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An analysis is made of the p3&2 pseudoscalar meson-baryon scattering amplitudes in all isotopic spin and
strangeness states. In analogy with pion-nucleon scattering, the basic assumption that the single baryon
exchange contribution provides the dominant force in these amplitudes is made, but all the coupled two-
particle channels in each isotopic spin and strangeness state are included. A relativistic scattering matrix
for each state is constructed by a matrix formulation of the S/D method so that it satisfies the requirements
of unitarity and symmetry. Being fully relativistic, unlike the static model, the theory does not contain
adjustable cutoR parameters. The known masses of the mesons and baryons and the Yukawa-type meson-
baryon coupling constants are the only parameters that enter into the calculation. The octet model of
Gell-Mann and Ne'eman is used to define the coupling constants in terms of a single parameter f and the
known pion-nucleon coupling constant. Then the requirement that $*(T=-', ; S=O), Yr~(T=1; S=—1),
the recently observed . (T= s; S=—2), and a yet-to-be-discovered 2 (T=0, S= —3) exist as a tenfold
representation of the unitary symmetry model restricts 1 to a rather narrow range. There are no other
resonances in the p3&& state for f in this range, except possibly one in the T=0, S= —1 system. The positions
and widths of these resonances are discussed.

I. INTRODUCTION

ECENTLY, a resonance in the cascade-pion sys-
tem, in the isotopic spin T= —,

' state, has been
observed. ' Although the spin and parity of this reso-
nance have not been measured, the indications are that
the spin is greater than —,'. If it is assumed that the
resonance is in the ps~s state, being the analog of the
well-known p3/Q resonance in the pion-nucleon system,
then one encounters an interesting problem. Experi-
mentally the cascade particle appears to have the same
spin, ' as well as the same isotopic spin, as the nucleon.
The Chew-Low static modep then, which successfully
explained the pion-nucleon 3, 3 resonance, should be
even more appropriate in the cascade-pion system be-
cause of the increased cascade mass. This reasoning,
however, leads us to expect a resonance in the T=~3
cascade-pion state and not in the T= ~ state.

On the other hand, the observed T= ~ resonance was
predicted by, and neatly 6ts into, the group of baryon-
meson pcs resonances known as the tenfold representa-
tion of the unitary symmetry group SU(3).' The main
purpose of this paper is to investigate whether predic-
tions based on dynamical considerations, to be speci6ed
below, can be reconciled with those based on symmetry
arguments.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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The basic assumption in our dynamical treatment isi
as is generally believed from analyses of pion-nucleon
scattering, the importance of the Born approximation
term arising from the single baryon exchange diagram.
However, in treating the Born approximation term we
depart from the static model' with its reliance on an
arbitrary cutoff parameter. Our calculation is, in
general, closer to the fully relativistic treatments of
Baker, ' and Frautschi and Walecka, ' as will be dis-
cussed in more detail in the following sections. But this
does not alter the fact that one cannot obtain a reso-
nance in the T=-,' cascade-pion system since the Born
approximation term is repulsive in that state.

One possible approach, suggested inunediately by the
treatments of the I'* resonances in the strangeness —1
channels, ' is based on the idea that the coupled two-
particle inelastic channels are important. This notion is
reinforced when one notes that the ZE and AK thresh-
olds are much closer to that of the ™msystem than are
their analogs, ZE and AE, in the pion-nucleon problem.
In this way we are led to a matrix formulation for our
dynamical considerations. When one turns to a coupled-
channel calculation, however, one immediately encoun-
ters the problem of an overabundance of coupling con-
stants which, especially in this system, are so poorly
de6ned by experiment that they assume the roles of
undetermined parameters. Since we prefer to work with
as few arbitrary constants as possible, we turn to the
group-theoretical considerations for a model of the
coupling constants.

The octet model of the strongly interacting par-

'While this work was in progress, work by R. H. Capps
PNuovo Cimento 27, 1208 (1963)j was brought to our attention.
In it he carries out a similar analysis based on the static model.

8 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).
7 S. C, Frautschi and J. D. Walecka, Phys. Rev. 120, 1486

(1960).
D. Amati, A. Stanghellini, and B. Vitale, Nuovo Cimento 13,

1143 (1959);K. C. Wali, T. Fulton, and G. Feldman, Phys. Rev.
Letters 6, 644 (1961).
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ticles proposed by Gell-Mann, and independently by
Ne'eman, ' leads to a two-parameter set of expressions
for the baryon-pseudoscalar meson coupling constants.
These are conveniently summarized by Sakurai. "Fur-
thermore, the requirement that the pion-nucleon cou-

pling constant be g~ '/4m =15 reduces the dependence
to a single arbitrary parameter. We adopt the octet-
model set of coupling constants as a working hypothesis.

As mentioned in the opening remarks, the octet model
forms the basis for predictions of the interactions of
elementary particles. These predictions go far beyond
the simple coupling constant considerations outlined
above. Among the more striking of these is the sugges-
tion that a family of p»& resonances can be identified as
belonging to the tenfold representation in SU(3). The
members of this family' are taken to be the familiar
pion-nucleon 3, 3 resonance, the strangeness —1 I'»*,
the recently discovered ™*,and a yet-to-be-discovered
resonance or bound state in the strangeness —3 channel
with isospin zero, tentatively named the Z—

by Glashow
and Sakurai. " For the prediction to be fulfilled, all of
these resonances must have the angular-momentum
quantum numbers of the 3, 3 resonance.

