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where E„(t)=(si/2)e' ""H„"&(it). The conditions for
the validity of this expression are given in reference 12
as Re(a+/)) 0 and Re(p&p&i+1)) 0. However, the
sign of p in the second condition is incorrect. The basic
requirement is that the integral converge, ' and the ex-
pression, Eq. (4.15), for H„&'& (t) for small t can be used
to establish the correct limitation on p, p, and v.
Convergence at in6nity is assured by the exponential

's E. C. Titchmarsh, Proc. London Math. Soc. 2, 97 (1927).

behavior of the E functions at large distances. For the
quasidivergent integrals needed in the text, a=P, and
p= v. In these cases, Eq. (A2) simplifies to

2" s(N
E '(t)t"dt= I'~ s+i+—

I'(1+is) k 2

1+n 1+I
XI"~i ~I'~i
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The well-known first two terms in the asymptotic density series for the ground-state energy of a Bose
gas, ED= 2sXpag1+ (128/15/ s) (pa')'"g, where a is the scattering length of the pair potential, is ordinarily
obtained by summing an infinite set of graphs in perturbation theory. We show here how this same series
may be obtained by elementary methods. Our method o6ers the advantages of simplicity and directness.
Another advantage is that the hard-core case can be handled on the same basis as a finite potential, no
pseudopotential being required. In fact, the analysis of the hard-core potential turns out to be simpler than
for a finite potential, as is the case in elementary quantum mechanics. In an Appendix we discuss the high-
density situation and show that for a certain class of potentials Bogoliubov's theory is correct in this limit.
Thus, Bogoliubov s theory, which is never correct at low density unless a pseudopotential is introduced, is
really a high-density theory.

INTRODUCTION
' 'MPORTANT and often brilliant theoretical investi-
~ ~ gations by many workers in the past few years have
given us considerable insight into the nature of the
ground state and low-lying excited states of a many-
particle Bose gas at low density with repulsive pairwise
forces. While the intermediate density problem is still
unsolved, we at least know now how to begin a con-
sistent expansion (possibly divergent) in the density. In
appropriate units' we have the following well-known
formulas for the ground-state energy, Ep, and the
energies of the elementary excitations of long wave-
length, e(k):

where

Ep' ——2mXpu',

a' =— s (x)d'x,
4x

(13a)

(1.3b)

theory cannot be justified in this case (Es is enormously
greater than the spacing between the unperturbed
ground and first excited states), it is easily seen that all
terms in the perturbation series beyond the second are
divergent for any potential. By this is meant that
although the terms are not actually infinite, they are
proportional to a higher power of N than the first.

Nevertheless, it was held for a long time that the
first term in the perturbation series, viz. ,

&s=2wNp~(1+(12g/1~Ver)(p+')' '+ ' ' ')~ (1 1) was exact, ' s(x) being the two-body potential. Equation

e(k) =2(s.pg) '~'Q+ (1.2)

where N is the number of particles, p=N/V is the den-

sity, and a)0 is the scattering length of the two-body
potential. The omitted higher terms in Eq. (1.1) depend
upon the shape of the potential as well as the scattering
length; Eq. (1.2) is justified if k(((pu)'~s.

While Eqs. (1.1) and (1.2) may now be regarded as well
established and, therefore, elementary, it was not always
so. The erst attempt to find Ep was based on perturba-
tion theory. Aside from the fact that perturbation

'A=1, m=1.

' We must be careful to define the meaning of exact and approxi-
mate as used in this paper. We are interested in calculating E0
as a function of density for a given fixed potential; we are, there-
fore, concerned with an asymptotic series in the density whose
coef6cients, and, indeed, whose entire form are functionals of the
potential. As such, Eq. (1.1) is exact in that it gives correctly the
Grat two terms in an asymptotic series. Equations (1.3) and (1.6)
are only approximations to that series. If, on the other hand, we
regard the potential as being proportional to some parameter, X,
and if we were interested in a double expansion in p and X, then
Eqs. (1.3) and (1.6) would be exact. We are not interested in this
latter type of series because for a large potential, such as a hard
core, it is relatively useless. Indeed, there is no need for such a
double series, because it is the burden of this paper, as well as of a
good deal of previous work, that it is just as easy-to generate the
former type of single series as the latter double series.
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(1.3) was justified on the grounds that Es' is the expecta-
tion value of the Hamiltonian in the unperturbed ground
state and that

lim (poly)=1
p~o

(1.4)

a(— tt(x)d'x= a'
4m

for all z(x) that have no bound states.
The incorrectness of Kq. (1.3) notwithstanding, it is a

good approximation to Eo for those potentials that are
relatively shallow compared to their width. Of course,
Eo' is completely nonsense for a potential with a hard
core, and this gave rise to the view that the hard-core
potential was particularly dificult, requiring special
tricks and methods —a curious conclusion in view of the
especial simplicity of the hard-core potential for two
particles.

%ith Eo' as a starting point, the next problem was to
do something about the divergent terms in the perturba-
tion series. Various methods were introduced which in
one way or another consisted in summing up an infinite
subset of the terms in the perturbation series. A typical,
and especially neat example of this procedure is
Bogoliubov's method' which characteristically gives as
a solution Eq. (1.1) with the scattering length, a, re-
placed thoughout by a'.

Ep'+Ep" 2rrlVpa'——
&&(1+(»g~»V-)[p(") ]~+

The method is extraordinarily reasonable, but fails in
that it relies on Eq. (1.4) which, as we have seen, is
incorrect owing to a misinterpretation of the limiting
process p~ 0.

The next step was the realization that a' is itself the
first term in the Born series for a, and with this as a
clue it was then seen that each term in the partial

'L. Van Hove, Physica 18, 145 (1952).
4 H. A. Bethe, Phys. Rev. 103, 1353 (1956).' N. M. Hugenholtz, Physica, 23, 481 (1957).
L. Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959).

