion), is described in II.

In III, it was shown that the summation of ring
diagrams with noncrossing internal dotted lines is
equivalent to the spherical model of Berlin and Kac.s

The Curie point is reduced from the Weiss model by
0(1/s) according to

kT.=it (0),
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where So is the number of lattice sites or volume of the
crystal. In order to establish the connection between the
Ising model and the lattice gas, we add to the Hamil-
tonian the constant gNov(0)+Nia!C, where v(0) is the
q=o component of the Fourier transform of v;;. The
Hamiltonian becomes

first expression ranges from 1 to X and the sum in the
exponent of the second expression ranges from 1 to Eo.

Using Eq. (3.6), a cluster expansion for the Ising
model may be derived. The motivation will become clear
when we attempt a study of real gas with hard cores.
We first rewrite Eq. (3.6):

HL.o.= ——', Q vry;Is; 2N—ov(0) NoR—BCjNPC. (3.2)
iwj ln==ln Q (1/N!)

N~o

Ke now de6ne

or equivalently

p= (1—R)/2
o'—= (1—p')/2*

R= (1—2p),

p'= (1 2o')

(3.3)

(3 4)

Np

BL.o.————,
' P v;s(p;p; —1)+No(1—R)SC

Np

= —-' Q v "(—2o,—2o+4o;o;)+2NopK

Np

= —2 P v;zo, os+2Nop3C+2Nopv(0)

so that o; takes on the values +1 and 0. In terms of
the new variables ei and p, the Hamiltonian becomes

X g' expL-,'P Q I,,;+NPp]. (3.7)
configurations i'

The factor 1/N! appears here in order to make the con-
nection later on with the real gas. The prime on the
sum over configurations indicates that we must include
all possible permutations of the particles in a given con-
figuration on the lattice. The 1/N! changes the summa-
tion over configurations from one involving only com-
binations to one involving both combinations and
permutations.

Following the procedure used in the derivation of
the cluster expansion for the Ising model (I), we replace
the summation over N by its largest term, say N. This
amounts to picking a fixed p= (N/No) or, equivalently,
using a canonical ensemble instead of a grand ensemble.
In the future, since E and N will never be used together,
we shall drop the bar over the N and replace N by N
in all equations. Equation (3.7) becomes

Np
= ——', Q I;;o;o; Nopp-, ,

iNj
(3.5)

ln = lnW(p)+in(exp(roP P I;;))+NPp (3.g)

where we have put tt;;=4v;; and p= —PR+N(0)/21.
Interpreting p as the density and p, as the chemical po-
tential, we find that the pressure (ln of the grand parti-
tion function) of the lattice gas is equivalent to the
free energy of the Ising model as follows:

PFr oNopv (0—)—No—PBC=No lnZz oNoPv (0)—NoP&—

=»{Z Z expLoP Z v'sj 'po+NoPR~3}
B=l (pi) —orNoPv(0) —NoPK

Np

=In{+ Q exp(gP Q I;so;o;+Nope, }

where W(p) =
~ N ~

and the average of a function, 0,(No
N&

of the u's is given by

&o)=— g o.
W(p) configurations

(3.9)

In writing the above expression for W(p), we are making
the assumption that no two particles can go on the same
lattice site (hard core). The function W(p) has the same
value as the function W(R) used in the Ising model
when p is given by Eq. (3.3) in terms of R. We now
write the logarithm of the average of the exponential
as a semi-invariant expansion. '

Z expDP E N.s+NPp j}
Ã 0 configurations

= ln" z, .o.=PpVjL.o.=D!pv Noir. .o., (3.6)

where v is the volume of a unit cell of the lattice and
a configuration of particles refers to an arrangement
with the particles considered as indistinguishable, and

p is the pressure. Clearly, the sum over configurations
of expL:,'P Q e;;j is equivalent to a sum over {o;}of

expLgP Q u;so;o;1 since the sum in the exponent of the

in(exp(2P 2 pe))= 2 (P /Ni)~ (l 2 I* ), (3 1o)

and proceed in the manner of the articles of reference 1.
As the cluster expansion so obtained is a re-expression
of the results of the reference 1, we relegate the details
of proof to Appendix A.

The reason for presenting this new proof of already
familiar results is that the development of the real gas
is carried out along exactly analogous lines. The reader
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obtain for the pressure

PNo= (1/P) E
—Nsp»p —No(1 —p)»(1—p))

+2rNspsu(0)+ (1/P)LNsp lnp
—Npp ln(1 —p)) —Nppsu(0)

= —(Ns/P) In(1 —p)+-,'p'u(0). (3.15)

Fro. 1. Pressure-volume isotherms (schematic) in molecular fieid
theory approximation of the Ising model.

interested in the details of the cluster developments of
the real gas (Appendix 8) as carried out in this paper
is first advised to practice on the Ising model as given
in Appendix A.

The results of the cluster development of the second
term on the right-hand side of Eq. (3.8) is that the
coeKcient of P"/I! is the sum of all irreducible graphs
containing m solid lines as well as internal noncrossing
dashed lines with the proviso that if a graph is pinched
together where there is a dashed line (i.e., two vertices
connected by a dashed line are juxtaposed), then the
resulting graph must be reducible. To calculate the
value of a graph, one associates to each solid line be-
tween vertices i and j a factor —I,; and to each dashed
line a factor —6;,. To a vertex joined by v solid lines,
one associates a factor cV„(p) which is the vth semi-

invariant generated by p. One multiplies these factors
together and sums on all possible such graphs.

In analogy with the Weiss theory of ferromagnetism,
we investigate the theory resulting from taking only
the first diagram in the cluster expansion. (In the
Horwitz-Callen formulation, this is the summation on
Cayley trees. ) This is

Np

2p Z urqrsgri~s= 2N&p u( )' (3.11)

To determine p as a function of p we use the stationary
property of the pressure with respect to p in analogy
with the molecular 6eld treatment of the Ising model.
We get

apN, /Bp= (No/P) lng(1 —p)p)
+Nppu(0)+Npp, =0, (3.13)

or
P= 2(«nht:2 (apu(0)+PA))+1) (3.14)

Eliminating p from Eq. (3.12) by using Eq. (3.13), we

The pressure is then given by

1
—ln. =PNs ——(1/P) lnW(p)

+,'Nppsu(0)+Nope. -(3.12)

In Fig. 1, we show the pressure-volume isotherms
schematically for three values of the temperature.
Again, as in the Ising model molecular field, we have a
loop in the isotherm for T(T,. The straight line is the
result of using a grand ensemble instead of a canonical
ensemble as we have done by fixing E. The dashed line
represents the coexistence curve of liquid and vapor
and is a transformation of the magnetization curve
from the Ising model. In fact, the isotherms could have
been obtained by simply transforming Eq. (1.6) using
Eqs. (3.4) and (3.6). We use the above method, how-
ever, to establish a connection later on with the real
gas. The critical temperature is determined as the
largest value of the temperature for which the corn-
pressibility, Bp/Be=0. Since Bp/Bp is zero when Bp/Bu
is zero, we see easily from Eq. (3.15) that

kT.=u(0)/4. (3.16)

This is the same as Eq. (2.7) for the molecular field
theory of ferromagnetism when it is remembered that
u(0) =4t (0).

It should be mentioned at this point that according
to Eq. (3.3) de6ning p in terms of R, we have the simple
but very important equation

—:(1—~') =p(1—p) (3.17)

The free energy in the Ising model apart from the
magnetic field is an even function of E since the
Hamiltonian is invariant under p; —+ —p;. Conse-
quently, the free energy can always be written as a
function of 1—E' which means that the pressure of the
lattice gas is a function of p(1—p). Furthermore, the
cluster expansion is in terms of p(1 —p), ' which means
that if we consider small densities (gas), we have an
expansion in terms of p or the number of particles
since 1—p is essentially unity. Similarly if we consider
densities close to unity (liquid), then we have an ex-
pansion in terms of 1—p or the number of holes. It is
easily seen that preventing the particles in the lattice
gas from occupying the same lattice sites (hard cores)
gives rise to the factor 1—p which is not present in the
original Mayer cluster expansion where the whole in-
teraction potential, hard core included, is used as the
perturbation. This leads to an expansion in terms of p
alone. The importance of the expansion parameter
p(1—p) is stressed since it will motivate our thinking
when we come to the real gas.

For completeness, we present the spherical model
for the lattice gas. Although it is subject to the same
inconsistency as the spherical model for the Ising
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PPNO ——InW(p)+-', NpPp'u(0)

—
2 Z»L1 —pu(1 —~) s(q)]+2ND~(1 —~)p~

q+0

+Natu, (3 18)

where s(q)=u(q) —e and e is the saddle parameter.
The equation determining e is given by transforming
Eq. (2.9).