If we take these suggestions seriously, then it is clear
that an explanation of the cascade-pion resonance is too
narrow in scope. Rather we should attempt to treat all
of the baryons and pseudoscalar mesons on an equal
footing, apart from their mass differences which will

obviously affect dynamical considerations, and see
whether an underlying structure suggestive of all four
resonances in the representation 10 exists. In this ap-
proach it is, of course, necessary to make the usual as-
sumptions about the spins and parities of the particles
involved. The baryons E, A, Z, ™are taken to be spin--,'
particles with positive relative parities while the mesons

x, E, E, g are assumed to be pseudoscalar.
Therefore, in each state of isotopic spin and strange-

ness, we consider coupled systems of the allowed two-
particle states, ignoring the inelastic channels consisting
of three or Inore particles. Finally, we restrict our atten-
tion to the ps~s partial-wave state. We may summarize
our dynamical model as follows. The relativistic scat-
tering matrix for each state will be constructed by a
matrix formulation of the E/D method so that it
satisfies the requirements of unitarity and symmetry
and contains the singularities arising from the single
baryon exchange graphs in all two-particle channels.
From the E/D formulation the condition for a reso-
nance or bound state in a given channel is easily isolated
and, in this approximate ~odel, the dynamical structure
underlying the unitary symmetry group is understood.
Because the approach taken is relativistic and, therefore,
requires no cutoff parameter, the calculation contains

only the unknown coupling constant parameter which is
then restricted to a small range by comparison with
experiment.

In Sec. II we review the pertinent kinematical con-
siderations and describe our choice of variable and
scattering amplitude. Section III is devoted to the
description of the many-channel E/D formalism and the
comparison of our model with the calculations of pion-
nucleon scattering mentioned above. In Sec. IV we turn
to the relationship of our treatment to the predictions of
the unitary symmetry group. Section U contains the
analysis of the mass-difference corrections and a brief
discussion of dynamic factors not included in our model.
The octet-model single-parameter expressions for the
coupling constants are given in Appendix I, while

Appendix II contains the tabulation of the appropriate
isotopic spin coefficients in the different channels.

II. KINEMATICS AND CHOICE OF AMPLITUDE

The kinematical considerations for baryon-meson
scattering have been developed extensively in the litera-
ture. ~" The principal modifications required in the
analysis to follow stem from the fact that we are con-
cerned with inelastic two-body scattering processes as
well as elastic ones. This necessitates a more careful
treatment of the scattering amplitude in order to elimi-
nate the kinematical singularities inherent in inelastic
processes. The following equations, therefore, are in-
tended mainly as a guide to our final choice of partial-
wave amplitudes.

We begin with the general two-body scattering ampli-
tude for a process involving a spin-2 baryon and a spin-
zero meson in the initial and final states. I et the initial
baryon and meson have masses M& and p& and four-
momenta pi and qi, respectively; and let Ms and ps, ps
and q2, represent the corresponding quantities for the
final baryon and meson (Fig. 1).The Lorentz invariant
T matrix for this process is defined by"

~f4 (2&) &6 (p2+g2 pl gl)

4EyE~ gG02-

where E~,2 and co~, 2 represent the energies of the ap-
propriate baryons and mesons, respectively, and the

FIG. 1. General meson-baryon
scattering diagram.

' M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'einan,
Ãucl. Phys. 26, 222 (1961).' J. J. Sakurai (to be published)."S.L. Glashow and J. J. Sakurai, Nuovo Cimento 26, 622
(1962).

~ G. F. Chew, M. L. Goldberger, F. K. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (195/)."We use natural units k =c= 1 and the energies are measured in
terms of the pion mass p.
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fg+ L (W+M1)2 /g 2/1/2[(W+M2)2 /g22 jl/2
]6~+72qg+q2

T= A—(s,t,N)+ B(s,t, I),
2

(2)

Dirac spinors are normalized so that uN=1. For the (4), (5), and (6)
two-body processes we are considering, T has the general
structure

where A and 8 are scalar functions of the familiar
Mandelstam variables

S= —(Pg+qg)',

t= —(0 —
q )'

(P —q)', —
g+t+I M12+M 2+/g12+/g 2

The invariant amplitudes A and 8 are linear combina-
tions of the amplitudes referring to the total isotopic
spin states involved in the scattering.

In the center-of-mass system the differential cross
section is given by

GO gf (~ gl~)(~ a*)
f fg+ f2 i

dQ gz sPins gjg'
(3)

82rWf2= (+1 Ml)g/2(g2 M2)1/2

( M1+M2
X —A+~ W+ B . (4)

2

In the expressions above, 8' is the total energy in the
c.m. system. For a given baryon-meson state with
masses M and p, the quantities E, co, and q are related to
8' by the expressions

P= (W'+ M' —/g2)/2W,

go= (W' —M'+/g2)/2W,

q = LW' —2 (M'+/g') W'+ (M' —/g')'y'/2 W.

