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Final-State Interactions in the Electrodisintegration of Deuterium*
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The cross section for the inelastic electron-deuteron scattering process is calculated using a semirela-
tivistic approximation. The final-state interaction between the outgoing nucleons is estimated using approxi-
mate wave functions derived from the Gammel-Thaler potential. The rescattering correction is found to
lead to a decrease in the peak value of the cross section, varying from about —5% at an electron momentum
transfer of 1.4F ' to about —2% at a momentum transfer of 4F '. Various relativistic corrections are
considered, and an ambiguity in the normalization of the semirelativistic wave functions is discussed.
Finally, the neutron form factors are redetermined.

1. INTRODUCTION
' 'N recent years considerable effort has been devoted
-- to the study of the electromagnetic structure of
the proton and the neutron. The inelastic electron-
deuteron scattering process has been studied experi-
mentally by the Stanford' and Cornell' groups, and
theoretically by Blankenbecler, ' Durand, 4 Goldberg, '
Jankus, ' and Bosco.s In principle, the neutron from
factors may be determined from the differential cross
section for this process, but there are considerable
difhculties in the interpretation of the experimental
results arising from relativistic effects and a possible
final-state interaction of the two outgoing nucleons.

In the absence of a usable relativistic theory of the
two-nucleon system rather drastic approximations must
be made. Our calculation is similar to that of Durand. 4

The Hamiltonian is treated purely relativistically, and
the two-nucleon system is described by approximate
Breit wave functions, which effectively corresponds to
treating the spins relativistically and the orbital part
nonrelativistically.

The cross section has also been calculated numerically
using Gammel-Thaler wave functions to estimate the
final-state interaction.

In Sec. 2 the approximate wave functions are
introduced, and in Sec. 3 the cross section is calculated
in the absence of final-state interactions. These are
estimated in Sec. 4, and the numerical work is described
in Sec. 5. Finally, we discuss some of the approximations
and other possible procedures for calculation in Sec. 6.

The following symbols will be used throughout:
E, E'= initial and final four-momentum of the electron;
p, p'=initial and final four-momentum of the proton;

P= initial four-momentum of the deuteron; P'= final
four-momentum of the center of mass of the outgoing
two-nucleon system; q=E —E'=momentum transfer-
red by the electron; k=-', (p' —ts') = relative momentum
of the outgoing nucleons; 8=scattering angle of the
electron.

All these quantities are measured in the laboratory
system (the deuteron rest frame). The corresponding
quantities in the center-of-mass frame of the outgoing
nucleons will be denoted by the subscript c.

We also use E for the energy of either nucleon in their
center-of-mass frame, and 3f, ns for the masses of the
nucleon and electron, respectively. The mass difference
between the neutron and proton, and the deuteron
binding energy are ignored. The electron will be treated
as ultrarelativistic.

To avoid confusion, q' will be used only for the
square of the four-momentum. The square of the
three-momentum will be denoted by

~
tf ~'.

2. SEMIRELATIVISTIC CALCULATION OF THE
CROSS SECTION

The process of interest is

e+d —+ e+rt+ p.

The electromagnetic interaction may be treated in
first Born approximation. (The validity of this has been
discussed by I'ubini et aLs) The deuteron and outgoing
nucleons are described by Breit wave functions.
Blankenbecler has shown' that if the retardation of the
potential and the effect of nucleon-antinucleon pairs
are ignored, then the energy shell matrix element is
given by

T(h)=(f~ J„~i) d't Lg(t,k. ;S")j„oy(t—-', q; P)* Sponsored in part by the Office of Scientific Research, OAR
through the European Office, Aerospace Research, United States
Air Force.
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+x(t,&.; &')J,"4(t+-'e, ~)3, (2.1)

where x and p are the momentum space Breit wave
functions for the outgoing nucleons and the deuteron,
respectively, and j„',j„&,j„"are the current operators
for the electron, proton, and neutron.