7 The Macy Body Problem, edited by C. De Witt (John Wiley
R Sons, Inc., New York, 1959), p. 343.

where fs and lt are, respectively, the normalized un-
perturbed and exact ground-state functions. Equation
(1.4), while seemingly reasonable, is only an approxima-
tion. The truth is that the left-hand side of Eq. (1.4) is
asymptotically zero for large X, not unity. ' ' It is quite
true that f approaches unity (i.e., Ps) when al/ particles
are far apart, but when two or more particles are close
together P differs appreciably from Ps and this difference
does not vanish in the limit p —& 0. But it is precisely the
region when two particles are close together that is needed
for evaluating the potential energy. It might be remarked
in passing that Eo' must be an upper bound for Eo, a
fact borne out by the Spruch, Rosenberg inequality'.

summation of the perturbation series mentioned above
was itself the first term in a heirarchy which, though it
could not be explicitly summed, could be recognized
as the Born series for a.' '

Thus, by a very complicated twofold summation of
infinite sets of graphs, Eq. (1.1) was 6nally obtained. At
this point, mention must be made of the important work
of I.ee, Huang, and Yang" on the hard-sphere Bose gas.
For this problem u', of course, does not exist and so one
could not arrive at Eq. (1.6) as a first approximation to
Eq. (1.1). But by using the pseudopotential (or alter-
natively the exact formulation in momentum space
given by the author") and then Bogoliubov's method,
these authors were able to arrive at Eq. (1.1). At first
sight it seems very surprising that Bogoliubov's method,
which is never correct and indeed gets worse the deeper
the potential, should give the correct answer in the case
of an infinite repulsive core. The reason is that by using
the pseudopotential as a starting point one has partially
solved the problem already, and in fact what has been
done is to reverse the order of summing the twofold
infinite series mentioned above. An important point to
note is that only after I.ee, Huang, and Yang had
successfully come to grips with the infinite repulsive
core, and thereby clearly demonstrated that the scatter-
ing length and not a' is the relevant parameter, was
progress made in going from Eq. (1.6) to Eq. (1.1) for
the finite potential case.

Having said all this by way of a brief historical survey,
we may in retrospect consider the following points:

(i) The calculation leading to Eq. (1.1) can by no
means be regarded as elementary, although the physical
interpretation of the first term, at least, 2xSpa, is
obvious. It is simply the number of pairs of particles,
-', $(lV—1), times the ground energy of two particles,
in a box of volume V. Yet to obtain this term one is
obliged to sum an infinite series of graphs. There can
be no doubt that some plain physics has been obscured
by an overwhelming amount of difficult, albeit sophisti-
cated, mathematics. The second term in Eq. (1.1), does
not seem to have any very simple physical interpreta-
tion, and whatever meaning it does have is obscured by
a twofold summation of an infinite series.

(ii) The mathematics itself is certainly not free from
internal criticism. For one thing it was thought that one
had isolated all the leading order terms when Eq. (1.6)
was obtained; this did not prove to be the case. Can we
be sure that we have now found all the appropriate
terms in arriving at Eq. (1.1)? Secondly, for every term
in the series leading to Eq. (1.1), it is easy to see that
one has rejected an infinite number of terms each more

K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).' J. T. Beliaev, Zh. Eksperitn. i Teor. Fiz. 34, 417 (1958)
Ltranslation: Soviet Phys. —JETP 7, 289 (1958)g.' N. M. Hugenholtz and D. Pines, Phys. Rev. 116,489 (1959)."T.D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

~ E. H. Lieb, Proc. Natl. Acad. Sci. U. S. 46, 1000 (1960).
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divergent than the one retained. Thirdly, the series
leading to the second term of Eq. (1.6) diverges if one
takes the correct order of limits E—&~ and thee
pu' —+ 0. This is because the series is a power series in
x=0M/1„(ls= V), which, for dimensional reasons, must
converge to x'" for large x—clearly an impossibility.
This difhculty was overcome by I.ee, Huang, and Yang
by a renormalization procedure at high energy; Bogoliu-
bov relied on the fact that the high-momentum com-
ponents of n (x) went asymptotically to zero. But clearly
high-momentum considerations should play no role for
particles having very low energy, as in this problem.

(iii) The hard-core problem would seem to be a
special case requiring extraordinary care. This is indeed
strange in view of the fact that for the many-body prob-
lem, as for the elementary two-body problem, the hard-
core potential is the only potential for which one can
evaluate the potential energy a priori and show that it
vanishes. All of Eo is kinetic energy. Indeed one sees at
once that the wave function vanishes whenever two or
more particles overlap (~x;—x;~ &u). Surely this very
important piece of information, given gratis so to speak,
must make the problem simpler rather than more
dificult. A more direct and transparent solution of the
problem must exist.

We should like to emphasize that we do not mean to
be destructively critical or carping, nor to attempt to
detract from the importance and usefulness of previous
work. But there can be no harm in pointing out failings
where they exist and to attempt to do something about
them. In any case, if a complicated calculation can be
made simpler and brought more into line with ele-
mentary notions it can be of benefit for future work.
Finally, as in this case where the answer cannot be
proved, a simpler derivation increases our confidence
in the result.

We shall show how to obtain Eq. (1.1) by a straight-
forward method involving nothing more complicated
than the mathematics of elementary quantum me-
chanics. (In a subsequent paper we shall discuss Eq.
(1.2).j A hint that this is indeed possible is to be found
in the fact that after Eq. (1.1) was found, it was shown
that the same answer could be obtained variationally
by a product trial function"

(1.Z)

Eq. (1.1) can be obtained by a consistent and careful
use of the superposition approximation familiar in
classical statistical mechanics, which in the low-density
limit is not an approximation at all but is asymptotically
exact.

In an Appendix we shall brieQy examine the high-
density limit and among other things prove that Eq.
(1.3) is asymptotically exact for a certain class of ffnite
potentials.

II. SOME GENERAL CONSIDERATIONS

The Hamiltonian of the problem is

H= ——', g V'+ g n(~x; —x, )). (2.1)

A necessary and sufficient condition for Eq. (2.2) is not
known, but the following is easy to prove:

(i) Necessary conditions are that the scattering
length of v be positive and that v does not have a two-
body bound state;

(ii) A sufficient condition is that n be everywhere
positive.

A necessary and suKcient condition lies somewhere
between (i) and (ii) and we shall assume that for the
potential in question, Eq. (2.2) is satisffed.