(3.19)2 L1—p~(1—u) (q)]=N'
q+0

The interpretation of Eq. (3.19) is the following. We
write the interaction energy of the lattice gas as

(3.20)

where the Fourier transform of e; is de6ned in the same
way as for p; in the Ising model. Now,

model, it nevertheless gives an indication of how to
obtain Quctuations in the theory of the real gas. Since
the diagrams contributing to the spherical model in
the present case are the same as those contributing to
the spherical model of ferromagnetism, we shall simply
transcribe the equations for ferromagnetism into those
for the lattice gas without rederiving them. We shall,
however, derive the analogous theory for the real gas.
The equation for the free energy of the Ising model in
II yields for the pressure of the lattice gas.

then it is clear that the presence of the factor p(1—p)
in (3.22) for 8)P, leads to convergent results in the
liquid phase (p) —',). In this way, an equation of state
based on (3.18) presents a convergent expansion in
terms of the parameter p(1—p) which describes at once
both liquid and vapor, in the same way that the Ising
model factor (1—R') gives a convergence factor in the
presence of both &BC (in the limit as ~BC~

—+0 for
p& p.)

IV. THREE-DIMENSIONAL HARD-CORE GAS
WITH WEAK ATTRACTIVE TAIL

The motivation for dealing with a hard-core gas is
the success of the factor 1—p in determining an equa-
tion of state which is valid for the liquid and gas re-
gions below the critical temperature in the lattice gas.
The idea will be to use the hard core as the unperturbed
part of the Hamiltonian and the weak attractive tail
as the perturbation. 7 As with the lattice gas, the cluster
expansion will be made on the attractive interaction
averaged over the unperturbed hard-core interaction.
The following notation will be used throughout the
rest of this paper:

v=volume of system, x=number of particles, Ã0
=maximum number of particles in the volume, V,
a= diameter of hard core, v =u'/v2 =volume of each
particle in close-packed arrangement, p=density, pv,
=N/No g&"' (r) =n-particIe hard-core correlation func-
tion, f(r) = 1—g&" (r), vH. o.(r) =hard-core potential.

q/0

2 ~ 2 602
The logarithm of the grand partition function is

Xp ] Np

=P e, ——P e,e;=¹p(1—p). (3.21) I
~

I ~ p (p N)/N, ]~1 g i,j=10 Ã 0

But (~e, ~') is given by

(~ e, ~')= 28 In-/apu(q)
=p(1—p)/L1 —Pp(1 —p)s(q)], (3.22)

so that Eq. (3.19) for the saddle parameter just ex-
presses the spherical condition, Eq. (3.21). The phase
transition is the place where

~
eo~'~ ~, i.e., the com-

pressibility blows up. This occurs at unique values of p
and T, namely,

p, =-'„kT,=s(0). (3.23)

The critical density p, in this case is determined by
symmetry alone.

If it were not for the rapid variation of c(T,p) with

p within (1/z) of T, the theory based on Eq. (3.22)
would describe condensation very neatly. Actually the
critical region is very badly handled because of the
inconsistency mentioned in Sec. I.

I-et us, however, assume that this difhculty did not
arise; for example, suppose one could suppress the
variation of c with p in the critical region for some reason
or another t actually it has been shown that this sup-
pression occurs to O(1/s) and is probably general6],

g d'r; exp[ —-,'p p u;;], (4.1)

where u(r) is a long-range negative potential with a
hard core of diameter u. We now de6ne n(r) as the
negative part of u(r) and zero inside the hard-core
radius. Equation (4.1) becomes

No

In =In Q Lexp(PpN)/N!] gd'r;

p(-', p g [,;—;;(H.c.)]}
No

=In Q [exp(PpN)/N!] ~ g d'r;

&&expL-', p p v,;]g g... (4.2)

where g(r)=expL —peH. o.(r)]=zero for r less than a
and unity for r greater than a. Proceeding as in the
case of the lattice gas, we take the largest term in the

7 This idea has been applied to the equation of state of dilute
gases by R. danzig, J. Chem. Phys. 22, 1420 (1954).
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sum over X, calling it g and then dropping the bar in
the future.

In = ln(1/X!)

N N

i' l i&j l

=lnW(pv )+ln(exp(-,'p p v;;))+capp, (4.3)

where W(pv, ) is given by

(44)

which is just the hard-core partition function. The
average of a quantity in the sense of Eq. (4.3) is de-
6ned by

(0)= 0 II g' IId' ' II g', IId'»' (45)

Unfortunately, the numerator of W(pv, ) cannot be
evaluated exactly. The simpli6cation in the lattice gas
comes about because each particle can exclude only its
hard-core volume which is simply the volume of the
unit cell of the lattice. This is true for all positions of
the remaining particles. In the real hard-core gas, two
particles can exclude less than twice their individual
hard-core volumes if they get too close to each other
since the regions of exclusion will then overlap. Simi-
larly, e particles can exclude less than e times their
hard-core volumes and in a very complicated way.
However, if we assume that W(pv ) is a known function
(e.g. , by machine calculations), we can proceed for-
mally as with the lattice gas.

We expand the logarithm of the average in Eq. (4.3)
in a semi-invariant series

ln(exp(-,'p g v;;))=Q (p /I!)M (-,'Q v,;), (4.6)
n=l

' J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

and proceed with the cluster development as in Ap-
pendix A. The derivation is given in Appendix B.

The results of the cluster expansion for the real gas
diGer from that of the lattice gas in two respects. In the
lattice gas simple concise results were obtained by
taking into account the excluded-volume problem (no
two spins on the same site) by the introduction of the
dashed line bonds. In the real gas, simple results ex-
pressible in terms of the two-body hard-core distribu-
tion function are obtainable only in the superposition
approximation of Kirkwood as applied to the hard-
sphere problem. Analysis of terms of low order indicate
that the error so introduced is of O(1/s') in the critical

region, but this point is not proved. In any case, the
cluster expansion presented below is no longer rigorous.
The second item is that, whereas in the lattice gas it
was possible to sum whole classes of excluded volume
graphs by introducing M„(p) at a vertex, in the real
gas this is no longer possible. Thus, the results below
are given before this last step is taken. In the section
on the spherical model of condensation, this problem is
taken up in detail for ring graphs.

The coefficient of p"/I! in (4.6) in superposition
approximation is the sum of all irreducible graphs con-
taining n solid lines together with all possible com-
binations of dashed lines (now both internal and
external because of the second item in the above
paragraph). However, these must not be connected
sequences of dashed lines joined at a vertex at which is
not also joined a solid line. Unlike the case for a lattice
gas, Fig. 16 must also appear.

To each solid line associate a factor g"'(r)v(r) where
g& &(r) is the two-body hard-core distribution function
normalized according to Eq. (815) and to each dashed
line a factor Lg&" (r) —1j=—f(r). The value of a graph
with m vertices is p times an nz-fold integral over the
variables rl, , x' associated with the vertices. The
integrand is the product of factors associated with the
various bonds in the graph. The number of times a
particular graph appears is a combinatorial problem
which is not of interest in the present work. It may be
calculated using the techniques of IV. What is useful
for us at present is that a simple linked-cluster ex-
pansion exists (at least in superposition approximation)
and this may be used to classify terms to O(1/s) in
analogy to the Ising model.

V. RESULTS OF THE THEORY OF THE REAL
GAS MOLECULAR FIELD THEORY

OF CONDENSATION

Following the treatment of the Ising model and the
lattice gas, we 6rst take the zeroth-order diagram as
the only contribution to the pressure. We call this the
molecular 6eld because in this approximation, each
particle feels the same interaction with all other par-
ticles regardless of the con6guration of the system. This
in eBect neglects Quctuations in the local density due
to the attraction. It will be exact in the limit of in-
finitely long, infinitely weak attractive forces. The
pressure is given by

(1/X) ln. =PpV/cV= (1/Ã) lnW(pv )+-,'pvgv(0)+Pp
= lnw(pv. )+-,'pv&v(0)+Pp, , (5.1)

where

and inn(pv )= (1/Ã) lnW(pv ) is the free energy per
particle for hard cores alone. Pp is determined from the
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saddle condition

Pp= (&PI'/&Ã) p, v = P—(pv. »w (pv.))/&pv. )
v./a' PcPc&c

TmLE I. Comparison of some dimensionless constants in the
theory of condensation evaluated by three methods.

l—L~(pv.)'Pv (0)/~pv. ]
= (8/Bpv, ) (pv, lnw) —pvgv(0)

—s (p")'»(0)/~p" (5 2)

Expt.
K—L—A
Molecular 6eld theory

3.09
2.59
3.04

1.28
1.43
1.42

0.292
0.358
0.418

PpV ci lnw civ(0)
pv. spv4—v(0) l (p"—)'P

X 8pv~ Bpv~

= (PpVI&)H o l p. v..—Pv(0)

s(p—v.)'~Pv(0)/~pv. (5 3)

where the subscript H.C. denotes a quantity evaluated
for hard cores alone. The critical temperature is deter-
mined by setting the isothermal compressibility equal
to inanity. This gives the equation