As is well known, ~ the partial-wave scattering ampli-
tude, fg~, for a state with total angular momentum
J= i&2 and parity (—1)g+' is given by the projection

1

fgy(W) =— dxyf (W,x)P/(x)+ f (W, x)P y (x)j, (6)
2 —1

where g= cose, 0 being the scattering angle. From Eqs.

where q; and qf are the magnitudes of the three-
momenta q; and qf of the initial and Anal mesons, re-
spectively. The scalar functions fg and f2 in the two-
component representation implied by Eq. (3) are related
to the invariant amplitudes by

82r Wf1 (g1+M 1)1/2 (jV2+
—M2) 1/2

Mg+M2
X A+] W— /B,

+ L(W M )2 ~ 2]l/2L(W M )2 /g 2)1/2

16m 8"

where

Mg+M2)
X —Agog+ W+ ~Bggg, (7)

2

I

A g
——— AP g (x)dx,

2

I

Bg B——P—g(x)dx.
2

For our purposes the coupled-channel scattering
matrix for given quantum numbers of strangeness, total
isotopic spin, angular momentum, and parity is limited
to two-particle states. In order to keep the notation as
simple as possible, the partial-wave amplitude for the
process M,+/g, —+ M, +/g; in the isotopic spin state T
will be denoted by fg~ (j,i). Time-reversal invariance
requires the scattering matrix to be symmetric, i.e.,

And the unitarity condition in the physical region
demands

&mf g+'(j,i)=Z. fg+'*(j,~)q-f g+'(~, i),

where the summation extends over the allowed two-
particle states in our "elastic" approximation. It should
be noted that the phase space factor q appearing in the
unitarity condition implicitly contains a step function
which vanishes below the physical threshoM in channel
m and is unity above that threshold. In a single-
channel case, Kq. (8) leads to the familiar form
q

' sin|/ g~~ exp(igg g+r) for the partial-wave amplitude in
the physical region.

Now, in the choice of our amplitudes, we are guided
by the considerations discussed by Frautschi and
Walecka, namely, we wish to retain as many features of
the correct relativistic theory as possible. It is evident
from Eq. (7) that the amplitudes fg~r(j, i) contain
kinematic poles and branch cuts that are in no way
related to the dynamic singularities contained in the
invariant amplitudes 2 and B. Furthermore, these
kinematic singularities cannot conveniently be removed
if we chose to work in the 8'2 plane. On the other hand,
they are easily eliminated by taking the amplitudes to
be functions of the complex variable 8'.

The appropriate partial-wave amplitudes, which are
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devoid of kinematic singularities in the 8' plane and
ensure the correct threshold behavior of the fi~~, are
obtained by defining

rP)

r
M

FiG. 2. Single baryon exchange dia-
gram. 3f; and p; (3I; and pj) refer to
the initial (final) baryon and meson
masses, respectively. 3E is the mass of
the intermediate baryon.

Gi+ (j,i)=
n'[( W+ Mi)' I ~'—]v"

xf;(j,')
q,'[(w+M;)' —p P]'"

Gi '(i,i)-=
q' '[(W—M;)' — )'"

(9)

where the phase space factor pi+(n) is

p,~(") . [(W+M )2 lr 2]q 2 i+1/4W2

pi (ts)= [(W—M~)' —p~']q~" '/4W'.

An additional property of the partial-wave amplitudes
f&~r(j i) and G&~r(j, i) in the W plane is the "crossing
relation"

xfi '(j )
v" '[(w—M')' —~"]"'

Gw ( W)= Gi+t,— (W)i

&~(-W) = -pi+t, -(w),
(12)

These de6nitions are based on the assumption that in
the vicinity of the thresholds the projections of the
invariant amplitudes behave as

Ai(j, i) ~q g,
&i(j,i) "v'~".

The unitarity condition satis6ed by the G&+, ob-
tained from Eqs. (8) and (9), is given by

ImGi+r(j, i)=Q„Gi+ *(j,ts)p&~(ts)Gi~ (ts,i), (10)

which implies a set of cuts on the negative real axis,
whose discontinuities are bounded by unitarity.

Finally, as pointed out in the introduction and as is
further discussed in the following section, in our analysis
of scattering in the pets state we will approximate the
dynamical singularities of Gi+ (j,i) by those arising
from the single baryon exchange graph (Fig. 2). If the
isotopic spin factors and coupling constants are sup-
pressed, the general expression for the pets contribution
of this diagram is"

(W+M+M —M)—
G~.t+(j,i)=

4q .2g .2

3n, ; (W) (W—M;—M ~+M)—2
[(W+M;)'—p,is][(w+M, )'—p, P] (W+M,+M; M)—

1 3n, ;(W) (W—M —M +M)—2
2P;, (w) [(w+M ) 17[(w+M—) &] (w+—M +M M)—

[(W—M )s—p~][(w—M )'—p'] 1+p, ,(w))
ln i, (13)

rr, ,(w) 1—p;, (W))

where

n "(W)=W' —(M'+M '+p'+p '—2M')W'
—(MP —

i P) (M"—u"),
P, ,(W) =4W q,q;/;;(W).

Wi ——(Mis pie)/M, —
Ws ——(2M s+2p,~—M')'". (14)

The singularities of the Born approximation term are
contained in the logarithmic factor and can be chosen to
consist of two branch cuts on the real axis and a third
branch cut running the length of the imaginary axis.
The real-axis branch cuts are reflections of each other
across the imaginary axis and, in the case of elastic
scattering (M, ,p;) = (M;,p;), the branch points are given
by the simple expressions

This choice of cuts is the simplest one consistent with
the crossing relation and the reality condition on
Gi+(j,i) Equatio. n (14) forms the basis of the pole ap-
proximation for processes such as pion-nucleon scat-
tering, for which the real-axis cuts are roughly one-third
of a pion mass in length and can reasonably be replaced
by poles. However, in scattering processes involving the
heavy mesons, the cuts may extend up to four pion
masses in length and the pole approximation becomes
increasingly difficult to justify.