We shall further assume that v is of short range and
that a length b exists such that

n(r)=0 for r&b. (2 3)

Having thus described the problem, we now seek the
ground-state energy, Eo, of H as a function of v and the
density, in the case of low density. Before proceding to
the mathematical analysis it is of central importance to
have a clear idea of the relative sizes of the various
lengths appearing in the problem.

It is to be assumed, although no one has ever proved
this rigorously, " that in the limit X—+ ~, V —+ ~,
X/V= p, Es is of the form

The 6rst question that arises is what condition must we
impose on v in order that the system in its ground state
behave like a gas. By this is meant that there must not
exist any many-body bound state or, more formally,

(2 2)

The method to be given here is not approximate and is
not a variational calculation. But we shall show that

20= E)&function of p. (2 4)

"See, for example, J. B. Aviles Jr., Ann. Phys. (N.Y.) 5, 251
(1958) I also, R. Jastrow, Phys Rev. 98, 1479. (1955)g.The author
treats the hard-sphere problem and was able only to guess at the
optimum form of f. This gave a result slightly greater than Eq.
(1.1), but it has been subsequently shown (H. A. Bethe (private
communication) g that a better choice for fgives exactly Eq. (1.1).
K. Hiroiim, PProgr. Theoret. Phys. (Kyoto) 27, 342 (1962)g also
derived Eq. (1.1) from a product function by using the hypernetted
chain approximation.

Unfortunately, p itself is not dimensionless and we must,
therefore, look for a characteristic length in the problem.
Without attempting to prejudice the issue weshall

'4 There is a heuristic proof of this, however, in O. Penrose and
L. Onsager, Phys. Rev. 104, 576 (1956). For the hard-sphere case,
F. J. Dyson LPhys. Rev. 106, 20 (1957)j has effectively proved
Eq. (2.4) by deriving rigorous upper and lower bounds for Eo
which are of the required form.
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choose the scattering length, a, of z (alternatively b

could be used). We may, therefore, write

(2.5)

This is not to say that all potentials having the same
scattering length give rise to the same energy, although
this will indeed prove to be the case at low density. The
point is, though, that for a given potential with u&0

lim f(x)=0, (2 6)

a result which follows from examining the variational
energy using fe as a trial function. If we assume that the
energy is proportional to the number of pairs of particles
at low density then

f(x) x"' (x small), (2.7)

Ee=Sk'~X(ls) ', (2.8)

where k is the root mean square momentum per particle.
Since Eo is proportional to the number of pairs, k ' or
/3 is thus seen to be of the order of the distance over
which two particles are correlated, the distance being
much greater than the average particle spacing. Clearly
particles tend to decrease their momenta, this distance
comes about from a chain of correlations via the inter-
mediate neighbors. Because large distances are associ-
ated with low momenta, and because at low densities the
particles tend to decrease their momenta, this distance
increases with decreasing p. Put another way, we see
that Eo is entirely a quantum-mechanical correlation
phenomenon; one cannot approximate P by a product of
single-particle wave packets because either the potential
energy would be too great (infinite for hard cores) if the
size of a wave packet is larger than /2 or, in the opposite
case, the kinetic energy would be too great ( Xp"').

The situation here is vastly different from the corre-
sponding Fermi gas at low density. There it is possible
to think in terms of wave packets (at least to zeroth
order)

f(x) =ci+csx"', (x small, Fermi gas) (2 9)

where ci and c2 are constants.
%hat can we learn from these considerations' The

effect we are investigating is caused, so to speak, by a
very small length, /&. But it manifests itself at very large
distances. The point is that although the potential is
important, its effects at distances of the order of /~, or
even of /2, is really unimportant. In the sequel, we shall

a result borne out by the variational calculation.
%e may now consider three important lengths appear-

ing in the problem. The first is li a(or ——h), the second
is ls= p

"' (the average particle spacing), and the third
is ls=(pa) '~'=li '~'ls+' As p —+0& li/ls —+0 and
ls/ls ~ 0.

The significance of /3 is that it is a kind of correlation
length. If Eq. (2.2) is accepted, then

work in con6guration space and the analysis will con-
sist in trying to evaluate the asymptotic behavior of
certain correlation functions. This asymptotic behavior
will then enable us to discover what we need to know
about the correlation at distances of the order of lj in
order to evaluate the energy.

iP&0 for all xi, , x~, (3.1)

a fact which can be proved by evaluating the variational
energy of ~lt ~. Equation (3.1) implies the important
property

N
~ lt (xr, ,xg)g d'x, —= p) 0. (3.2)

Since f is, therefore, not orthogonal to a totally sym-
metric fun. ction, viz. , f=1, it must itself be totally
symmetric, and, therefore, the contention above is
proved. %e have tacitly assumed that the ground state
is nondegenerate, but this restriction is not necessary. ""

"We have glossed over several points of a technical nature
which we elucidate here. We do not assume, as other authors have
done that the absolute (Boltzmann) ground state of H is non-
degenerate. We first prove: (i) among the Boltzmann ground states
there is at least one that satisfies P&0. For a proof, we take the
ground-state functions to be real and then take the absolute value
of any one of them as a variational trial function. Since this does
not change the energy, ~P ) must also be a ground-state function.
This device was used by Penrose and Onsager (reference 14) who
claim to give the Grst proof that the Bose ground state is non-
ne ative, This device, however, ignores one difhculty, viz. , does

satisfy the boundary conditions? If the boundary conditions
were that /=0 on the boundary of the box, there would be no
problem. But if P is periodic, ~P~ will not have a periodic normal
derivative if P happens to vanish on the boundary. We may over-
come this difhculty, however, by the following artifice: If we use
strict periodic boundary conditions (cf., reference 17), then we may
regard the walls of the box as folded around onto each other (i.e.,
the square becomes a torus, the cube becomes a hypertorus). In
applying the variational principle now, we:require only continuity
and piecewise di6erentiability of the wave function, and we do not
have to require periodicity of the normal derivative. This latter
property will be an automatic consequence of the Euler equations.
We can now use ~P ~, and the proof of (i) goes through. If P is a
positive Boltzmann function, then consider g(x)=Z~rP(Px),
where the summation is on all permutations. @is clearly symmetric
and does not vanish identically. In fact, it is non-negative because

is. It satisfies the Schrodinger equation and we, therefore,
conclude: (ii) among the ground-state Boltzmann functions there
is at least one non-negative Bose function. We now wish to prove:
(iii) this non-negative Bose functions (call it p) can be taken to
have zero momentum. We need this fact in order to establish
Eq. (3.6c) above. The proof is as follows: p(x) can clearly be
periodically extended so that it is dered over all space and
satisfies the Schrodinger equation everywhere. By translational
invariance of H, if p(x) is an eigenfunction, then so is $(x+a}
for arbitrary displacement a of all the particles. De6ne
h(x) =J'v p(x+a)d'a. The function h(x) does not vanish and is
non-negative since p&0. Also h is a ground-state function and by
explicit differentiation it hss zero momentum. Q.E.D. We have