V (Bp/0 V)~v , p——(8—p/cip) v 0, —— (5 4)

the solutions of which are p=0 which is uninteresting,
and (Bp/Bp) v Owh——ich we rewrite as

Plpv. (~P—/~pv. )v

= 2 (ci 1nw/Bpv. )+pv. I
8' lnw/8 (pv.)'j+Pv (0)

+2pv.PI:»(0)/~pv. j+l (pv.)'Pf~'v(0)/~(pv. )'3 (5 5)

The function p(p, P) as written in Eq. (5.1) will show
loops as a function of p for P)P, since it is analytic,
whereas the true pressure consists of three analytic
parts for P)P, . This, of course, is due to the fact that
the pressure, as written, is not valid in the region inside
the loops for the same reason in the Ising case. Equation
(5.5) will necessarily show spurious zeros (minima and
maxima of the loops) when the temperature is below
the critical value. Hence, to determine the critical tem-
perature and density, we must take the smallest value
of P for which it is possible to find a root of Eq. (5.5).
Ke get

0=BP/Bpv = —(v(0)+2pv LBv(0)/cipv $
+ l (pv.)'I:~'v(0)/~(pv. )'j) '~'(pv. lnw)/~(pv. )'
+(3(»( )0~/pv)+ 3pvL~' (v)0~/(pv. )'3
+ s (pv.)'[~'v(0)/~(pv. )'3) (v(0)+2pv. L»(0)/~pv. l
+s ( ')'L~'v(0)/~(pv. )'j) '~'(p'»w)/~(p')' (5.6)

In order to solve Eq. (5.6) for p„ it is necessary to
know lnw and v(0) as functions of p. As we shall see,
the critical density (pv, ) is in the neighborhood of e so
that good values are given by the density (virial) ex-
pansions of the pressure and the pair correlation func-
tion from which we can determine the density expan-
sions for lnw and v(0). Using the virial coeKcients for
the pressure and the tabulated values of the coefficient

of (pv )' contributing to g"'(r), s we find

(PPV/~) .
= 1+P".+P.(".)'+P (p .)'+P (p.)'+ "(5.7)

pv—,(B lnw/Bpv ), (5.8)

v(0) =npI, 1+nrpv, +ns(pv, )s+ (5.9)

where

Pi 2.9615, Ps= 5.4816, Ps= 7.4519, P4= 8.846. (5.10)

In order to compare the answers obtained from the mo-
lecular field approximation with previous work on the
subject and also with experiment, we take the negative
part of the Lennard-Jones potential i'4eL(a/r)" —(a/r) 'j
for the attractive tail; v(r) =0 for r(a We f.ind

ns ——15 797e, n. i——0.69241, ns= —0.12439. (5.11)

The last coefficient was obtained by numerical integra-
tion. Equation (5.6) becomes

1/(pvo) +6nr/pvo (3Ps 16ns 6Pini)
—(8Ps—24Pins) pv, —(15P4+12Psnr —24Psns) (pvo)'

—(3oP —16P ) (P .)'+o(P .)'=o (5 12)

Putting in the values for the coefficients, we 6nd

1/(pv )s+4.155/(pv, )—6.131—68.46pv,
—211.0(pv )'—198.6(pv, )'+O(pv, )'=0. (5.13)

Since the terms with positive sign in Eq. (4.13) de-
crease monotonically for positive pv and the terms with
negative sign increase monotonically for positive pe,
there is only one positive real root which is p,e,=0.233.
Assuming that all the truncated series are essentially
geometric, we estimate the error in the above result
to be about 3%.

We now use the value of p,v, in Eq. (5.5) to obtain
P,c and in Eq. (5.3) to determine P,p,v, . The values are
listed in Table I together with those obtained by
Kirkwood, Lewinson, and Alder" for the modified

9 See B. R. A. Nijboer and L. Van Hove, Phys. Rev. 85, 777
(19521.' In the above calculations we have used the so-called Lennard-
Jones (6-12) potential where the numbers in parentheses denote
the exponents of the attractive and repulsive parts. See, for ex-
ample, J.O. Hirschfelder, C. F. Curtiss, and R. B.Bird, Molecular
Theory of Gases aed Lsqasds (John Wiley 8t Sons. Inc. , New York,
1954), p. 162."J.G. Kirkwood, V. A. Lewinson, and B.J. Alder, J. Chem.
Phys. 20, 929 (1952). This kind of theory, as usually presented,
gives little qualitative understanding of the condensation phe-
nomenon but is based on the observations that the pressure-
volume isotherms as calculated turn out to have loops. In the
present theory, the advantage is that the qualitative physics of
the phenomenon is "fed" into the theory at the outset.



254$ M COOPERSM ITH AN D R BRO

.20-

.f6—

.14—

.12—

.10—

Fxo. 2. Pressure-volume iso-
therms of the real gas in mo-
lecular Geld approximation.
The abscissa is (v/v, ).

.OS

.06—

.04-

.02-

.oo-, t I I t l t

7.0 8.0 9.0 fN) 11.0 f2.0 13.0 14.0

-.02-
160 f10 fd 0

I.ennard-jones potential (I.ennard-Jones potential with number of
h d o ) d i 1 1 "Tha resu s. e theor of valid f

0

y ops. e

g eis thesameas o g

approximation.
e ir woo superposition lecular Geld theory in Sec. II. This agrees with the

Th di of h

P,P,it, with the experimentally d t '
d

ecu ar e value of calculation whw ether the canonical ensemble partition

to the very strong de d
e ermine va ue is due fun

epen ence o this quantity on the In eneral w
unction used is correct or not."

e n general, we may conclude t at t e o ecu ar eld

(p.~.) p,&(p,v.), where —2 and J3 ar th 1

a ure. ~~.z,v, is of the form theor usin thy
'

g e hard-core metric gives all the quali-

~ ~

are t emselves not tative features
very sensitive to p,v, and P,. If the t T

es of condensation as well as surprisingl

Ol'
0~~& lower than the molecular fmld 1 h

e rue, were only ood uantitg q i ative features. We clearly have a successful
y

ar e va ue, the value of zeroth a roxi

P,p,v, would be reduced by about 40%%u' h h b
pproximation to the phenomenon together with

into line with experiment. Note th t h
ou 0 w ic rings it ualitative

o e a t is correction is that of th
q

'
understanding. The entropy is essentiallia

e a d-core gas and the energy that of the

the
sing mo e calculations, tail. At low tern

1 1 d i o1 1 fi ld h o
oo igh for near-neighbor

interactions.
In I'i . 2 we h

Spherical Mod. el of Condensation

n ig. , we have plotted isotherms in the +—p We have se p
—i eenthat nthet oyo g

s 0 6. e ow the critical is possible to tak

~ ~ ~

s ow e amiliar loops in the densit b s gg p (p
nica ensem e calculation model~. In the ca

h h fh 1 y g eads to Quctuat o o 0 tee potentia has infinite this theor a ain 1

mus e emp asized, how- Zernicke t e.' T
h 1 b

line cutting o8 equal areas M ll
o e oops y a straight case to obtain

eas axwe construction) is &~/4 in the
'g, ain the first-order correction (coeKcient of

p ) o o "oy.
p p

di 1 li i dbm d p yse s eepest escents have
e in egra sum) over the order. It is unfortunate th t th h 1a esp erica mo el graphs

12 The experimental results quoted in the text are

summation at this point "as not led to such simple

s q e text are the mean resu ts as for the lattice gas. X tever cess, weincu eit~ ~

ere to illustrate how our cluster method works.

13 ee, for example, T. L. Hill, reference 12, p. 166.
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If it were not for the following complication, we
could transcribe the results for the spherical model in
the Ising ease as we did for the lattice gas. Consider
the diagrams of Fig. 23 in Appendix C. In the case of
the lattice gas, they add up to the value shown in Fig.
24. For the real gas, the three diagrams of Fig. 23 are
not equivalent in absolute value. We, therefore, make the
approximation that they add up to the single diagram
as in Fig. 24 for the lattice gas. It is virtually impossible
to estimate with any accuracy the error involved in
this approximation but it appears reasonable if the
range of the potential is large compared with the size
of the hard core (large s). This is evident from Fig. 23
where we see that vertices 1, 3, and 5 are relatively
close together compared with the other vertices whether

there are two dotted lines or three. Note that this
approximation does not depend on the density of the
system but rather on v,/v, since p enters only as a factor
multiplying each diagram.