It will be convenient later to have a more tractable
expression for GIi, i+(j,i) than the exact functional de-

"Later when we have occasion to refer to the Born approxima-
tion term LEq. (l3)j for particular particle states, we will employ
the notation 6~{BC,A,DB) where the letters 3 through E will be
replaced by the appropriate particle symbols, with D and 8 {8and
C) representing the initial (final) baryon and meson, respectively,
while 3 indicates the intermediate baryon.
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pendence (13). Such an expression is readily obtained
for the low-energy region by expanding the logarithm in
powers of q;q, , the result being

Gz, t+(j,i) =SW4(W 3f—; M—,+35)/3n '(W). (15)

A further simplification results from noting that n;;(W)
can be factored into the form

n, ;(W)= (W—c) (W+c) (W'+d')

where c and d are real quantities. In Eq. (15), the second-
order pole at 8'= c lies on the branch cut and marks the
position of the dominant contribution arising from the
cut.

III. PION-NUCLEON SCATTERING AND THE
MATRIX N/D FORMATION

It is clear that the minimum requirement for any
dynamical model to be used in the understanding of
resonances in baryon-meson systems is that it reproduce
the experimentally well-established features of pion-
nucleon scattering in the pcs state. As a guide, therefore,
in our choice of a dynamical coupled-channel formalism,
we turn to three of the well-known theoretical treat-
ments of this S-x problem.

One of the earliest successful approaches to pion-
nucleon scattering was the Chew-I ow static model and
its dispersion-theoretic refinements. " In this model the
single nucleon exchange diagram and unitarity form the
basis of the dynamics; but the approximation of taking
the nucleon mass to be very large compared with the
pion mass has the effect of keeping only one part of the
Born approximation singularities given by Eqs. (13)and
(14)—namely, the short branch cut nearest the physical
region. This short branch cut becomes the pole at the
origin in the static model. In addition, the static model
treatment requires an arbitrary cutoff because the
integrals involved are divergent.

The static nmdel is easily generalized to the rela-
tivistic case by replacing the nearby cut by a pole whose
residue (as pointed out by Frautschi and Walecka) is
just that of the static model, and by ignoring the other
cuts in the Born approximation. Unitarity is satished by
using the N/D method" with a once-subtracted (at the
pole) dispersion relation for D. This relativistic formula-
tion requires no cutoff parameter and, in fact, contains
no arbitrary constants. YVhen this program is carried
through, it is found that no resonance is predicted in the
3, 3 state for pion-nucleon scattering; that is, the short
cut in the Born approximation is not suKciently attrac-
tive to cause the phase shift to go through 90'. From
this viewpoint it is evident that the primary factor in
the static model's successful prediction of the 3, 3
resonance is the necessity for an arbitrary cuto6 which
allows the integrals to be made as large as required.

The results of the static model were placed on a
sounder footing by Frautschi and Walecka, who showed

"G.F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).

that the single nucleon exchange term did indeed
produce a resonant structure for the 3, 3 amplitude if
the branch cut along the imaginary axis was included
in the dynamic singularities along with the short branch
cut. Their single channel calculation, fully relativistic
and devoid of cutoff parameters, was based on a many-
pole approximation N//D technique which required the
solution of simultaneous algebraic equations. This point
will be important when we consider the coupled-channel
formalism. For our purposes the central result of their
analysis is the fact that the Born approximation, treated
relativistically, does reproduce the general features of
pion-nucleon scattering in the pcs state. It is also
pertinent to note their comment to the effect that the
single nucleon exchange singularities are too strong
(i.e., the 3, 3 resonance occurs too close to the physical
threshold). They remark that a reduction of the dis-
continuity across the imaginary axis cut by roughly a
factor of 2 leads to closer agreement with experiment.

The third pion-nucleon treatment to be discussed is
Baker's application of the determinantal method. ' His
formalism, based primarily on perturbation expansions,
bears a remarkable similarity to the N/D method. The
first-order determinantal result for the partial-wave
amplitude may be considered to be an N/D repre-
sentation, where S is the full Born approximation term
)Eq. (13)7 with appropriate isotopic spin factors and
coupling constants, and D is expressed by a once
subtracted dispersion integral over the physical cut. The
integrand in the latter expression contains E in the
standard way. The subtraction point is chosen to be the
nucleon mass. This choice means that the full amplitude
is normalized so that its discontinuity across the short
cut is essentially equal to the Born approximation
discontinuity. These points will be discussed in more
detail in the application of our model to pion-nucleon
scattering. The many-channel formalism we employ is,
apart from small modifications arising from crossing, a
matrix generalization of Baker's work. Before proceed-
ing to the matrix N/D formulation, it is important to
point out that the resonant structure of the 3, 3 ampli-
tude was also obtained by Baker, with the position of
the resonance about 1.2 p, higher than the experi-
mentally observed position.

The success of these single-channel treatments makes
it plausible that a relativistic coupled-channel formalism
based on unitarity and the single baryon exchange term
can be useful in understanding baryon-meson reso-
nances in the ps, s state. We do not expect to be able to
predict the exact locations of the resonances, since
resonance positions are known to be sensitive to many
dynamical effects we cannot include.

The most convenient manner in which to ensure the
unitarity of the scattering matrix is by means of a
matrix generalization of the N/D method. Such a
generalization is not unique but depends, rather, on the
approximations to be used. An extension of the single-
pole approximation to the many-channel case has been
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given by Feldman, Matthews, and Salam, " while a
more general 1V/D coupled integral equation formalism
has been presented by Bjorken. '" The single-pole ap-
proximation allows one to extend the static model to
coupled channels without difficulty. However, the static
model requires either the nonrelativistic treatment in
which an arbitrary cutoff is introduced or the relativistic
treatment in which one cannot obtain even the pion-
nucleon resonance. In either case, there is difficulty in-
volved in the replacement of very long branch cuts by
single poles. For these reasons, the single-pole ap-
proximation is inadequate for our purposes.