III. CALCULATION OF THE GROUND-STATE
ENERGY

We want to find the lowest state of H Lsee Eq. (2.1)j
which is totally symmetric, but this is easily seen to be
the absolutely lowest state of H (irrespective of sym-
metry). The absolutely lowest state of H satisfies
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Let us integrate both sides of the equation

B'f=Eplt . (3.3)

It will be seen that for periodic boundary conditions the
term s J'(P V')f vanishes and, using symmetry, we
obtain g"(Rx,) =g"(x,), (3.6f)

fortunately, must. be assumed. Firstly, since t(x) is a
functionof lxl —if: (a) I is

afixed

intege; (b) xi, , x„
are confined to a fixed region E( V; (c) V, and hence 1V,

goes to inanity —then g" is rotation invariant.

ZV(iV —1)
e(lxi —xsl)P (3 4) where R is a rotation. In particular"

g(xi —xs) =g(l xi
—x&l) =g(r), (large system). (3.6g)

It will be appreciated that Eq. (3.2) was essential for
obtaining Eq. (3.4).

We next define certain correlation or distribution
functions which, unlike the customary definitions, are
linear in f instead of being quadratic. That this is
sensible is again a direct consequence of Eq. (3.1)

g" (Xi&' ' ' &X~)

lim g"=—g", exists, (e fixed),
V—+oct, N jV=p

(3.611)

Equations (3.6f) and (3.6g) would seem to be implied by
the principle of independence at large distances

l
cf.

Eq. (3.13) belowj but it is difficult to make this con-
nection rigorous. The second property, namely,

—= V" . P(xi, ,xiv) g tPx;
j=n+j

(3 5)

g'(xi) =const=1, (3.6a)

Periodic boundary conditions'~ imply that g" is a
periodic function of its arguments in V. Recalling the
translational invariance of H, we have the following
properties for the g":

means that we can speak of the correlation functions of a
Gnite number of particles in the limit of a large system. "
This property would appear to follow from Eq. (2.4),
but here again a rigorous proof is dificult. Despite
(3.6h), however, it will be necessary to some extent to
consider the manner in which g" approaches the limit.
We shall return to this point later.

Returning to Eq. (3.4), it may be written

g'= g'(xt —xs), (3.6b) Ep ———',-(.t%r—1)p g(x) s (x)d'x, (3.7)

g"(x;+a)=g"(x,), (a= arbitrary vector), (3.6c)

g"&0 all xi, . , x, (3.6d)

g"(xi, ,x )d'x„= Vg"—'(xi, x„,). (3.6e)

Finally, we need two more obvious facts which, un-

presented all this detail because the proofs in the literature are in-
complete. Dyson (reference 14) quotes Yang to the effect that,
since the Boltzmann ground state is non-negative and non-
degenerate, all the above properties follow at once. The difficulty
is that if the potential is suSciently pathological there can be
degeneracy. For hard spheres in one dimension, the Fermi and
Bose ground states are degenerate if X is odd t cf., M. Girardeau,
J.Math. Phys. 1,516 (1960)g. Indeed, if' =0 boundary conditions
are used, then the ground states of all symmetry classes are de-
generate for this problem Lcf., E. Lieb and D. Mattis, Phys. Rev.
125, 164 (1962)j. Penrose and Onsager claim to prove that the
Bose ground state is nondegenerate. This, too, is incorrect if the
potential is su%ciently pathological. For a double hard-core po-
tential in one dimension (i.e., p(x) = ~ for [x ~

&a and b&
~
x

~
&c,

where a(b(c, v(x) =0 otherwise), for a certain value of L, the
length of the box, there will be two degenerate ground-state Bose
functions for two particles. Both of these functions may be taken
non-negative; they are orthogonal, nevertheless, because when one
is nonzero the other vanishes.

"Equation (3.2) is not true for the lowest Fermi function and,
therefore, the subsequent analysis has to be modified if one wishes
to apply it to the Fermi gas. In fact, one does not know a priori
the spatial symmetry class of the lowest Fermi function, for the
total spin need not be zero in the ground state as it is for the free-
Fermi gas.

'7 Strict periodicity is implied, meaning that not only is P
periodic but H as well. Strictly speaking, v(x) must, therefore, be
replaced by 2+ v(x+La) where the summation is over all vectors,
a, whose components are integers, and where V =LXLXL.

where we have purposely kept E—1 instead of E be-
cause we are not yet ready to pass to the limit of an
infinite system. Equation (3.7) is our rigorous starting
point for the calculation of Eo,' it is clearly reminiscent
of similar formulas in classical statistical mechanics. "

At this point we should consider the infinite repulsive
core, for in this case Eq. (3.7) is meaningless as it stands.
Taking the hard-sphere gas for simplicity, we have

—
s 2 V'll =Epg in ~, (3.8a)

tt —=0 elsewhere and on boundary of &, (3.8b)

where the domain E is defined by

E: ail I*;—x;l&~. (3.9)

Ep ———stE Visit (3.10)

18 Henceforth, we shall use the symbol g in place of g2.
' The same assumption is made in classical-statistical mechanics,

and indeed is at the basis of any treatment of large systems.' T. L. Hill, Statistical Mechanics, (McGraw-Hill Book com-
pany, Inc. , New York, 1956).