S. Fubini, M. Gourdin, and A. Martin, Nuovo Cimento
23, 249 (1962).
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Luss (r)+uss (r)jdr = 1. (2.3)

The momentum space wave function is given by

yNit(s) = g y((l s I)(1ml Jm(1m, )Yg"'(S)
I
1m,),

(2ws) 1/2

(2.4)
where

"ug(r)
e~(isl) = j~(Isla)r'«.

p

(2 5)

We assume that the orbital part of the Breit wave
function is adequately approximated by the nonrelativ-
istic form. Shirokov" has shown that in the deuteron
rest frame the spin part of the relativistic wave function
may be obtained from the nonrelativistic form merely
by replacing the nonrelativistic spinors by relativistic
spinors, providing the Foldy-Kouthuysen representa-
tion is used. "Hence, the Breit wave function is written
in the form (2.2) with

I
1m,)NR replaced by the relativ-

istic spin function

I 1m, ; s,P)=P(1m, I
isp, rises)v„»(~sP+s)

Xs„»(-',P—s), (2.6)

where the v's are Foldy-Wouthuysen spinors for free
particles, normalized by

58= 1.

The Anal-state wave function is somewhat more
dificult, Neglecting coupling between states of diQ'erent

angular momentum, the nonrelativistic configuration
space wave function may be written as

XNa(r)= Q L4z (2L+1)]' 's s "
JLSMM1,3fcJ

Pzz,s(lk. I «)
X (JM I LOSM)

lk, lr

X(JM I
LMrSMs)Yr~'(f')

I SMs)NR, (2 7)

'A. R. Edmonds, Angular Momentgm in Quantgm M'echanics
(Princeton University Press, Princeton, New Jersey, 1957).IM. J. Shirokov, Zk. Eksperim. i Teor. Fiz. 40, 1387 (1961)
Ltranslation: Soviet Phys. —JETP 18, 975 (1961)j."L.L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).

The full Breit wave functions are quite intractable.
We shall assume they factorize into a product of free
neutron and proton spinors and a scalar orbital wave
function. To find a suitable form for the latter, it is
useful to consider the ordinary Schrodinger wave
function. In .con6guration space, the nonrelativistic
(NR) deuteron wave function may be written

u&(r)
@Na(r) =Q (1m I lm~1m, )Y~™(r)

I
1m,)NR, (2.2)

l r

where (1m
I
Jm~sm, ) is a Clebsch-Gordan coeflicient

defined as in reference 9 and
I 1m,)NR is the nonrelativ-

istic spin wave function. The normalization is given by

where the normalization is chosen so that

Pzz,s(lk. l &)
coshzrs jr, (lk I&)+s&»zzs Nr(lk I").

lk I»
(2.8)

This equation is written in the center-of-mass frame
of the outgoing nucleons, whereas all the quantities in
(2.1) are measured in the laboratory frame. The trans-
formation between these frames has been discussed by
MacFarlane" and Shirokov. " They show that the
orbital part is essentially unchanged by the transforma-
tion apart from a normalization factor, and, in partic-
ular, its argument is still k, rather than k; while in the
spin part we should use the laboratory values of the
momenta. (It is also necessary to introduce various
rotation matrices, but as these cancel out from the
expression for the cross section in this case we shall
omit them from the beginning. ) Although their results
do not apply strictly in the semirelativistic approach
used here, the nature of their argument suggests it
should be a very good approximation to use them in
this case.

The choice of the normalization factor is a nontrivial
problem. There are various possibilities for the normal-
ization which are all equivalent in the strict nonrelativ-
istic limit, but which differ appreciably in the region of
interest. A formal expression for the normalization of
the Breit wave function in the laboratory frame can
be obtained by assuming that the potential is instan-
taneous in all frames, but this is likely to cause a large
error for large values of the momentum transfers. Since
it is known that using semirelativistic wave functions in
the relativistic region is inconsistent, we require our
normalization to give the best approximation to the
relativistic result rather than to give consistency. For
this reason the normalization has been 6xed, rather
arbitrarily by comparison with dispersion theory.

While the full dispersion calculation presents many
difhculties, the contribution of the nucleon pole terms
may be calculated straightforwardly. "The use of these
terms only corresponds to neglecting Gnal-state inter-
actions and replacing the deuteron wave function by
its asymptotic form. These approximations should be
essentially unaffected by any relativistic sects, so the
normalization has been Axed by requiring that in the
neighborhood of the neutron pole the cross section
should reduce essentially to the dispersion-theoretic
result.