We can now eliminate the external dashed lines from
ring diagrams containing internal dashed lines. We de-
note, as with the lattice gas, the sum of all external
dotted line ring graphs (with or without internal dashed
lines) by a skeleton ring graph in which each "vertex"
stands for pv.Lfi(r;—r,') pv—.f(r, r—,')j=M '&'& T.he
term "vertex" is used to denote two points, r; and r,'
connected by an M;, &'& (r,—r, ) bond. We can now sum
the set of all ring graphs with noncrossing internal
dashed lines as before in the Ising model. We look at
the pressure first.

Ppv = lntv(pv. )+-',Pv(0)pv, + (1/2X) Q
n=3

(8"/N)Ls12 M22 o&s2 2 s„l Ml 1&"jg dr, dr;

+ (p /4+) drldrl'dr2dr2' v12'M2'2 v21'Ml'1 + (p /4+) drldrl'dr2dr2'

X r(rl r2')M2'2 r(r2 rl')Ml'1 +p&tl (5 14)

where

s(r;—r;) =v(r; r;)g&'&(r—,—r )—r(r, —r,). (5.15)

The saddle parameter e(r, —r;) is now a function of the
positions of the vertices since f(r, r;) is not a—delta
function as in the lattice gas.

In the expression for the pressure, the first two terms

I'IG. 3. Ring graph which is recounted by the
third term of Eq, {5.14).

are the hard sphere entropy and the molecular field.
The third term is the sum of all rings starting with the
triangle and with the v bonds replaced by s bonds. The
fourth term is simply the single second-order diagram
in the cluster expansion. This would appear to give the
sum of all rings with noncrossing internal dashed lines
but graphs of the type of Fig. 3 are counted twice. This
is because we can look at the bonds on either side of the
dotted line as contained in the saddle parameter. Other
graphs of the type of Fig. 3 are also overcounted by
various amounts. The fifth term in Eq. (5.14) subtracts
just those terms vrhich are overcounted. The last term
is the chemical potential. Using Fourier transforms, the

Fxo. 4. Diagram con-
tributing to e;;.

pressure becomes

Ppv = lnw (pv,)+-',pv, Pv(0)
—(1/2Ã) P inLi —PM&'&(q)s(q)j

qWO

+(1/2&) 2 ~(q)M "&(q)
qAO

+(1/») 2 ~"(q)~(q)l M"&(q)3'
qAO

(P2/4+) 2 P'(q)~(q) Q (q)ELM 2& (q)3
q/0

(Pl») 2—v(q)M "&(q)+Op (5.16)
fi+O

Here e(q) is the Fourier transform of the saddle pa-
rameter and h(q) is the Fourier transform of e;;f,;
which is P, f(q —q')e(q'). Equation (5.16) reduces to
Eq. (3.18) for the lattice gas when it is remembered
that f(q) = 1, so that (1/1V) Q e(q) =h(q) = &&. Instead of
looking at the energy as in the Ising model, we deter-
mine the sum rule by calculating e(q) directly. c;; is the
sum of all irreducible ring graphs attached to two points.
This is shown in Fig. 4. Replacing each e bond by a s
bond counts all graphs correctly. The reason is that two
points are fixed and there is no ambiguity about which
side of a dotted line to consider as contributing to a s
bond. Ke thus get for e;;

~(r,—r,)

g dr, dr; s12 M2 2& &M2„„&'&s„2. (5.17)
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+ ~ 0&~
Frc. 5. Correction dia-
grams for the pressure.

which is a quantity analogous to e; of the lattice gas.
The Fourier transform p~ is de6ned as

p»= (p'"/E") Q exp(sq r;), (5.23)
The Fourier transform of Eq. (5.17) is

s(q)
e(q) = —~(q)+~(q) (5»)

1—Ps(q)M('& (q)

From Eq. (5.18), it follows that the pressure is sta-
tionary with respect to D(q) regarded as an inde-
pendent variable. Ke have

2 I ~» I'= (»/&) 2 2 expLsq (r'—r )]. (5 24}

Z» I ~» I'= 2» u, (5.25)

The right-hand term is zero when iAj since for hard
cores, r;/r; when i/ j.This is not true if the repulsive
part of the potential is not inlnite inside a 6nite volume
(hard core), Eq. (5.24) then becomes for hard cores

—PM"'(q)
+PM") (q)+ps(q)LM"'(q)]'

1—Ps(q)M(2) (q)
—p'~(q)LM"'(q)]'+ ll ~/»(q)]

XP P'&(q) ((7)l M (q)]'. (5.19)
@40

The last term of Eq. (5.19) appears to give trouble.
However, it must be noted that the sum in the last
term must be read symbolically in the following sense.
Since the term LM2(q)]' appears in the sum, it causes
an asymmetry since it puts e(q) and h(q) on an equal
basis. This is shown more clearly when we write the
sum as Q»»' e (q)f(q —q') e(q') LM('& (q)]'. What should
be subtracted in order to correct for overcounting in
the expression for the pressure is the sum of the dia-
grams of I'"ig. 5 where the circles denote M;; &2). The
sum, on the other hand, denotes the graphs of Fig, 5
but with half of them having the dashed lines on the
other side of the circles as shown in Fig. 6. %hen this
correct procedure is done, it is seen that the derivative
with respect to h(q) is actually 2e(q)l M("(q)]' since
the argument of M") changes from q to q' depending
on which ~ is referred to. Kith the help of the foregoing
argument, Eq. (5.19) becomes

28PP()/86(q)

p's(q) LM"'(q)]'
+ppg(q)l-M(2) (q)]2

1—Ps(q)M(2) (q)
—Ps/ (q) LM(» (q)]2/P2e(q) LM(2) (q)]2 (5.20)

Z» L I ~»l' —~]=0. (5.26)

This is the spherical condition which corresponds to
Eq. (3.21) for the lattice gas. Using the above ex-
pansion, we can evaluate (lp»I2) from the sum of all
spherical model graphs attached to two fixed points,
i and j.From (5.24) we see that this latter is just the
Fourier transform, of the sum of all spherical model
graphs attached to this two points. YVe thus have

00

(Ip»I')=&2 &p2" f(q)+ P P"P I s(q)]" 'PM"'(q)]"
go %=3 Q

+ (1/Sp)P g t)(q')LM(') (q)]'g(') (q—q')

1 M('& (q')
=C u's.f(q)+-

Xp 2' 1—pM(') (q')s(q')

M(2) (q&)+PQ(q&)Pf (2) (q~)]2 g(2) (q —qI)

(5.27)

Summing over I7, we obtain the sum rule in the form

Z C(l» I')-(1/s.)M"'(q)]=o, (5 28)
q+0

g
('& (r;—r )= 1—()r;x;,

g('& (q) =Npi&p» —1.

(5.29)

(5.30)

since P g('&(q)=0. It is easy to see what Eq. (5.27)
reduces to for the lattice gas. In this case

Comparing Eq. (5.20) with (5.18), we see that the
equation

c&pp V/c&6(q) =0 (5.21)

is shown below to be equivalent to a sum rule reminis-
cent of the spherical model.

To see the connection between the sum rule and
fluctuations, we look at the microscopic density. This
is defined by

~(q) =Z e(q')g(q —q') = e,

M"'(q) =»(1—u)

so that Eq. (5.27} becomes

I') =~(1—»)/51 —P~(1—») (q)],

+ t
2

(5.31)

(5.32)

(5.33)

)p(r) =g 5(r—r,), (5.22} Fro. 6. Diagrams snbtraced in Eq. (5.10) to correct
for overcounting.
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1—(P/4) [4&T,—~q'v (0)j V+q'

where y=v(0)/s(0) and X=y "(T/T, 1)'".E—quation
(5.36) holds for p= p, =si. This shows how the correla-
tion length, X ' becomes ininite near the critical tem-
perature for p =p, .

By writing
g"'(q) =&o&o&—f(q) (5.36)

for the real gas, we find a form similar to Eq. (5.36).
For small q, we have

f(q)—=f(q= 0)+nq' (5.37)

g"'(q)=&&«—f(q=o) —~q' (5 3g)

M"'(q)=—p'{1—[f(q=O)+W'jp") (5 39)

where f(q=0) stands for lim, Of(q). Note that f(q=O)
is not equal to f(0) (=0) as defined in Eq. (4.21).This
is a consequence of the normalization we need for
g & i (ri, ~ ~,r„)which is the most convenient for deriving
the cluster expansion. f(q=0) is easily evaluated by
noting that"

Then

or

f(r) ~ (1 p&TKn s )/—&. . .

f(O) =f(q=O) —(1/p —kTK . .) =0,

f(q= o) = 1/p —&TKH. s.,

(5.40)

(5.41)

(5.42)

where aH. s. is the isothermal compressibility for hard
cores alone. If we had chosen the grand ensemble nor-
malization for g&"& (ri ~ ,r„) we wou. ld have obtained

f(0)= f(q=O) =1/p —kTKH. s.. (5.43)

It is important to note that the quantity with physical
meaning is f(q=0) and not f(0) which is arbitrary to
within an additive Kronecker delta.