The wave function and its correlation functions still
satisfy Eqs. (3.1), (3.2), (3.5), and (3.6), but now we
can integrate Eq. (3.8a) only over R.
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Integrating Eq. (3.10) by parts and using Eq. (3.8b)
we obtain

N

I;o= ', $(-X 1)—g d'x;
p 2

-1
ar' Vyig(xs+ r, xs x~)dO„~ lP

t=S V

where

and

8= V ' u(x)d'x,

lim u(x) =u(x),

lim u(x) =0.
lxl~~

(3.15c)

(3.15d)

(3.15e)

=2'�(1V—1)pa' —g(r) l „.+
dr

(3.11)

upon using (3.6g). Thus,

OQ

4x. g(r)v(r)r'dr ~ 4va' g(r)
~
„~+—(3.12)

p dr

The factor (1—6) ' in Eq. (3.15b) follows from Eq. (3.6e).
The next step is to find an equation for g. This may be

done by oPerating on g with —-,'(Vrs+V'ss) whence,
using Eqs. (3.3) and (3.5), we obtain"

5—s (VP+Vs )+vrsig(1, 2) =Epg(1, 2) —2V (X—2)

g'(1,2)3)vssds ——',V '(X—2) (X—3)

lim g(x) =const,
l xl —+oo

(3.13)

a fact which, while it cannot be proved, "is physically
obvious. It means that the correlation between two
particles disappears as they move apart. Using Eqs.
(3.6a), (3.6b), and (3.6e) the constant in Eq. (3.13) is
easily seen to be unity. By the same argument, all
g" satisfy

lim g"(xr, .
,x„)=g" '(xr, ,x„r) (3.14)

l x~l-+oo

for fixed x~ through x ~.

If we, therefore, write

g(x) = 1—u(x)
and

(3.15a)

for hard spheres. We remark in passing that

g"=0 if any lx,—x;l &a (hard spheres) (3.6i)

by virtue of Eq. (3.8b).
Hence, the hard-sphere case really requires no special

treatment. Other integrals similar to Eq. (3.7) will arise
and they can all be treated in the same way. We shall,
therefore, continue to use these integrals in the hard-
sphere case with the understanding that they can (rigor-
ously) be replaced, as in Eq. (3.12), with meaningful
expressions.

There is one more property of the correlation func-
tions that needs to be mentioned, viz. , the principle of
independence at large distances (II.D). Taking g as an
example, g satisfies

g'(1,2,3,4)v, 4d,d4=—M (1,2). (3.16)

e=A 'Eo (3.17)

Let us consider the order of magnitude of the various
terms appearing in Eq. (3.16). If V is very large, we

may think of replacing g in the left-hand side by its
limit function, which therefore makes the left-hand side
of order unity in the volume (note that g" is dimension-
less). Of the three terms on the right-hand side, only the
second is of order unity; the other two, being of order
V (or 1V), must cancel each other to order V and leave
a residue of order unity. That they indeed cancel may
be seen in the following way: In the integrand of the
third term we must have

~
xs—x4l (b, but otherwise the

pair (3,4) can be anywhere. Clearly, the major contribu-
tion to the integral comes when (3,4) is far from either 1

or 2. In this region we may write g'(1,2,3,4)~g (1,2)g(3,4)
Lin analogy with Eq. (3.14)].Using Eq. (3.7), this con-
tribution, when multiplied by the -appropriate factor,
yields —Epg(1, 2). The correction, which is thus of order
unity, comes from three sources: the presence of the factor
(X—2)(E—3) instead of N(X 1); the contrib—ution to
the integral when (3,4) is close to either 1 or 2; and the
fact that g'= g'+corrections of 0(V '). In this context
"close" means (pa) "', the point being that for a
fixed density and a very large system there must be
some volume-independent distance beyond which the
pairs (1,2) and (3,4) cease to be correlated.

For a large system the function M(1,2) is volume-
independent but it is also clear that is essentially propor-
tionally to e, the energy per particle;

g(x) = [1—u(x)j
= (1+8)P1—u(x) J+o(V '), (3.15b)

We may, therefore, assume that if we consider p to
be very small and define

G(r) —=lim g(r), (3.18)
"O. Penrose and L. Onsager, (reference 14) almost succeeded

in proving ILD.
"o(x) means the quantity in question is of /ower order than x.

O(x) means the same order as x.

p-+P

'3 In Eq. (3.16) et seq. we use the standard notation of statistical
mechanics, Cf. reference 20. g&2=—g(1,2) =—g(x~,x2); J'd&—= J'd'x&.
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then

L
—V'+s(x) jG(x) =0. (3.19)

asymptotic region where Eq. (3.23) is presumably
correct. One easily finds that

This means that in the limit of zero density g is the
solution to the zero-energy scattering problem with the
potential s(x), a physically satisfying situation. In-
serting G into Eq. (3.7) we obtain the result

Ep =2rrNpa+ o(p), (3.20)

where a is the scattering length, in agreement with
Eq. (1.1). Thus, without further ado, and certainly
without summing an infinite set of graphs, we have
obtained the leading term in the energy.

For the hard-sphere case we have

w(1,2) =u(1,2)

s= 1+38+o(5), (3.25)

1
+—g(1,2) u(1,3)u(2,3)ds+o(5). (3.25b)

V

Actually, the V ' corrections to s and m given by Eq.
(3.25) will play no role when we evaluate the first
integral in Eq. (3.16), for that term is already of order
unity in the volume. We obtain (upon passing to the
limit of an infinite system)

G(r) = 1—a/r, r) a
=0, r&a. (3.21)

gs(1,2,3)sssds

It will be noticed that G(r) has no cutoff length. Physi-
cally, the reason is that the cutoff length, (pa) '~s, be-
comes infinite for zero density. Mathematically speak-
ing, the convergence in Eq. (3.18) is nonuniform. To
orient ourselves, we may suppose that g(r)=1—(a/r)
Xexp( (pu—)"'(r a))—, a function that has been used
in variational calculations. "Its limit at zero density is
given by Kq. (3.21).

To make further progress, we must attempt to evalu-
ate 3f(r), s,nd the crucial point here is that we need to
know it only for large distances —of the order of (pu) 'i'.
Taking the hard-sphere gas as an example, we have
from Eqs. (3.12) and (3.16)

28
~g (1,2) —u(1,3)g (2,3)vssds, (3.26)

where limiting functions and integrals are understood
on the right-hand side of Eq. (3.26). We repeat the
assertion that Eq. (3.26) is asymptotically correct for
large Ixi—xsI and small p, and that this is just what is
needed in Eq. (3.16) to get the second term in Zp as a
function of p.