Finally, it is convenient to write the Breit wave
function with an arbitrary axis. Then it has the form

x(t k .PI) P ~l g(2L+1)y s+' mrs(JMILOSM)

X(JM'I LM+Ms)X)sr'~~(~) Yr, z (ta)

XXJrs(t„k)(SMs, t,P'I
& (2.9)

~ A. MacFarlane, Rev. Mod. Phys. 34, 41 (1962).
'3 S. Bose, Nuovo Cimento 17, 76'7 (1960).
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where form
Fees(l k

I r)
&vs,s(t„k,) = dr rj s, (I t

I «)
lk, lr

Substituting this into the expression for the cross
section and summing over the spins gives(8MB y tyP'I =p(sMs I

~2«N]-'22i22)vy"'('2P'+t)

Xv." (-',P' t—), (2.11) @my' 3e4—
I &(h) I'= (GM" '+Gca" ')

and $2r ir (R) is a rotation matrix representing the
change of axis defined as in reference 9, where R is the
rotation that takes the axis into k, . y is a normalization
factor, which has the value (qp+2M)/2F for the
normalization discussed above. Physically, this is
just the Lorentz contraction factor.

The only remaining factors in (2.1) are the currents.
For a free particle, the proton current is given by"

q4 2''
L(p+p') (E+E')$2

X +q2 —2q2GM" 2

(P+P')'

d t 8(t.—k,)y, (lk ——,'ql)

+neutron+interference terms, (3.2)

(2.10) X(t,k. ; P') = (22«)28(t, —k,)y8„(22P'+t)8„(,'P—' t)—(.3.1)

Kyq
Gca"(—q') =Fi,+

4M'

( q2i i/2

GM" (—q') =I
I

EF,„+~uF2uh.

(2.14)

These correspond to matrix elements of j„&between
states of definite helicity. "A similar form is assumed
to hold for the neutron current. For the electron

ZKy

&P'I j,"Ip&=~(p') Fin( q')v. +— Fpn( q')~"q.—~(p)
2M

(q= p' —p), (2.12)

where I~:„is the proton anomalous magnetic moment, and
F~„,F2„arereal scalar functions normalized to

F, (0)=F (0)= i.
We assume that this form is correct for the bound

proton as well, and that F~„,F2„have their free-
particle values. This assumption is discussed by
Blankenbecler. '

It is convenient to introduce linear combinations of
F~„and F2~ which represent the distribution of total
charge and total magnetic moment'4:

I q (k—-', q)jq- 2z
k——',q=k, ——',q,— (3.3)

qp+2Mlql'

k=-', q,
2Z I1.l

2

qp+2M 2M'

The second term in (3.3) is, therefore, much smaller
than the first near k=-,'q, and k——', q may be replaced
by k,——,q, . This gives the maximum of the inelastic
cross section at k,=-', q, = (M/2E) q, which agrees well

with experiment.
Making this approximation in (3.2), a straightforward

but tedious calculation gives

a2

Sp(8),
ax, 'an(K') ~ z

(3.4)

where 0~ is the Mott cross section for scattering by a
point charge given by

where the deuteron D state has been ignored tem-
porarily.

For any reasonable deuteron wave function,
pp(lk —2ql) will be strongly peaked. at k=pq. The
laboratory and center-of-mass variables are connected
by

(flj:I2)=~a"'. (2.15)

Finally, the differential cross section is given in
terms of the energy-shell matrix element by and

Q cos'(8/2)

4Ep2 sin'(8/2)
(3.5)

a20 Ep lk, l 1
= (2~)-22N2M2 —g I

2'(h) I2

asap an(K')an(k. ) Eo 2E 6 SP&&8

(2.16)

3. FREE FINAL STATES

When there is no interaction between the outgoing
nucleons, the final-state wave function has the simple

Ip(8) = (Gca")'+ (Gca")'
4M' —q'

( 4M' —q'
+((GM&)2+(GM")')I 1+ tan'I —

I I

2M2 I 2ii

xl Mp+ M2 I+ 2Gca"Gca"+2GM"Rr"

"P. J.Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119, 1105
(1960)."D.R. Yennie, D. G. Ravenhall, and M. M. Levy, Rev. Mod.
Phys. 29, 144 (1957).

4M' —q'
X 1+

2M'

(8 s-
tan'I —

I Mp y&1, (3.6)
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where

L4o(z) l'dz,

In deriving (3.9) we have dropped contributions
involving the square of the D-state wave function, and
various terms of the nature of M2.

llfp ———,
' eo(z)~o(-z)dz, (3 7) 4. EFFECT OF THE FINAL-STATE INTERACTION

(1—z') L@o(z)$2d»

and Po(z) is the function defined in (2.5) expressed in
terms of z= cos8, where' is the angle between k, and q, .