It should also be noted that for the lattice gas,

KL.o.——p (1—p)/p, (5.44)

so that f(q=0) = 1 as it should.
From Eq. (5.27), we see that the principal con-

tribution to (l p~l') is

&I pal')=M "(q)/[1 PM"'(q)s(q)] (5 45)

where the lattice gas sum rule, Eq. (3.19), was used.
Equation (5.33) is equivalent to Eq. (3.22).

To see what (l e, l') looks like in the lattice gas for
small q near the critical temperature, we expand v(q)
as a function of q.

v(q) =v(0)[1—aq'j, (5.34)

where n is O(s). Putting this into Eq. (5.34) we find
for T Tc

& I « I
')=p(1—p)/(1 —Pp(1 —p) [v(0) (1—~q') —v3

1/4 -'(T/vT. ) (5 35)

(P (o))-(P(0))'

(P (0))'
(5.47)

~ can be calculated directly from its de6nition using
the spherical model value for the pressure. Also, the
relative Quctuation in Eq. (5.47) can be calculated
directly. From the analysis of the spherical model in
the Ising case, it will be seen that the two quantities
will not be equal as they should from Eq. (5.47) al-
though they will become in6nite at the same value
of T. We, therefore, have the same inconsistency which
obtains in the spherical model of the Ising model. For
this reason we postpone further analysis of the present
treatment until some of these difhculties are cleared up.

VI. CONCLUSION

We have seen that it is possible to derive a cluster
expansion for the lattice gas without recourse to (al-
though the formalism is the same as that of) the Ising
model. Using this derivation plus the fact that the
quantity p(1—p) occurs in the expansion of the pressure
of the lattice gas, we conjecture that the hard core
plays a predominant role in the theory of condensation
since it allows a formulation of the equation of state
of the gaseous and liquid states together. To this end,
we have developed a cluster expansion for a classical
system of particles with hard cores and weakly attract-
ing long tails with the hard core treated exactly as it

From the denominator of Eq. (5.45) we see that the
critical temperature is given by

M&'~(0)s(0) =pv [1—f(q=0)pv, 7s(0) =1, (5.46)

and since the form of v(q) is given by Eq. (5.34), the
form of (l p, l') will be given by Eq. (5.35). However,
because of the complexity of the spherical model in the
present case, we cannot show that the value of the
critical temperature as determined by infinite com-
pressibility is the same as Eq. (5.46).

We have shown that the form given by Eq. (5.35)
is a reasonable conjecture but at present we do not
have a rigorous proof for this; these results are of the
Ornstein-Zernicke type.

Note also that in analogy to the lattice gas the ex-
pansion for (lp~l') for small q is in powers of pv,
X[1—f(q=0)pv, ) where f(q=0)=1—pkTKH. s.. In the
liquid range, ~H. g. —+ 0 and one recovers the expansion
coeKcients similar to pv, [1—pv j of the lattice gas. In
other words, whereas our expansion in the gas phase is
an expansion in density of particles, in the liquid it is
an expansion something like the number of holes. In
the critical region the parameter is mixed. The reason
for the unsymmetric isotherms (pv, /x2) is that the real
hard-core gas has interesting variation of compressi-
bility with density.

The isothermal compressibility is given by the Quc-
tuation in the microscopic density. We have
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is for the lattice gas. We have seen that in the limit of
infinitely long and infinitesimally weak attractive tails
(molecular field), we obtain a theory of condensation
which has the same essential features as the Weiss
theory of ferromagnetism. Noting the partial success of
the spherical model of ferromagnetism, we attempt an
analogy for the real gas and find essentially the same
results although it is very dificult to perform any
numerical calculations. We do, however, gain some in-
sight into the mechanism of condensation since we ob-
tain a series in the density which diverges for a critical
value of the density when T&T, and converges again
after condensation is completed because of the occur-
rence of factors of the form p(1 —p). We have shown
that by a reformulation of Mayer's original cluster ex-
pansion using a hard-core metric, it is possible to obtain
a qualitative understanding of the mechanism of con-
densation and to calculate quantitative results from a
simple approximation to the rigorous theory. It is
hoped that a consistent first-order correction to this
molecular field theory will be obtained by the possible
summation of all convolution graphs (nodal expansion)'4
in the present cluster expansion.

Note added il proof. It has been kindly pointed out
to us by Professor A. Siegert that the molecular field
approximation is very close to the van der Waals
approximation to the equation of state. In particular,
if W(pn, ) in Eq. (5.1) is approximated by (U/X —t),)~
and the dependence of g(o) (r) on p is neglected, the re-
sulting theory is that of van der Waals. The parameter
u is t)(0) and the parameter b is (t),). It is remarkable
that the two corrections included in our version of the
theory bring the van der Waals theory into such close
accord with experiment.

It may be pointed out here that this whole develop-
ment is completely rigorous for a one-dimensional sys-
tem of hard bars and an infinite-range potential whose
integral over the whole real axis exists Pand is called
t)(0)j. In this case the van der Waals equation of state
is rigorous. Of course, in one dimension, condensation
only occurs for infinite-range forces.

Note added iver proof. If instead of summing spherical
model rings, one sums simple rings one finds

The critical point is then where p'EH. s.t)(0) = 1. This is
the same as the critical temperature obtained from
Eqs. (5.4) and (5.5) if one neglects the density de-
pendence of g("(r) in v(0). For application of this
result to the theory of freezing see a forthcoming publi-
cation of R. Brout, Physica (to be published).

~„(*+a)=~„(*)+~„(o) (A1)

x, y independent.
To get an idea what the expansion (3.10) looks like,

we write out the first two semi-invariants explicitly.
The average is written in the following way. Since the
u's are functions of the positions, I', of the particles on
the lattice sites, we write them as I;;=@...,.. Then the
average becomes

+«;r;—
Np N Np

.,"rr g.;.; ( z rrg. ;.;),
«1«2 «ar-& i(.7'=1 «1«2 ~ ~ ~ «& i(.7

(A2)

where g...j=1—6...,.. The purpose of the g's is to take
account of the hard core by preventing two particles
from occupying the same lattice site. That Eq. (A2) is
equivalent to Eq. (3.9) is evident when it is observed
that the numerator in Eq. (A2) is equivalent to the
sum on configurations without permutations and the
denominator is W(p). The denominator in Eq. (3.12)
can be written

Np N

Z
«I ~ ~ ~ «+=I i(,7=1

Np N—1

«1 "«~-1, i&7'=1

Np n

«1 ~ .«oi i&7=1

APPENDIX A

Our point of departure is the expansion Eq. (3.10)."
We first recall the fundamental theorem of semi-
invariants. Let 3f„( &, M '» be the semi-invariants
generated by x and y, respectively. Then

where

&Ip. l')H. s.
&Ip. l')=

1—Ae(q)&Ip. I')H . for 2 (N(X. If we take n=2 in Eq. (3.13), then the
common factors in the numerator and denominator
cancel and we are left with

(Ip, I')H. s.——1—p j(r)e'o'dr.
¹

2 Nrt~og~r~2
&0

In particular,

+«1«y m(0),
Q gr, r, Xo(Xo—1)
«1«2

(A4)

lim
& I p, I')H. s. p~T'1tH. s..

@~0

'4 See E. Meeron, Phys. Fluids 1, 139 (1958).

'5Many of the graphical ideas introduced here such as re-
ducibility are assumed known to the reader from standard works
on statistical mechanics Le.g. , T. L. Hill (reference 12)g. The
general pattern of development is similar to the works of refer-
ence 1 with which the reader is assumed to be familiar.
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where u(q) is de6ned by

Np

u(q) = (1/N0) Q u...,. exp)ill (r,—r;)$. (A5)
ri&r7=1

The first semi-invariant is given by

N
&1=2 g (u...,.)=2LX(X—1)/(X0—1)ju(0)

i+j=l
=-'E0u(0)p2+O(1). (A6)

For the second semi-invariant, we have

M2 4L(—p ur;rrur3rl) (p ur;rx')(Z ut3rx))
igj, kgl i' kgb

i~j~ggg
L(ur;r. ur3rl) (urxrr')(urlr3)j+ P L(ur;rrurxr3) (ur;TT')(urxr3)$+2 Zr Hurxri ) (ur;ri) j (A7)

i/7'

The motivation for writing Eq. (A7) will be seen when we consider the individual terms. We start with the fi»t.