A matrix generalization of the many-pole approxima-
tion used by Frautschi and Walecka would be quite
acceptable as a dynamical model, apart from the ex-
tensive work involved in determining the correct resi-
dues for the poles. The limitation in this case, however,
stems from the difficulty in going from the single-
channel method to the matrix form as illustrated by
Costa and Ferrari, " who based their analysis on
Bjorken s matrix JV/D formalism. An explicit repre-
sentation for the many-pole approximation to a scat-
tering matrix of arbitrary dimensionality exists, " but
suffers from the fact that the integrals contained in the
denominator matrix D must be subtracted e times,
where e is the number of poles. For these reasons we will

not employ the generalization of the many-pole ap-
proximation.

Fortunately, a straightforward generalization of
Baker's single-channel first-order determinantal method
is easily carried out. We take the numerator matrix Ã
to be given by the full Born approximation terms LEq.
(13)]with appropriate isotopic spin factors and coupling
constants, and construct D so that the two requirements
of symmetry and unitarity of the T matrix are satisfied.
Since the numerator matrix in this model is symmetric,
Bjorken s matrix formalism, while ensuring unitarity,
will not in general satisfy the symmetry requirement
unless one proceeds to solve the coupled matrix integral

equations. " For our approximation scheme such an
exact treatment is unwarranted.

Instead, we will utilize the "symmetrized" many-
channel X/D method' defined as follows:

T(W) =E(W)D '(W),

D(W) =1——
27r

p(W)1V(W)
dW—

W —8'
1V '(W)

(16)

X(W')p (W')
dW' 1V(W),

W 8'

where p(W) is a diagonal matrix of phase space factors
and the ranges of the integrals are over the physical
region as determined by the step functions implied by
the elements of p(W).2i It is easily verified that the
above formulation satisfies unitarity in the physical
region and that for symmetric X(W) it leads to a sym-
metric T matrix. In specializing Eq. (16) to the P3/2
state we introduce the following modifications. The
crossing relation LEq. (12)$ indicates the existence of
physical cuts (for the da~~ amplitudes in this case)
running along the negative real axis in the 8"plane. The
unitarity condition bounds the discontinuities across
these cuts and it is proper, therefore, to construct the
scattering matrix so that unitarity is satis6ed on both
sets of physical branch cuts. We also write once-
subtracted dispersion relations for D(W), subtracting at
the point 8'= 5, in order to define suitably renormalized
coupling constants. In each amplitude, 5 will be chosen
in the region of the right-hand dynamic branch cuts, the
singularities nearest to the physical region in our model.
The subtraction also ensures the convergence of the
integrals so that, in contrast to the static model, we
require no cutoff parameters. When these modifications
are incorporated, the scattering matrix Gi+(W), whose
elements are defined by Eq. (9), is written

Gi+(W) =GIi, i+.(W)Di+ i(W),

(W—S)
Di+(W) = 1—

8'p

c i+(W')G~, i+(W') ~2-(W')G~, i+(—W')
d8"'

(W' —S)(W' —W) (W'+S) (W'+ W) (17)

(W—S)—Ga, ip '(W)
2x gp

GB1+(W )pl+, (W ) GB1+( W )P, 2 (W)—
DV + Gii, i+ (W),

(W' —S)(W' —W) (W'+S) (W+ W)

G. I'eldman, P. T. Matthews, and A. Salam, Nuovo Cimento 16, 549 (1960)."J.D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
' G. Costa and F. I'errari, Xuovo Cimento 22, 214 (1961).' A. W. Martin, Ph.D. thesis, Stanford University, Stanford, California, 1962 (unpublished).
'P J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250 (1961).
2' gee discussion following Eq. (8).
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I'/2= lim (W, W)p(W)E(W). — (20)

The extension of these considerations to the many-
channel case utilizes the definition of a partial width F,
for an elastic channel

I';/2= lim (W„—W)p;(W)K, ;(W). (21)

The sum of the partial widths, I'=P; I';, is the full
width of the resonance, while the relative branching

"See, for example, R. H. Dalitz, Rev. Mod. Phys. 33, 471
(1961),and also reference 8.

where the elements of G&,&+(W) are given by Eq. (13)
with the appropriate isotopic spin factors and coupling
constants, to be found in Appendixes I and II. The
integrals in Eq. (17) run only over the positive real
axis with Wo representing the various physical thresholds.

The relationship of our approximation for G~+(W) to
the exact solution of the coupled integral equation
formalism, taking only the single baryon exchange
graphs for the dynamical singularities, may be viewed in
the following way. Both scattering matrices satisfy
unitarity and are symmetric. Both have the dynamical
branch cuts contained in G+, g+(W). However, the exact
solution would have the precise discontinuities of G~
across the cuts, while our model provides only a reason-
able approximation to these discontinuities for the
distant cuts. The nearby branch cuts, on the other hand,
are treated accurately in our formalism because of our
choice of subtraction point. These statements will be
made quantitative in the analysis of pion-nucleon scat-
tering to follow.