AI contains various negligibly small corrections to
the interference terms, and also a term proportional to
gp M1 where

Substituting the above expressions for the wave
functions into the formula for T(8), and neglecting the
contributions from the deuteron D state, gives a sum of
Clebsch-Gordan coeKcients, rotation matrices, and
integrals of the form

d'«. »(t.,k.) Y.*" (f.)~o(l t—,'ql)e+"'"

zl yo(z)$'dz. (3.8) (J.')
X(SMs, t,P'I j„"I12m, t——,'q, P) +neutron. (4.1)

2

At the peak in the inelastic cross section qp, =0 and
this term is negligible. It gives an appreciable contribu-
tion, however, far away from the peak.

Noting that 4M2 —q2= 482 at the peak and substitut-
ing for GoH and GM from (2.14), this expression for the
cross section agrees with that found by Durand4 to
within terms of order q2/M2 except for the term in M2.
This justifies the use of the four-momentum transfer in
the cross section, but shows that appreciable deviations
from the nonrelativistic result might be expected far
from the peak, where the 4l term becomes appreciable.

The M2 term is a purely relativistic effect and
corresponds to certain of the terms denoted by 6„in
Appendix I of Durand's first paper. 4 It might be
expected to be small, since go is strongly peaked at z= 1.
A better estimate may be obtained by assuming a
simple form for up(r). If up is taken to be a Hulthen
wave function, the error in neglecting this term is of
order J3/M, where 8 is the deuteron binding energy,
which is of the same order as terms we have already
dropped.

The effect of the deuteron D state can be calculated in
exactly the same way. The calculation is rather long and
only the result will be given. The effect is to add a term

up(r)
ji(l t

I r) ji(2 I q I r) (4.3)

the angular integration may be performed to give

T(B)=42r Q(2L+1)"'e"~~s(JcV
I
LOSM)

X(~~'I LJlf'res)&ir 2&~(&)

(j'-)(j.")
X YrM~'(q) E~»(k„q,) +neutron,

2

(4 4)
where

&mrs(k, q.)

The final-state wave function should be strongly
peaked at t,= k, . We may, therefore, replace t. by k,
and t by k in the factors involving the currents; and
shall also replace t—ioq by t,—oq, in pp as before.

Writing

4,(l t,--', q, l) =Z, (2t+1)Zi(t„-',q,)Pi(t„-,'q.), (4.2)

where

M2
(GoHi')2+ (GCH +) +((GMP)2+ (GMn)2)

h2

( 2E' r'8
XI 1+

&2 i
4v2 ( 2A' ('g

+ GM"GM"I 1+- tanpl —
I lÃo

E2) j
to the peak value of Jp, where

1

4 ()4 ()d,
—1

1

~.()e (—)«,

and $2 is given by (2.5).

(3 9)

Fg»(lk Ir)
t,odt, jz, (t,r) r'dr

p

'
lklr

uo(r')
j~(t r') j~(2 I q. l

r')
p

r'

PJL$(I k. l r) uo(r)
jr, (-,'

I q. lr) r'dr.
lk, lr r

As it stands, (4.4) is not the partial wave expansion
of T($) since (j„&)depends on the orientation of k„
and the terms in the series are not orthogonal, In the
neighborhood of the inelastic peak, k, may be replaced
by —,q, in (j„i').This is equivalent to dropping terms
analogous to M1 and M2, and should, therefore, be well
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justified. A standard calculation then gives the cross
section as an infinite series in EJLs'.

As pointed out by Durand, 4 this is not the best form
for calculation, as the series converges rather slowly. It
is better for calculation purposes to subtract the value
of this expression when there is no final-state interaction
and EJLs= ICL, and to add this on again in closed form.

Introducing

q~ = —4 F~ q& = —10 F & q~ = -16 F 2

|t =60' 0 =135' 8 =60' tt =135 0 =60 8 =135'

S wave, nn+PP
S wave, np interference
g7 wave, nn+PP
g7 wave, np interference
Final-state Interaction

102.1
0.2
1.1

-0.7
247

102.4
—0.3

1.1
-1.4
—1.8

100.1
—0.1

1.1
-0.1
—1,6

99.8
0.2
1.2

-0.1
—1.0

100.8
-0.1

1.3
0.05

—2.0

100.2
0.2
1.3
0.1
107

TABLE I. Percentage contributions of various terms to the peak
value of the cross section for typical values of q~ and 8.