Nrir7Nrgrt Nrir7

urlrxurlr4 g gr, r 3i(j=1 g urlrlgrlr3 Q urxr4grxr4

2 gtlt3

~ ~ or4 rg ~ ~ orlI

4 4

urlrxurxr4( g ( grrt)Trglr '3rg3r ' 4grlrxgrlr4 II (gr rr')g

Z II (g;;)g l"3 g 3"4

(AS)

where we have used the reduction
Np N Np. N

(F(r,,r2, r„))= p F Qgx. t,./ g Qg,„,,
r1 ' rN x1 ~ ~ .rN i&j

r] o ~ o re i&7 r]. ~ re i&7

We now expand the products of g's in the numerator of Eq. (AS) into sums of products of &'s keeping, however, the
g's associated with u's in unexpanded form; i.e., we write g...,.= (1—43...,.) for all g's except those having the same
indices as the I products. For example, we write

urlrxutxrlgrltxgrlrlgrlrxgrlr4grxtxgrxr4 urlrxur314grlrxgt334(1 ~3333) (1 ~xlx4) (1 ~3333) (1 ~rxx4) ~ (A9)

The diagrams in Fig. 7 denote how this is done. A solid line represents a factor u...,.g...,. and a dashed line a factor

—l3...,.. The diagram of Fig. 7(d), for instance, represents the following expression (forgetting the denominator
for the moment):

utltxutxtogtlrxgtxto~rlr3 tot3 P grl rx gt3 T4 P utlrxur334grlrxgt334 P grl T3 gr3 T4 ~tl TT ~X3 t3
=P ~rlrxurlrxurxrogrlrxgrxr4 2 grl'r3'gr3'r4' P urlrxur334grlrxgrlr4 P grl'r3'gr3'r4'&rl'r3'=0. (A10)

In fact, the last three diagrams in Fig. 7 are identically zero because they contain at least one 5 and I in parallel.
When a diagram has two joined dashed lines coming from the ends of a single solid bond, it is identically zero. The
6rst and second diagrams are also zero but for a different and more important reason. This is seen immediately
when the numerator is written out.

~o
1gure 7(a) =p urlrxur334gtlrogx3T4 Q grl rx gr3 T4 Q uTlrxur334grlrxgT3T4 Q grl T3 gl'3 T4

~o'1gure 7(b) =Q urlrxurxrtgrrtxgrxrgrlr3 2 grl'r3'gr3'34' E uxlrxurlr4grlrxgrlr4 Z grl'rx'gr3'r4'&rl'r3'

Q urlrxurxrlgrlrxgrxr3 P grl'r3'gr3'r4' 2 urlrxurxrlgrlrxgrlr4 P grl'rx'grx'r3'

(1/+0) p urlrourxr4grlrxfrlr4 p grlTT3'gr3'r4' (1/+0) p urlrxurxr4grlrxgrlr4 p frl r3'gr3'rl'

(A11)

(A12)
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The factorization occurring in Eq. (A12) is a result of the translational invariance of the I s. By this we mean
that p,, 1 ' N...,.g...4 is independent of r;. Hence, any term represented by a reducible graph will factorize in a
manner similar to Eq. (A12) so that the full semi-invariant corresponding to such a reducible term will vanish.
Finally, we are left with the third diagram which represents for the full expression in M2

Figure 7(c)=1/D[ Q Nr4r&gr5rigr;rjgr5r13r4r5~r&r1 g gr r&'gr5'ri'
ii), k&l

where
24r4r&24r5r1gr4r&gr5ri P gr 1'r&'gr 5'r 1'&r 1'r 5'&r&'r '17& (A13)

Np 4 Np

II gr;r; g gr1'r2'gr4'r4'

Equation (A13) is rewritten

I 1V(X—1) (1V—2) (1V—3)

2 +6@To—1.) Plo —2) Plo —3)go'(Qo —1)'

fI ~ r4 i(j=l rI' ~ r4'

XP 6 (&6 I) P 24rir3gr4r4( &rir6) ( &r2r4)grir2gr4r4 &6(&6 1) P Nrir2grir4 g Nrgr4gr4r47
fI'' 'f4 &I 4 &2 r3, r4

RAT 4M 2 22'" oP M gfIf2 NIIf2 .

(o)

I I

+ 2 l i + 4
1

x + 4I I I

I 3
I I

(c) Qp

FIG. 7. Diagrams arising in M& from e»N34.

I'~

(I)

The second term in the numerator of Eq. (A13) is
clearly O(1/1V6) smaller than the first term.

The second term in Eq. (A7) yields the linked dia-
grams of Fig. 8. Figure 8(a) is zero through the argu-

If we adopt the convention of calling a diagram irre-
ducible if the irreducibility refers to dashed and solid
lines together, then we have the result that for M2, only
irreducible diagrams contribute to the free energy. To
prove the theorem that in general, only irreducible
diagrams contribute to the free energy, we make use
of Eq. (A1) for semi-invariants. Consider an unlinked
diagram such as Fig. 9. Its contribution to 3f6 is a
cross term in the expression

M6 (N12g12+ N24g24+ N34g34+ 2413g13+N56g56 ~14). (A 16)

flf2f3

ment following Eq. (A12) and Fig. 8(b) contributes
to M2,

But N~6g56 is independent of all the other terms in the
argument of M6 and, hence, by Eq. (A1) the cross term

Figure 8(b) =p' p N, ir,glair, gr, r4gi, r, is zero. For clarity, we write out the cross term explicitly
for M2(N12g12+N34g34), This is

X (—&„„)=p3 P 24„„2g„„'. (A14)

Finally, the third term in Eq. (A7) contributes to M2,

Figure 8(c)=-,'p' g I„„'g„„'. (A15)
flf2

+&1&2g&1~2N&3&4g&4&4

g 24rir2grir2 g Nr4r4gr4r4 (A17)
r3r4

For reducibly linked terms, the above argument also
holds, for consider the diagrams of Fig. 10. The con-
tribution of Fig. 10(a) to M6 is the cross term in

M6(N12g12+2424g24+N34g34+N13g13 314+N25g25) ~

Again N25g25 is independent of the other terms in the
argument of 3II6 in the sense that

(ap
2

(b) Fro. 8. Diagrams
arising in cV2 from
SI2Q23.

NfIf2gfgf2+fgf4gf3f4Nf3f4gf3f4 fIf3gfIf3 III4 f2' gr3r3
2 2

= (I/EO) Q Nr, r,"grir2Nr4rgr4r4Nr4r4gr4r4

XNrir4grir4&rir4 Q Nr5r4 gr5r4 ~ (A18)

Hence, the contribution of Fig. 10(a) to the free energy
is zero. The generalization is evident. Unlinked or re-
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Fzo. 9. A typical un-
linked diagram occur-
ring in M6.

6

ducibly linked terms involve in their reduced parts,
variables which are statistically independent. Hence,
cross terms cannot appear involving such terms LEq.
(A1)].Therefore, we have proved that all unlinked and
reducibly linked diagrams are zero. Finally, it must be
stated that only the first term of a semi-invariant ex-
pression for irreducible graphs is of O(E) because all
the other terms are partially unlinked and contain too
many factors of 6,; as in the second term of Eq. (A13).

It is not obvious that the cluster expansion which
we have just derived is equivalent to the one originally
obtained by Brout' for the Ising model since we have
no semi-invariant expressions of e;e;. However, con-
sider the four diagrams in third order (Fig. 11).When
these diagrams are added together, we obtain

( P +3P 3P +P ) 2 Nrrrrlrrrrgrrrr

=2'( p+3p 3p+p) Z ~ r 8"2 s~ r r

= (1 +) g &rrrprrrprrrr (A19)

The factor "three" occurs because there are three
ways of cutting a triangle and inserting one or two
dashed lines in the vertices. Clearly, for a ring diagram

of gth order, there are
~ ~

ways of inserting r dashedrj
lines and since a dashed line carries a minus sign as
well as a factor of p, we get for the sum of all ring graphs
in nth order

which is the sum of the two ring diagrams (open and
closed) in the gth order in Brout's expansion for the
Ising model. It still appears that we have lost a great
deal in this method since we have many more graphs in
a given order than in Brout's expansion. However, we
now prove the remarkable theorem that all external
dashed line graphs in a given order belonging to the
same configuration of I's can be summed and yield
a surprisingly simple result similar to that obtained by
Horwitz in IV. By way of introduction we first note
that each vertex of a graph in any order can be broken
up by inserting dashed lines. This is illustrated in Fig.
12. This holds regardless of what the solid lines are

~ + 3 ~ +
/

FIG. 11.The set of ring graphs in third order.

connected to. Thus, a skeleton graph which contains
no dashed lines can be used to represent all graphs of
the same type (i.e., coniguration of I' s) with dashed
lines inserted in all the vertices. The value of the graph
will be given by the product of polynomials with which
each vertex is now associated times the appropriate
expression in the I's. We now find the polynomial cor-
responding to a vertex of e lines. To do this, we Grst
consider Fig. 12, a vertex with three lines. On the right-
hand side of the arrow, the number of ways of obtain-
ing the 6rst and fourth graphs is one and the number of
ways of obtaining the second and third graphs is three.
Adding these together and remembering that a dashed
line carries a minus sign, we get p

—3p'+2p'. For a

(g)
ps gpfl 1+~ ~PR 2+ +( 1)Rp2%

2

=L1 ~ j"2 ~rrrr ~ ~ ~r rrr

FIG. 10. Typical reduc-
ibly linked diagrams occur-
ring in M6.