Having defined our dynamical model for coupled-
channel processes, we turn to the resonance (or bound
state) condition in the many-channel case. This condi-
tion, which has been discussed by several authors, "can
be conveniently stated in terms of the inverse E matrix
defined by

Ggg
—'——E)g '—ip$y,

where E&~ ' is a real symmetric matrix both above and
below thresholds. The vanishing of detE~+ ' then gives
the resonance location. In the matrix formulation of the
N/D method this corresponds to

detK '(W, .)=detLReD(W„) N—'(W,)j=0, (19)

where 8'„ is the position of the resonance. It should be
noted that only the vanishing of det Rea gives what one
considers the dynamical resonances. In a single-channel
case Eq. (19) reduces to the familiar condition
p(W„) cot8(W„)=0.

Finally, in the single-channel case one defines the
width F of a resonance by noting that near the reso-
nance position

tan5= (I'/2)/(W„—W),

which leads to

ratios into the diferent channels can be expressed in
terms of the partial widths and phase space factors.

%e conclude this section with an application of our
model to pion-nucleon scattering, considered as a single-
channel process, in order to fully illustrate the nature of
our approximation. Using the isotopic spin factors listed
in Appendix II, the two isotopic spin amplitudes, 7=-,.
and T= —',, for N-n. scattering in the p3/2 partial-wave
state are given by the single-channel form of Eq. (17) as

Q3/2
2g'Gg(Nm, N, N~)

1—2g'I(N~ N, Nm) 2ig'p(N—m)G~(Nn. ,N, N~)
(22)—g'G~(Nm, N, Nn)

1jg2I(N+, N, N+)+ig'p(iVm)G~(1Vvr N Nn)

and is plotted in Fig. 4. The subtraction point is chosen
to be the nucleon mass in keeping with our treatment of
the nearby branch cuts. As discussed in Appendix I, it
is convenient to absorb the usual factor of 4m. into the
definition of the coupling constant so that g', the square
of the pion-nucleon coupling constant appearing in Eq.
(22) has the value g'= 15.

From the resonance condition and Eq. (22), it is
clear that a resonance in the low energy region is pos-
sible only in the T= ~3 state. The position of the 3, 3
resonance in this model is found to be 2.2 p, higher than
the observed position. That it is also higher than the
location determined by Baker is due to the inclusion of
the integral over the left-hand physical cut. This
integral has the e6ect of reducing the value of
I(Nor, N, Nm. ) by roughly 10%%uo in the vicinity of the
resonance. The source of the discrepancy with the result
of Frautschi and Walecka, who obtain the resonance at
too low an energy, is found in the treatment of the
distant singularities. In the T=~ amplitude the dis-
continuity across the imaginary axis cut, in our model, is
only 56/o of the actual Born approximation discon-
tinuity in the vicinity of the origin, while the actual
discontinuity across the short left-hand branch cut is
reduced by slightly more than a factor of 2. In brief, the
attractive Born approximation term is made less at-
tractive in this model.

where for simplicity the dependence on the total energy
variable 8' has been suppressed and the angular mo-
mentum subscript has been dropped. I(Nm, N, N7r) repre-
sents the real part of the integral in the denominator
function,

I(Nn, N,Nn)--
(W—N)

=Re
(W' —N) (W' —W—ie)

p2 (W')Gg( —W')
(23)

(W'+N) (W'+W+ie)
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Strange- Isotopic
ness spin
5 T

Coupled two-
particle states Det ReD(W)

E~, xE, zE, E~
E'm, ZE

TABLE I. Coupled two-particle pseudoscalar meson-baryon
states for each strangeness and isotopic spin channel. The last
column contains the factorized form for Det ReD(W) in each case.
The quantities 5, P, Q, R, 8, and U are dehned in Eq. (27).

model are given in Appendix I. Vsing these coupling
constants and the formalism described in the previous
sections, we wish to examine the resonance conditions in
the various pcs states corresponding to different isotopic
spin and strangeness. However, to illustrate clearly the
implications of adopting the octet-model coupling con-
stant scheme in our calculations, we first consider a
simplified model in which all baryons have the same
mass 8 and all pseudoscalar mesons have the mass m.

In this extreme model all channels have the same
threshold and phase space factor p (W), and the matrices
Gs(W) and D(W)(Eq. (17)j assume the simple forms

EE, z~, =E, ~~
EE, z~, ~~, =E, z&
Zx

SPQU
PQRRU
U

Gs(W) =h(W) S,
D(W) = 1 I(—W) (8 ip—(W)h(W)(8,

(25)

Zm. , AK, zE,
=-~, zE

PQRU
BU

where h(W) represents the scalar Born approximation
function Gs(Bm, B,Bm) from Eq. (13), and I(W) is the
real part of the integral

p (W')h(W')
d8"'

(W' —B)(W' —W—ie)

I' p(W„)Gs(W,)

2 (dI/dW)rr g,
(24)

we obtain too large a value. This is due primarily to the
phase space factor in Eq. (24), proportional to q', to
which the width is very sensitive in the low-energy
region. If the phase space factor to be evaluated is taken
arbitrarily at the observed resonance position, then Eq.
(24) predicts the half-width at half-maximum to be
about 100 MeV, as compared to the experimental value
of roughly 70 MeV.

IV. SYMMETRY CONSIDERATIONS

As stated in the introduction, all of the Yukawa type
coupling constants required for the single baryon ex-
change diagrams can be expressed in terms of a single
parameter, denoted by f, once the octet-model expres-
sions are normalized to the experimentally measured
pion-nucleon coupling constant. The explicit single-
parameter forms derived from the unitary synunetry

In the T=-,' amplitude, on the other hand, the effect
of the distant singularities is enhanced, the imaginary
axis cut by a factor of roughly 1—,

' and the left-hand cut
by a factor of 24. As pointed out by Frautschi and
Kalecka, the T=~ amplitude is not very sensitive to
these distant singularities because of the strong re-
pulsion of the nearby branch cut. Hence, it is not
surprising that our values for the T=-,' phase shift differ
very little from their results (excluding the contribution
due to the z.-z. singularities). In both approaches, then,
qualitative agreement with experiment is obtained in
each of the isotopic spin states.