~JLS +J'IS +L (4.6)

the differential cross section is given by (3.4) with Is
replaced by Is+IFs where, at the peak

Ips= s[uz(Gcrz") +2asGcrz "Gcrz "+az(Gcrz") j
g2

+-:[..(G- ) +2 G- G-.+"(G-.) j
2Z' 0

X 1+ tan —~, (4.7)

with

az ——P(2I+1)hr, r„z,

&s=Z(—) (2I+1)~~.z, z

rzs =P r, [(3I-+4)&z+z,r„z+(2I-+ 1)&z„z„,z

+ (3L—1)&z, z, r. , z+2(2L+1)&z,z, sj, (4.8)

«= Qz( )'[(3I+4—)&I+z,r„l+(2I+1)&r., r. , z

+ (3I 1)kz—z, z„z—2 (2L+ 1)Ar„r„oj
S. NUMERICAL CALCULATIONS

For the numerical calculations FJLs was obtained as
the solution of a Schrodinger equation with the Gammel-
Thaler potential. "The potential was slightly modified
by neglecting all terms coupling different partial waves.
The deuteron was described by a Hulthen wave function
with a hard core. '7 That is, with x=nr, x,=nr,

wave function should make it a better approximation,
however.

The values of the parameters were taken to be
r,=04F, n—'=4316F, P=7.961F ' y=3.798 F '
and A s/A s= 0.028 corresponding to a 4% D-state
probability and a deuteron effective range of 1.70 F.
The results were not sensitive to the choice of param-
eters, and changing the D-state probability to 5%or the
effective range to 1.73 F made a difference of less than
1% to the cross section. The presence of' the hard core
made a difference of 3 to 4% in the range considered.
The percentage contribution of various terms to the
diGerential cross. section is given in Table I for typical
values of q2 and 8.

The eGect of the final-state interaction can be seen
from Fig. i, which shows the corrections u„asfunctions
of q'. The relative importance of diGerent angular
momentum states can be seen from Table II, which
gives values of 6JLs for the first few partial waves. The
corrections are negative throughout, in agreement with
the approximate calculation by Durand4 though the
numerical values are somewhat larger. The corrections
decrease with increasing momentum transfer and for
—q2 greater than 10 F ', they are negligible in compar-
ison with the experimental error.

The Gammel-Thaler potential is not expected to be
reliable for center-of-mass energies of the nucleons much
greater than about 350 MeV which corresponds to
q2= —16F '. This sets an upper limit to the range
over which this calculation is useful. The numerical

for r4r,
and for r&r„

us(r) =us(r) =0, TABLE II. Values of Dr, s, s=kr, s, e/Ez for values of q' in F

us(r) = Ase '(1—exp[ —P(x—x,)1},
us(r) =Ase {1—exp[ —y(x —x,)1}'

3(1.—e-&') 3(1—e-& )'-
X 1+ + . (5.1)

It would have been preferable to use a Gammel-
Thaler wave function for the deuteron as well, but this
would have increased the computing time substantially,
and was not worth while for the present experimental
errors. The inclusion of the hard core in the Hulthen

"J.L. Gammel and R. M. Thaler, Phys. Rev. 103, 1874 (1N6)."L. Hulthdn and M. Sugawara, in Hcndbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol, 39,

—q' J.
2 0

1
2
3

6 0
1
2
3

10 0
1
2
3

16 0
1
2
3

DL, L, O

—0.300—0.182
0.040—0.013

—0.235—0.200
0.0/9—0.039

—0.179—0.206
0.066—0.045

—0.176—0.223
0.023—0.048

~ ~ ~

—0.060
0.090—0.000
~ ~ ~

—0.123
0.103—0.004
~ ~ ~

-0.162
0.038—0.007
~ ~ ~

—0.211—0.036—0.014

DL—1,I, 1

~ ~ ~

—0.072—0.055—0.000
~ ~ ~

—0.161—0.113—0.008
~ ~ ~

—0.219—0.149—0.018
~ ~ ~

—0.295—0.193—0.040

DL+1, L, 1

—0.156
0.066—0.004
0.000

—0.217
0.092
0.013
0.009

—0.274
0.040
0.038
0.020

—0.382—0.036
0.064
0.048
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0.0

~b,

b~

b3

0..3 I

2 4 0 O' IO 1 2 l+ l6

IN UNITS OF F
'

Fzo. 1. Values of b, o,/=3IO. —

accuracy in the calculation of the corrections is not very
great, but they should certainly be correct in order of
magnitude and sign. It was dificult to estimate the
sensitivity of the corrections to the choice of wave
functions. These conclusions on the relative importance
of the corrections are not affected by the choice of the
wave function normalization.