When we turn to the second integral, however, and
apply the same arguments, V ' corrections will be
decidedly important. If we write

e=2mpaI 1+ rM(r)dr I.
( "

'I

)
(3.22)

g'(1,2,3,4) t II I1—h(, i)j

and use Eq. (3.6e) twice, '4 we obtain

(3.27)

Thus, if u(r) and hence rM(r) have a certain large
cutoff length, l, the major contribution to the integral
in Eq. (3.22) will come from distances of the order of t.
But at the same time, whatever l may be, it is the dis-
tance at which Eq. (3.14) begins to be true.

For the first integral in Eq. (3.16) we see that we need
to know g'(1,2,3) when 2 and 3 are close together and
1 is far removed, by a distance of order /. It seems quite
obvious, although we cannot prove it, that in this
asymptotic region g' may be written

g'(1,2,3)=sI 1—w(1,2)]I 1—w(1,3))L1—w(2.3)j, (3.23)

where s is a positive constant. If

h(1,2) =u(1,2)

t=1+65+o(b), (3.28a)

2
+—g(1,2) u(1,3)u(2,3)ds+o(5). (3.28b)

V

If we now insert Eqs. (3.28) and (3.26) into Eq. (3.16)
and combine terms, we get the final equation for g:

I -!(~'+~")+"lg(1,2)
=pg(1, 2) (2K(1,2)—pL(1,2)}, (3.29)

where

lim w(x) =u(x) and lim s=1, (3.24) E(1,2) = u(1,3)g(2,3)vssds (3.30a)

then the assumption, (3.23), is consistent with Eqs. (3.6)
and (3.14). But for a finite system we do not suppose
that m=g for we shall be interested in the difference
between w and u which is o(1) in the volume. To deter-
mine s and w we use Eq. (3.6e), which is consistent, for
although we must integrate x3 over all space the major
contribution to the integral in (3.6e) comes from the

L(1,2) = u (1,3)u (2,4) (g (1,4)g (2,3)——',u(1,4)u(2, 3)}
Xg(3,4)s(3,4)dsd . (3.30b)

~ Unfortunately, if we insert Eq. (3.27) into (3.6e) we will not
obtain Eq. (3.23) for, if we did, it would mean that the product
ggsa/g would be exact. The best we can do, therefore, is to make
g' consistent with g.
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Furthermore, since Eq. (3.29) is valid only when

~xq —xnt))b we can clearly replace the factors g(2,3)v28
and g(3,4)v&4 appearing in Eq. (3.30) by their average
value, viz. , ~ep '. It might be supposed that we could
now replace u and g on the right-hand side of Eq. (3.29)
by their zero-density limit LEq. (3.19)j, but this would
lead to a divergent integral in Eq. (3.30b). This integral
converges, however, because I has a cutoff length. On
the other hand, there is no harm in replacing the terms
in the parenthesis in Eq. (3.30b) by their zero-density
limit. But we can go further than this and replace the
entire parenthesis by unity because for the range of
x~—x2 in which we are interested, I can be neglected
compared to one. This is clear from Eq. (3.21) or (3.19),
where we see that up to the cutoff, u(r) is essentially
proportional to r '. In the same spirit, we can replace
the factor g(1,2) on the right-hand side of Eq. (3.29)
by unity.

Having thus "linearized" Eqs. (3.29) and (3.30),
Eq. (3.29) becomes

where

Since

pu~(k) = (2e/k')S(k). (3.37)

u(r) =
2X Q

sinkr
k'dk u(k)

kr
(3.38)

we see that u~(r) is the solution to the equation

—V'u&(x) =g(x)v(x),

which means that

uq(r) = (e/2 pv)(1/r), r&b,

(3.39)

(3.40)

by Gauss' theorem and Eq. (3.7),
Now because S(k) —+ 0, as k ~ ~, and since uq(k) is

just the asymptotic part of u(k), we see that u2(k)
vanishes at least like k 4 for large k. Furthermore,
S(k =0)= 1, and S(k) will not depart from unity until k
is of the order of b ', at which point k'u2(k) is negligible.
Therefore, to the order in which we are interested

t
—V'+v (r))$1—u(r) $

=4eu(r) —2ep u(r —z)u(z)d's, (3.31)

e3/2

ug(r) =4
m'p 0

sin) xr
dS x

u(k) = u(r)e'"'d'r (3.33a)

the last term being clearly a function of r =
t
r ~. It must

be emphasized that the linearization of Eq. (3.29) lead-
ing to Eq. (3.31) did not alter the long-range part of
3f(r)—at least to leading order in p—and that the solu-
tion of Eq. (3.31), therefore, will give the next higher
term in the energy exactly when it is inserted into Eq.
(3.7). But since Eq. (3.31) contains e as a parameter,
Eq. (3.7) will become an algebraic equation for e.

Were it not for the presence of v(r), Eq. (3.31) could
be solved exactly by a Fourier transformation, because
the integral is in the form of a convolution. Nevertheless,
since we are only interested in the right-hand side for
r&&e, a Fourier transform may still be used to advantage.
Taking transforms of both side of Eq. (3.31) we have

k'u(k)+—(2e/p)S(k) =4eu(k) 2epu'(k) —(3.32)

where

32%2 128
u (0)= — e'"=— (pa')'"

15v'p 1$/v.
(3.42)

the last expression being obtained by replacing e by its
leading term LEq. (3.20)].

The essential point to notice is this: As we see from
Eq. (3.19), for small values of r the function g(or u)
oscillates, and this oscillation is contained almost
entirely in Nj. Since g= j.—I&—N2

X
~

x'+1—x(x'+ 2)'"—
~, (3.41)

l 2x )'

where 'A= 2 Qe. It will be seen that for r of the order of b

or less, u2(r) is a very slowly varying function and, for
the accuracy we need, it may be replaced by its value at
r=0. Later on we shall discuss the function defined by
Eq. (3.41), but for the present, it is an elementary
exercise to deduce that

and
P

S(k) =— g(r)v(r)e'~'d'r.
2e

(3.33b)

—V'g= V2N~

and hence, from Eq. (3.39),

—V'g+vg=0 for r&p '~'.