In computing the resonance width, however, which
from Eq. (20) is given by

ps (W')h( —W)

(W'+B) (W+ W+i e)
(26)

In Eq. (25), (P is a constant synunetric matrix con-
taining the isotopic spin factors and coupling constants.
The relevant information needed to construct for a
given isotopic spin and strangeness state is contained in
the appendices.

From Eq. (25) it is clear that Gs(W) and D(W) can
be simultaneously diagonalized by the orthogonal trans-
formation which diagonalizes S. This means that, in
this model, the full scattering matrix G(W) for each
isotopic spin and strangeness state is diagonalized (put
into the eigenphase representation) by a transformation
determined solely by coupling constants and isotopic
spin factors. Now it is well known' that the two-particle
baryon-pseudoscalar meson states can be expressed as
linear combinations of states forming the basis of the
representations 1, 8, 8, 10, 10, and 27 of the SU(3)
group. The consequence of choosing the octet model
coupling constant scheme is that the elements of the
diagonal forms of the various scattering matrices corre-
spond precisely to these six representations. In other
words, the orthogonal matrix relating the particle states
to the unitary symmetry basis states is exactly the
matrix which diagonalizes S in each strangeness and
isotopic spin channel.

For our purposes the primary result following from
these considerations is that the determinant of the real
part of D(W), being invariant under orthogonal trans-
formations, can be expressed in terms of e factors, where
e is the dimensionality of D(W). Each such factor has
the general structure of the denominator function in a
single-channel case and can be identified with one of the
six representations of SU(3) listed above. Thus, the de-
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1V+ 3A+Z
=8.2 p,

3rl2+rr2
m'= E'= = (3.5 p)'.

The real part of the integral, I(W) =I(BrrI,,B,Bm), is
plotted in I'ig. 3, from which it follows that the quantity
g'I(W) in Eq. (27) lies in the range 0 to roughly ss in the
low-energy region. The range of values for the parame-
ter f which will give resonances in each of the six
representations are then found to be

S —2.84&f&0.34,
P f& —3.1, 0.59&f,
Q no possibility,
R —0.28&f&0.78,
B f&0.15, 1.15&f,
U f& —0.06, 0.56&f.

(28)

In applying this idealized model to the currently
available experimental data, we use the apparent ab-
sence of p@& resonances in the XE systein (strangeness
+1) to exclude the vanishing of 8 and U. The lack of a
ps~& resonance in the Xs T= —', system then further ex-
cludes the vanishing of I'. These arguments leave us
with a relatively narrow range of allowed values for f,
namely, 0 15&f&0 56 I. t is amus. ing. to note that this

's S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).

termination of the resonance condition amounts to
determining the range of values for the coupling constant
parameter f such that one or several of these factors can
vanish for a given value of I(W). Table I contains the
factorized expressions for det Rea(W) in each isotopic
spin and strangeness state, where we have introduced
the convenient notation:

S= 1—(4/3) (5—10f—4f ')g'I (W),
P= 1+(2/3) (5—10f 4f')—g'I(W),

Q= 1+2(1—2f+4f')g'I(W),
E= 1—(8/3) (1+f—2f')g'1(W)

(27)

8= 1—(8/3) (1—5f+4f')g'1(W),
U= 1—(4/3) (1 2f+4—f')g'1(W)

It is clear from Table I that the factors S, P, Q, R, 8,
and U are to be identi6ed in that order with the 1-, 8-,
8-, 10-, 10-, and 27-fold representations of SU(3) and
that the vanishing of any one of them corresponds to the
realization, in this oversimplified model, of a family of
resonances belonging to that representation. In order to
find the restrictions on the values of the parameter f
such that resonances are possible in some states and not
in others it is necessary to evaluate the integral I(W) of
Eq. (26). For this purpose we utilize the baryon and
pseudoscalar meson mass formula'" to determine the
masses 8 and m:

G05-

aoe

0.02

+ O.OI

-O.OI

-0.02
1

0 5 10 . 15 20

FIG. 3. I(W) =I(Bm,B,Bm) defined in Eq. (26), plotted as a
function of the total energy Win units of the pion mass p, .8=8.2 p,
m =3.5 p. The threshold, IV0, is 11.7 p, and the subtraction point is
at the baryon mass B.

range of values definitely predicts the vanishing of R,
giving resonances in the tenfold representation of the
baryon-meson states, while the vanishing of S, corre-
sponding to a p3/sI'Q resonance, may or may not occur.

From Eq. (27) it is seen that the maximum attraction
in the tenfold representation, given by the factor R,
occurs at f= 4. This value of f predicts the unitary
singlet I'o* resonance at exactly the same location.
These two cases differ, however, in that the resonance
position given by R is relatively insensitive to varia-
tions of f about the value r~, while the position deter-
mined by S is strongly dependent on these variations.

It remains to be verified that the results of this
idealized model, particularly with regard. to the values
of f which allow a resonant structure in the states of the
tenfold representation, hold as well when the actual
particle masses are incorporated into the calculation.
This question, as well as the related questions of reso-
nance locations, widths, and branching ratios, is treated
in the following section.