(A20)

FIG. 12. Insertion of dashed lines in a three-line vertex.

four-line vertex, the expression is found to be p —7p'
+12p'+6p'. We now observe that the expression for a
three-line vertexis just M2(e, )= ((e,')—3(e, )(e;)+2(c;)')
while the expression for a four-line vertex is

M4 (6') = ((6")—4(6")(E') 3(E').'+—12(E )(r6j)'—6(E')').

We, therefore, conjecture that the polynomial denoted
by an g-line vertex is M„(e;). We will prove this con-
jecture by induction. We first note that the coefFicient
of the term (x"')~'(x"')~' (x"')~' in M„(x) is

g!(r—1)!
(—1)" ' (A21)

(graf) r(g2i) r. . . (gr i) rniin2i ~ ~ ~ n, i

where g,=q'n„g, =g; P;=~'n, =r. The number of ways
of breaking up a vertex containing n lines into n~, e~ s,
u2, e2's, etc. , is

(g~!) '(g2!)~' (g, !) n&!n2! n, !
(A22)
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(o)

Also,

so that

(c)

FIG. 13. Two equivalent
diagrams in fourth order.

(A23)

(A24)

crossing dashed line diagram is already contained in the
diagram, Fig. 13(a), with the convention that each
vertex now represents a semi-invariant internal cross-
ing dashed line diagram is contained in some other
irreducible diagram and thus does not appear further.
Furthermore, any other internal dashed line which
when pinched leads to an irreducible diagram is not
present in the expansion. An example will make this
clear. Consider the diagram Fig. 14(a). This diagram is

Hence, it only remains to be shown that the number
associated with the connection of r points by pairs such
that each points is connected by at least one path to
all the other points is (—1)' '(r 1)—!.We assume that
this result holds for r up to and equal to m. Now take
p=1. This means that P I,; is constant since Al =Alp.
Then all terms in the expansion of the pressure vanish
except the first semi-invariant. Consequently, the sum
of the coefficients of each polynomial in p which we are
considering vanishes and since the sum of the coeK-
cients of any semi-invariant of higher order than one is
zero, this implies that in a vertex containing m+1
lines, the coefficient of p™+1is (—1) m!. Hence, by in-
duction, the result is proved in general since it is
obviously true for r=2. In the above proof, we have
not considered internal dashed lines connected to the
vertex under consideration. This introduces a complica-
tion in the proof but does not change the result. (See
Appendix C.)

We can now state the general expansion for the
pressure of the lattice gas. In the eth term, only irre-
ducible solid line diagrams containing e solid lines
remain. These irreducible solid line diagrams can con-
tain only internal noncrossing dashed lines with the
proviso that if we pinch a graph together where there
is a dashed line, then the resulting graph must be a
reducible one. The reason that only noncrossing internal
dashed lines appear will be evident from the following
example. Consider the irreducible diagram in fourth
order as illustrated in Fig. 13(a). We can break the
vertices up in the two manners indicated LFig. 13(b)
and Fig. 13(c)).The equivalence of the two diagrams
in Fig. 13 is obvious. Thus, in fourth order, the internal

f'
I+4 I tf
I

r r

+ I A 1+4 os~
~~am at

FiG. 15. Diagrams occurring in 3II2.

rI
I ~
I vr~
I

Fro. 16. Irreducible
diagrams occurring in+ ~ ) the cluster expansion of
the real hard-core gas.

APPENDIX B

The starting point is Fq. (4.6). As before, we examine
the first few semi-invariants:

since (v;;) is invariant for all iWj.Now

already contained in the diagram, Fig. 14(b) and hence,
should be omitted from the expansion. Another minor
complication of vertex summation will be discussed in
Appendix D. Disregarding this for the moment, we can
state the final cluster expansion as follows. A diagram
represents a structure of I's as before and, in addition,
each vertex denotes a factor which is the ) th semi-
invariant of ei where p is the number of solid lines
joined to the vertex. All irreducible diagrams con-
tribute except those with internal crossing dashed lines
and those with internal dashed lines which when pinched
yield irreducible diagrams. There are no external dashed
line diagrams.

e(r&—rs) Q g(r; r;) Q«;—

FIG. 14.Illustrative diagrams
which appear in the cluster ex-
pansion due to vertex sum-
mation.

(82)

where we have introduced the two-particle hard-sphere
distribution function g&'&(r) as defined in the canonical
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N N

iidr; II g"
3 i&j=1

II«' lI
i=1 i&j=1

(83)

&18'34 &12 &34
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4

&4& r, rs, r„r4)II «i&12&24 g
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~OOOOPP4

rf )'-

4 4
4

'I
4

4 44~ ~ ~ ~
~ ~ ~ ~ 4 ~ ~

FIG. 18. A nonsuperposition
diagram.

points. In superposition approximation, g&"&(ri .r„) is
given by +4&j gij

To get an idea of the order of magnitude of what we
are throwing away, consider the graph Fig. 18. If we
define the cube of the range of the potential t&(r) to
be the volume s, then v,/tt, is comparable to the pa-
rameter z, the number of nearest neighbors in the
lattice gas. Taking s,/s, to be large, we see that the
diagram of Fig. 18 is O(s,/s, ) . This is so because each
solid bond (i.e., a factor pt&) is O(s,/v, ) Li.e., (1/s)g as
we shall see from the molecular field theory. The inte-
gration over rl, r2, rs, r4 gives a factor of O(s,/v, ).
Furthermore, since points 5 and 6 are connected, this
limits the range of points 3 and 2 to the neighborhood
of points 1 and 4. This further reduces the order of

graphs of order greater than (2&./s, )2. We have not
attempted a general proof at this point.

We now outline the method whereby irreducible
graphs are obtained for the free energy in superposition
approximation. The first few graphs from Eq. (38)
which arise in the density expansion of g&'&(ri, rs, rs, r4)
are presented in Fig. 21 where we temporarily use a
solid line to denote t&(r)g(r). Consider now Fig. 22
which is contained in the sum represented by Fig. 21.
It would appear at first that this diagram would con-
tribute to its(ri —rs)s34(rs —r4)f(ri rs)—f(ri r4)—but
since its(rt —r2) can be integrated out (i.e., the diagram
is reducible), it actually contributes to sl2(rt f2)
Xt&34(f3 f4)g&'& (rs —r4). It is then obvious that there

4+,3

Fio. 21. Density expansion of Eq. (B8).

are no diagrams which will contribute to st2(rt —r2)
Xs34(f3 f4)f(ri —rs)f(ri r4) or—any other reducible
combination involving two f s. This is a general result.
Whenever there are two or more pieces connected by
a reducible combination of dashed lines, such a graph
is to be discarded. See Appendix E for the proof of this
statement. The 6rst term in Eq. (BS) is now seen to be

ttt tt ~ ~
~t t ~

~ t ~ t ~ tt ~ ~ ~ ~ ~ ~ ~ tt
~ ~tt ~

~t ~ ~
~ t

tt
~ ~

FIG. 19. Diagram con-
tributing to 2(r)g&»(r). & s + &2&~ &2&Lg &2&~ &2&g &2& &2&

~tt

tt t

tt

~t

Fra. 20. Diagram contributing to a graph containing f(r).

magnitude of the diagram by a factor so that we obtain
OP(s, /t&, )sj for the diagram. This is evidently the
simplest type of diagram which we are not including
in the expansion.

To see that more complicated nonsuperposition
graphs are Of(s /v, )2j we first notice that according to
Eqs. (89) and (810) a solid line which carries the
totality of dotted lines drawn between its ends simply
becomes 2&;, (r;—r;)g"'(r;—r,) (Fig. 19). We then note
that the set of graphs in Fig. 20 yields the function
—L1—g&2&(r;—r;)j which we denote by f(r, r;). — —
From now on, solid lines will be used to represent
2&,;(r; r;)g&2& (r,—r;—) and dashed lines to represent

f(r; r;). If we—now —replace the dotted line con-
necting points 5 and 6 in Fig. 18 by a dashed line, then
the reasoning following Fig. 18 still holds since f(r) is
just f(r) with a highly damped oscillating tail. We have
thus shown that a particular class of nonsuperposition
graphs is of OL(s,/t&, )2j. As it is easy to construct other
geometries in lowest order where this is the case, we
may then surmise that there are no nonsuperposition

13 14 13 23 23 24 14 24

=srstt34 Q g;j&2&, (311)

where the prime over the product indicates that we
must subtract all the reducible combinations involving

IC ~P g ~P ~
o. ~

~ ~
0 ~

P ~
r

~g e

F1G. 22. Reducible diagram contained in
the density expansion of Eq. (88).

two f's from the product of g&'&'s indicated. Equation
(88) can now be written

~12~34 ~12 &34

4 4

g dr; v»v34$ g' g4 &"—gts&'&g34&'&j . (812)

As in the case of the lattice gas, we expand the
product (primed) of g&'&'s into sums of products of f's
keeping the g(@'s associated with e's. Thus, the possible
graphs which may arise in M2 are given by Fig. j.5.
Notice that in Eq. (812), there are no denominators
as there were in Eq. (AS) for the lattice gas. This is a
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consequence oi the definition oi g'"&(r, r ) by Eq. ss y i i,h
(87). According to this de6nition, diagrams of Fig. 7.

g"'(r~—rfi)dr~dr2= V, (813)

g~'&(r)dr= V, (814)

or

dr f(r) = (1—g&" (r))dr=0. (815)

It is an immediate consequence of Eq. (815) together
with the factorizability properties of unlinked and re-
ducibly linked portions of a graph that all unlinked
and reducibly linked diagrams are zero. The proof is
the same as that for the lattice gas.