(3.43)

(3.44)
The solution to Eq. (3.32) is

pu(k) = (x'+ 1)—(x'+2x'+1—S(k)y'
—,'S(k) Lx '—x—'+O(x—')) large k, (3.34)

where
(3.35)

We now write

Equation (3.44) tells us that for small r, g is proportional
to G, the erst approximation to g, and is, therefore, very
sensitive to the details of v(r). But for large r, g is very
different, being given by two universal functions, u& and
u2, which contain the energy as their only parameter.
Thus,

u= uy+u2, (3.36) g(r) =AG(r) for r&p '~', (3.45a)
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where A is some constant, and

g(r) =A(1—a/r) for b&r&p '~s, (3.45b)

O.t4

QI2 zR

= 1—us(r) —ui(r) = 1 us(0—) e/2s—.pr. (3.45c) O.IO

Equating coefficients in Eq. (3.45), we obtain

A = 1—us(0)
and

e/27rpa=A.

(3.46a)

(3.46b)

0.08

~ o.o6

0.04

Thus,

e = 2s pa{1+(128/15 Qs )(pa') '~'+ o[(pa') '~s)} (3 47)

OQR

l & l i l i I i I

0 I 2 5 4 5 6 7 8 9

R= (8e)"'r=4(~pa)"'r (3.49a)

u, (r) = Se 16a

, f(R)= )'(R)
x pr err

(3.49a)

The integral in Eq. (3.41) may be transformed into a
contour integral around the cut (v2i —V2i) with the
result that

f(R)= dz z'-(1—z')'"(e "'—1) (3.50)

"It is clear how one could get higher corrections to Eq. (1.1)
using the formalism presented here. One can derive an equation
for g' and g in analogy with (3.16) and solve them using super-
position. Then insert the results into Eq. (3.16) and solve for a
new g(1,2). On the other hand, as Kq. (3.48) et st. shows, such an
asymptotic expansion is probably of academic interest only. A
much better thing to try to do is to solve the full nonlinear equa-
tion, (3.29).

in conformity with Eq. (1.1).We have thus, established
that the 6rst correction to e depends only upon the
scattering length of v; higher corrections will clearly
involve the effective range. " It is tempting, however,
to solve Eq. (3.46) exactly. That is,

e/2spa= 1—u, (0)= 1+(32v2/15% p)es~' (3 48)

This is a cubic equation whose positive root has the cor-
rect general behavior up to e=6vrpa, pa'= (s/3)(5/64)',
and then becomes complex. This value of pu' is only
about s% of the value at tight packing, viz. , v2. In
order to make any further progress it would be necessary
to go back to Eq. (3.29)—clearly a job for machine
computation. We can, however, learn something from
Eq. (3.48). For the range of density over which it makes
sense, it probably gives a better approximation for e
than the first two terms in the asymptotic series, (3.47).
At the limiting density mentioned above, it gives
e=67rpa while (3.47) gives e=2rrpa(1+2/3v3). We may
thus conclude that the e(p) curve rises much more
sharply than (3.47) would indicate, and that (3.47) is
probably numerically accurate only for a much smaller
density than the above limiting density.

We now return to the evaluation of us(r) [Eq. (3.41)$,
that part of u which depnds only upon the scattering
length. We define

FIG. 1. The universal part of the two-particle correlation
function, g(r)—=1—u(r), is given by N(r) =$4(2e)za/vp)U(R)
=32(zp)'I'a'"U(ff). The ground-state energy per particle is
e =221-pa, and the dimensionless variable R is given by
ff= (Se)'"r=4(rrpu)'"r. This definition of u(r) is valid for r)b,
where b is the distance beyond which the two-body potential
vanishes. b«p "«(pn) ".For 0&r&b, g(r) is the zero-energy
scattering function of the potential.

It is elementary to deduce that, for small R,

f(R) = —(2/15) R+0(R') (3.51)

which, when combined with Eq. (3.49), gives Eq. (3.42).
It is also elementary to integrate the second term in
parenthesis in Eq. (3.50). This yields a constant of
course which, when combined with Eq. (3.49), gives

e(27rpr) —' But this. is just the value of —ui(r) for
r&b. Hence, for r&b

u(r) =
m pr

dz z2 (1 z2)1/2e —Bz (3.52)

(4/~p) (2e)'"—U(R)

Equation (3.52) is not valid for r&b—it goes like R '
and this is incorrect. Instead, Eq. (3.44) defines u for
r&b Equation (.3.46) insures that in the overlap region
(b&r&p '~'), these two definitions of u(r) are sub-
stantially the same. Furthermore, the effective cutoff
length of u(r) is seen to be of the order of /s (pa) "', ——
in agreement with Sec. II.

The integral in Eq. (3.52) can be evaluated in terms
of Bessel functions. The result is:

~' A. Erdelyi et a/. , Higher Transcendenta/ Injunctions {McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. II, p. 38;
Tables of Integral Transforms, edited by A. Erdelyi {McGraw-Hill
Book Company, Inc. , New York, 1954), Vol. I, p. 138, No. 12.

U(R) =R '{R[Ii(R)—Li(R)j
3[Is(R)—Ls(R)j}, (3.53)

where L(R) is the modified Struve function and I(R)
is the modified Bessel function of the first kind. "Both
I(R) and L(R) go to ~ as R ~ oo, but their difference
is finite. When R is large, U(R) R 4—a result found
previously by Lee, Huang, and Yang in the hard-sphere
case."The function U(R) is plotted in Fig. 1.
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APPENDIX

The High-Density Limit

While Bogoliubov's result, Eq. (1.3), is never correct
at low density because it replaces the scattering length,
a, by a', the 6rst Born approximation to a, we wish to
show here that it is correct in the limit of high density
for a certain class of 6nite potentials. The discussion
presented here is independent of the previous results of
this paper, but it is interesting in that it shows that
Bogoliubov's original point of view, which seems at
first sight very reasonable, is really a high-density
aesa/s.

The basic idea behind Bogoliubov's theory is that in
some sense the interacting particles behave like free
particles to a 6rst approximation. Although at low
density f $0 when the particles are far apart, as we
have seen the important region to consider is when two
particles are close together. In this latter region f is
different from $0 and the difference does not vanish
as p —+0.