The neutron form factors were obtained from values
of the ratio of the proton-electron elastic-scattering
cross section to the peak values of the inelastic deuteron-
electron cross section at various scattering angles.
The values of these ratios, and of the proton form factors
were taken from deVries, Herman, and Hofstadter. '
The cross sections had been corrected for radiative
sects."

For values of —q'between 4 and 16 F ', the equations

for the form factors possessed a solution to within
experimental error, and the solutions found by taking
diBerent combinations of scattering angles agreed
fairly well. For —q'= 2 F ' the ellipses did not intersect,
but in this region the corrections are large and are
highly energy-dependent; so that a much more accu-
rate calculation of the corrections may be necessary.
In all cases we took the "right-hand" solution' for the
neutron form factors. The values of Il» and F2„are
given in Table III and are shown in Fig. 2; Gga" and
GM" are shown in Fig. 3. In Fig. 2 the values of I'2~ are
shown for comparison.

The errors in the numerical work were estimated to
be less than 1%; and allowing for the various approx-
imations made it is estimated that the theoretical
cross sections should be correct to within 4 or 5%.The
errors given for the form factors are only a rough
estimate, and might be much larger if the errors on
the cross sections are completely uncorrelated.

These estimates do not allow for the uncertainty in
the normalization of the wave functions. This could
cause an error of up to 15% in the value of the peak
cross section at large momentum transfers. The normal-
ization factor enters in such a way that it is impossible
to determine it solely from electron deuteron scattering
experiments, though it might be possible to estimate
it from some other process such as deuteron photo-
disintegration. Fortunately, the form factors do not
depend very sensitively on the normalization, and the
maximum error on the neutron form factors due to the
normalization is about 6% at the upper end of the range
of q' considered, and correspondingly less at the lower
end.

l.o

0.8
K

O.6
V
AC

0.4

TABLE III. Values of the neutron form factors for q' in F~. The
errors quoted are maximum errors. o.~

LL
~ I

~q2

6
8

10
12
14
16

0.110&0.20
0.130%0.10
0.112&0.16
0.100~0.10
0.085&0.11
0.062&0.08
0.075&0.06

0.750&0.10
0,662&0.08
0.604&0.06
0.500&0.05
0.435&0.06
0.376+0.05
0.338&0.03

O.O

0
I

12

-5I IN UNITS OF F

16
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Fxo. 2. Values of Ii&„,P2„,and I2~. The errors shown are
maximum errors, and the curves are smooth curves drawn through
the experimental points,
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O. DISCUSSION

In view of the somewhat arbitrary assumptions we
have been forced to make, the question arises whether
one might do better by using other techniques, notably
dispersion relations. The difhculty in using dispersion
techniques arises from the anomalous threshold due to
the deuteron. While the pole approximation may be
calculated straightforwardly, present techniques seem
to be inadequate to cope with the effect of the rescatter-
ing correction, or any other terms in which the two
nucleon amplitude occurs bilinearly. "The general form
of the cross section can be deduced on general grounds-
the difhculty arises in identifying the various terms that
arise with the properties of the free neutron and
proton, and in the absence of either a usable relativistic
theory of a bound state or a systematic method of
going oG the mass shell, it is hard to see how this can be
done without some such assumptions as we have made.

At the present time the experimental uncertainties
are rather larger than the theoretical ones; the chief
need at the moment is better experimental results,
particularly at small momentum transfers and small
scattering angles.

FIG. 3.Values of GoH" and GM". The errors shown are maximum
errors, and the curves are smooth curves drawn through the
experimental points.

The results for the form factors are compatible with
F~ =0, though a small positive value is suggested.
There seems to be no indication of negative values for
F~„.The relationship GCH"=0, giving zero charge dis-
tribution for the neutron, does not seem to be supported,
nor does, the relationship GM"/E„=GM&/(1+E„),
giving equal distributions of magnetic moment for the
two nucleons. The hypothesis F2 =F» is almost
certainly wrong. All these conclusions are essentially
unaffected by the uncertainty in normalization.
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