We thus Kind that using the generalized superposition
approximation, the expansion for the pressure contains
all irreducible graphs of solid and dashed line bonds
where a solid line denotes a v;;(r; r, )g—&@(r,—r;) bond
and a dashed line denotes the f(r; r;) b—ond. A graph
represents an integral over the bonds which it contains
multiplied by p times a combinatorial factor which is
the number of ways of obtaining the graph in the semi-
invariant expansion. Here, m denotes the number of
vertices and n the number of solid lines in the graph.
The expansion is thus the same as the lattice gas cluster
expansion before vertex summation with the addition
of irreducible diagrams of the type in Fig. 16 and with
the pair correlation function, gtfi~(r; —r;) used in place
of g...,. and f(r, r,) used i—n place of 5...,..

APPENDIX C

One complication arises in the proof that each vertex
of a graph denotes a semi-invariant. This complication
exists when there is an internal dashed line connected
to a vertex as in the graph of Fig. 23 which shows one
of the vertices containing a dashed line being opened
up. If the dashed line were not present, there would be
only one external dashed line diagram. However, we
see that the three external dashed line diagrams in
Fig. 7 add up to the same value (1+1—1=1) as an
external dashed line diagram with a single dashed line
connected to it. This is shown in Fig. 24. Furthermore,
when there are e internal dashed lines connected to a
vertex, each intenral dotted line gives rise to three
graphs (if the vertex contain two solid lines) when the
vertex is opened up. There are thus 3" graphs formed
when a vertex containing two dashed lines is opened up.

But the value of the renormalized vertex is simply the
product of the values of the graphs formed by each of
the e dotted lines which is (—1)".This is just the value
of an unrenormalized vertex containing n internal
dashed lines. Hence, for a vertex containing two solid
lines with any number of internal dashed lines con-
nected to it the value obtained when we renormalize is
just the semi-invariant, M2(~,). In the case of a vertex
containing more than two solid lines, we again consider
one internal dashed line connected to it. When the
vertex is broken up, we must replace the single internal
dashed line by 1 ~ r, dashed lines if the vertex con-
taining e solid lines is broken into r pieces. The number

. (r'I
of ways of arranging m lines or r vertices is

I ~. Sum-
p'&'

ming this on m gives the value of an e-line vertex
broken up into r pieces. This is just

F

( 1)rrs

n=1 mi

which again is just the value of the vertex with only
one dashed line connected to it. If we consider / internal
dashed lines connected to an m-line vertex, we simply
get (—1)' regardless of how many pieces the vertex is
broken into. This shows that the procedure of renor-
malizing each vertex of a diagram by summing all
external dashed line diagrams having that vertex is
unaffected by internal dashed lines connected to the
vertex.

APPENDIX D

A minor complication occurs in connection with the
vertex summation of lattice graphs. Consider the dia-
grams of Fig. 25. They each have the same con6gura-

FIG. 25. Unrenormalized diagrams contributing to M7.

tion of I's and also the same symmetry factor of 8.
This is arrived at for the diagram of Fig. 25(a) by

FIG. 23. Insertion of a dashed line in a vertex containing
an internal dashed line.

7
l

—
)( )I

—)XSX2X-',X-'=s, (D1)
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and for the diagram of Fig. 17(b) by

(D2)

Kl~
/Xr

l
I

p/

3

l y J'1
I X j' I
I
II/

1
7t

I

//
IC

4 3

Now it is possi e y i'bl b inserting dashed lines at vertices
1 d 2 f ach diagram to arrive at the same diagram.
This is done in the manner indicated in Fig. . o-

FIG. 26. Identical dia-
grams produced by break-
ing up diagrams 17(a) and
17(b).

Fzc. 28. Ways of joining vertices to produce i ent' gi entical diagrams.

identical diagrams, we must have at least the vertices
111 icate lil Id' t d in Fig. 27 joined together in Fig. a .

t ose dia-Therefore, identical diagrams occur only for those ia-
grams obtained from Fig. 26(a) in which the vertices
are joined as in Fig. 28. But the sum of the four dia-
grams in w ic e vh' h the vertices are joined as in ig. is

and 25 b. Therefore in breaking up Figs. 25(a) an ( )
ore con-l t there is no overcounting. Ke there ore

mationjecture (but cannot prove) that the vertex summ
as stated in Appendix A does not lead to overcounting.

an be examinedIn any case, any given class of grap s can e
as we have done above.

APPENDIX E

1 70t—XSX2=-', . (D3)

'd Fi . 26(a) occurring in the cluster expansion. This
diagram has a symmetry factor of —,which is ob y

In connection with Eq. (811) it was stated that the
diagram of Fig. 22 contributed to e~2e34g34 . p
of this statement and a general proof for reducible dia-
grams in all orders follows. We consider first the fol-

But Fi . 26(a) can be obtained in four ways and Fig.
26(b) in two ways so that it appears that we have over-

That this is not the case will now be shown.
Consider the points 1, 2, 3, and 4 in Figs. ,a,

) I F' . 26(a) points 1 and 4 must be connected
together as well as points 2 and 3. In ig. ( ),
same thing holds. Consequently, in order to have

3 4 f 2
r t ~+ I

IV

3
(a)

~4 5

I
I II I

1 2 1

FIG. 29. Diagrams con-
tributing to second and
third orders.

II / Ir
I

I

~r

Fio. 27. Vertices in Fig. 18(a) which
must be joined to have identical diagrams
from Figs. 17(a) and 17(b).

lowing diagrams in second and third or e .r. If the dia-
grams of Fig. 29(a) are considered together, then the
contribution is to v~2e34g34

'b ' ' t &2) and the full semi-invarian
expression is zero. o sT see this we write down what the
diagrams o ig. af F' 29(a) stand for being careful with thei. 29afactors of X involved. The two diagrams of ig. (a)
are

U4

1 N

+—p
U 2=5

N
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Similarly, for the diagrams of Fig. 29(b), we have

N (N —1)(N —2) (N —3) (N—4) (N—5) 6

'3122341tssf isfssf25 II
p'6

N

+ Q 211634156fl f 3f82'p'd'r;d'r, +
P' i-7 „ V i~j=v

6

21»v343156f „f;,f;2 Q d'rsd'r, dsr,

6 $ N 6

2 X Q &122841156fi,f 'sf 32 II d'r, d'r, +—p 21»»4»sf i,f,;f;2 II d'rsd'r 'd'r;
p' i=5 k 1

1 N 6 2 N 6

112284256fl f'jfj2 II d'rsd'r'd'r, +—Q 51231842156fi,f;;f,s II d'rsd'r'd'r;
p' igj=3 k=1 P igj=3 k=1

N(N —1)(N —2) (N —3) (N—4) (N —5) s

g d rg»&84256filfvsf32

X{8+8(N—6)+ (N —6) (N —7)—2)4(N —4)+ (N —4) (N —5)j—(N —2) (N —3)+2(N —2) (N —3)}= 0. (E2)

In fact, it is obvious that we are dealing with semi-invariants of independent variables. For instance, Eq. (E1)
can be written as

i=3

N(N —1)(N—2)(N —3) ~
Q L(3'12flsf42&84) (212fllf42)(&84)]

p'4
(C3)

while Eq. (C2) can be written as

N (N —1)(N —2) (N —3)

i"j=3 .i j j=4i =5 j=61
5 I cxclUQQQ

&12&34&56 li ij j2 &12 li ij j2&34 &56

—(1»fief;;f ass)(234) —(1»f1'f';f;2)(3 842 56)+2(&isfi'f'&f&2)(5'84)(2'56)) =o.

Consequently, every diagram involving reducible combinations of f and v bonds is zero when the full semi-invariant
is taken into account. We must consider these diagrams then to contribute to some g&" bond rather than to a
product of f bonds as in the above examples.