Let us now inquire what happens as the density gets
very large. For a potential with a hard core one can only
go up to the critical density, p,u =v2, at which point the
ground-state energy, Eo, becomes in6nite. For a finite
potential, on the other hand, as we go to high density
(such that pb'))1, where b=range of the potential)
basically one of two things can happen:

(i) Some definite type of particle configuration (pre-
sumably a lattice) may be preferred. In this case, the
particles will become localized with respect to each other
(i.e., particle correlations will become important) and
the kinetic energy will increase with density and become
quite large, possibly unbounded. The large kinetic
energy will be compensated by the favorable potential
energy of the configuration. Such a situation presumably
occurs in the hard-core case shortly before reaching the
critical density.

(ii) No special configuration is preferred because the
advantage of a low potential energy con6guration is
outweighed by the high kinetic energy required to
achieve it. In this case the particles are "smeared" and
the kinetic energy goes to zero as p ~ ~. Owing to the
high density, each particle "sees" a constant potential-
the average potential of its many neighbors. It is in this
case that we may think of the wave function as approxi-
mately the noninteracting wave function, fo, because
correlations become less important as the density in-
creases. For this case to hold it is not essential that the
potential be everywhere repulsive. As we shall see, it
can even have a two-body bound state.

We shall show here that there is a class of potentials
for which case (ii) holds, and for which Bogoliubov's
theory is then valid —at least for the ground-state
energy. Let n(r) be the two-body potential, and v(k) be

its Fourier transform de6ned by

v (k) = v (r)e'"'d'r (A1)

The potentials we wish to consider satisfy

v(0) =n=finite,

v(k))0, all k.

(A2a)

(A2b)

«5~v(0), (A4)

where Eo——Xe. For the lower bound we use the fact that
the kinetic energy is positive de6nite, whence

(A5)

Equation (AS) states that Eo)minimum potential
energy. Let the minimum configuration occur at x,=a;.
Then

8=min
~"I 2g

4*(x)i(~—y)4 (y)d'~d'y —-'.~, (A6)

where
y(x) =g b(x—a~). (A7)

If g(k) is the Fourier transform of P(x), [cf., Eq. (A1)j,
then

8= (2ArV)
—' g ~y(k) ~'v(k) ——',n (Aga)

& 2m(0) —2~, (Agb)

where the last inequality follows from (A2b) and the
fact that p(0)=E, whatever (a) may be. Thus, com-
bining (A4) and (A8),

2~v(0) & e& 2~v(0) —k~, (all ~), (A9)

Since n=6nite, we have proved that the asymptotic
form of e is 2pv(0). Moreover, with upper/lower bound

A repulsive Gaussian potential, for example, is of this
class. Notice that we do not assume w(r)&0, or even
that the scattering length is positive. Consider the
potential which is a repulsive square well in momentum
space:

v(k) =X, k(E
=0, k&E,

e(r) = X(E/2~'r')—[cosrE (1/rE) sin—rK), (A3b)

where X and E are positive constants. This potential can
have a two-body bound state if X is sufficiently large,
yet it is in our class.

We propose to 6nd an upper and lower bound for the
ground-state energy. An upper bound is obtained from
the variational principle using Po ——1, viz. ,
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t=o(p—'),

e=-,'p (0)—-,'+o(p—'),

e=-'p (0)—-' +o(p ')

(A11a)

(A11b)

(A11c)

where e= positive constant.
Equation (A11b) is a bit surprising in that we have

proved that srpv(0) —ran is actually less than the mini-
mum potential energy. The explanation is as follows:
From the fact that t —+0, we see that the minimum
potential energy is not very diferent from the potential
energy in a perfectly smeared wave function, i.e., gs ——1.
In this case, the potential seen by a test charge would
be pv(0). The potential seen by one of the particles of
the gas itself would be pv(0) n, becau—se n is the effect of
a particle on itself. Finally, dividing by two because we
have double counted, we obtain the expression (ASb)
for B. In other words, as regards the value of 8 itself,
(ASb), in fact, gives correctly the first two terms in an
asymptotic series for 8 in terms of p. On the other hand,
from the fact that (ASb) was obtained without explicit
reference to the minimum potential configuration {a),
we see that the potential has an exceedingly broad
minimum which in the limit of high density may be

'r E. H. Lieb and K. Yamazaki, Phys. Rev. 111,728 (1958).

formulas for expectation values, "it is an easy matter,
using the above inequalities, to prove that

t &-,'n (a» p),

—:p (0)& &-,"(0)—,- (».), (A»)

where t is the kinetic energy and v the potential energy
per particle. Equation (A10) establishes that the kinetic
energy remains bounded at high density. Actually,
using a better upper bound than (A4), we shall show
that for large p

taken to be virtually the entire con6guration space.
This leads in turn to the result that limp 3 0.

To obtain an improvement on (A4), and thereby
establish Eqs. (A11), we turn to the variational calcula-
tion of Girardeau. ' Following the notation of that
paper, we see that if we choose p(k) = 1 and set ps= p the
integrals involving v(k) would give us exactly —sn. We
cannot do this, however, for two reasons: The integrals
involving k, I», and I2, all of which are positive, would
diverge; and p —po would also diverge. But by choosing
g(k) = 1—p f(k), for a suitable choice of n and f(k) we
can obtain an upper bound for e of the form of the
right-hand side of Eq. (A11c).We omit the details here.
Combining the result with (A9) we thus prove Eqs.
(A11).

Ke turn now to the predictions of Sogoliubov's
theory. r One has e=e'+e", where

e'= —pv(0), (A12a)

e"= (16m'p) ' d'k

)& {-',kLk'+4pv(k) j'"——',k' —pv(k) ). (A12b)

In the low-density limit we obtain Eq. (1.6) for any
potential such that v(k)/k' is integrable. Lee, Huang,
and Yang" were the 6rst to obtain the famous factor
12S/15/~, but this factor is already implicit in Eq.
(A12) which antedates their work.

For high density, the major contribution to e" comes
from the last term in the integrand and the total result
is in agreement with (A11c). It is to be noted that both
in Eq. (A11c) and in Eq. (A12b) the correction of o(p ')
is positive.

» M. Girardean and R. Arnowitt, Phys. Rev. 113, 755 (1959),
Eqs. (20)—(22).