V. NUMERICAL RESULTS AND DISCUSSION

The synunetry model analysis described above has
the virtue of explicitly showing the possibility, for cer-
tain ranges of f, that resonant structures can occur in
different sets of scattering amplitudes. It is clear, how-

ever, that the mass differences between the elementary
particles cannot reasonably be neglected in the low-

energy physical region. Not only are the positions and
widths of resonances and the relative branching ratios
dependent on the actual particle masses, but also the
location of the dynamical singularities'4 as is evident
from Eq. (14). In this section we apply the relativistic
formalism developed in Secs. II and III to the various

24 From the considerations discussed in Sec. III, the subtraction
points for the different strangeness states vrere chosen to be:
S=+1, 5.25@ S=O, N=6.80@, S=—1, 2=8.57 p S=—2,

=9.57 p, ; S=—3, 11.1 p.
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FIG. 4. The elastic integrals necessary in the coupled system
with strangeness S=O, plotted as functions of the total energy W.
Curves t, 2, and 3 refer to I(Ns, N, Ns.), I(NrIN, NrI), and
I(&E, ,ZE), respectively. I(UC, ,AE) difFers very little from
curve 3, and has not been plotted. The subtraction point S' is the
nucleon mass, 6.80 p, , and Wo is the Em threshold, 7.80 p.

scattering matrices composed of the two-particle states
listed in Table I. The only input from the unitary
symmetry model, as mentioned in the introduction, is
the choice of coupling constants; and the parameter f
arising from that choice is the only arbitrary constant
appearing in our calculation.

The erst point to be made is that the ranges for f that
lead to resonant structures LEq. (28)j in the appro-
priate amplitudes are not significantly modified by the
introduction of the actual particle masses. This is most
easily illustrated by the following treatment of the
symmetrized X/D method fEq. (16)$. We rewrite the
matrix equation for D in the condensed notation

D= 1——,'I—~~37 'Ig,

necessary in the five single-channel calculations (Table
I) and illustrates the dependence upon the choice of
subtraction point as well as the particle state. The
integrals, which are of the principal-value type above
the physical threshold, were evaluated on a computer
without approximating either the phase space factor
fEq. (11)$or the Born approximation term LEq. (13)j.

It is worthwhile to point out the following features of
the integrals. As would be expected, there is little differ-
ence in the low energy region between integrals in-
volving the h. mass and those with the corresponding
dependence on the Z mass. Second, integrals with a
higher physical threshold and the same subtraction
point lie below those (in the low energy region) with a
lower threshold. This conforms, in part, with expecta-
tions regarding the relative importance of inelastic
channels with high thresholds. But at the same time it
is clear from Fig. 4 that the ZE channel cannot mean-
ingfully be ignored in the calculation of the 3, 3 pion-
nucleon resonance. Third, the integrals for particle
states involving the heavier mesons attain a greater
maximum value than do those for the states containing
pions. Fourth, the integrals for inelastic amplitudes do
not differ appreciably from the related "elastic" inte-
grals and, in the low-energy region, their behavior is
governed by the particle state associated with the phase
space factor. Finally, the integrals tend logarithmically
to —~ as 8' tends to ~ along the positive real axis.
For consistency, we have verified that no ghosts occur
near the physical region.

Incorporating the computed integrals into the sym-
metrized X/D formalism and evaluating the determi-
nant of the real part of D, we obtain resonant structures
in the four scattering matrices corresponding to the
tenfold representation. The calculated locations of the
resonances and (in parentheses) the experimentally

where I represents the matrix of integrals and I is its
transpose. Then defining the antisymmetric matrix R as
E=IA —E/, we obtain the equivalent form

D= j —I—-'g 'R.

In the "equal mass" model of Sec. IV the matrix E is
identically zero. When the correct particle masses are
used in determining R, it is found that this term makes
a negligible contribution to the determinant of D.

Thus, the primary modification in determining the
resonance conditions is due to the variation of the
integrals for diferent particle states and subtraction
points. Several examples of the integrals involved in the
calculation are plotted in Figs. 4 and 5. Figure 4, which
contains three of the integrals required in the analysis
of pion-nucleon scattering in the ps1s partial-wave state,
is intended as an illustration of the dependence on the
particle state when the subtraction point is held fixed.
Figure 5, on the other hand, contains the three integrals

0.05

0.04

0.03

0.02

0.01

-0.01

- -0.02

-0.03

I

10
I

20 W

FIG. 5. The integrals necessary in the single channel cases
plotted as functions of W. Curves 1, 2, and 3 refer to I(Zx,Z,Z7I),
I( K,Z, K), and I(NK, Z,NK), respectively. The corresponding
integrals with the intermediate A. particle differ very little from the
above curves.
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observed positions are

g 10.1 p

11.6 p

12.6 p

13.6 p

(9o/)
(10.0 ts)

(11.1 tt)

(l).

(29)

'5 W. D. Walker, W. D. Shephard, and J.Davis, Phys. Rev. 118,
1612 (1960).

M. Alston, L. W. Alvarez, P. Eberhardp M L Goody
Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Letters 5,
520 (1960).

In calculating these values we have taken f ei which
corresponds to the lowest possible resonance positions in
our model. For f in the range ieto ~„no resonances are
predicted in the other strangeness and isotopic spin
systems except the S=—1, T=O(F'e*) state. As men-
tioned in the previous section, the position of this
unitary singlet resonance is strongly dependent on the
value of f, and the resonance vanishes for fgreater than
roughly -', . With f=e, the position of the p3/2FQ is
predicted to be very close to that of the I'&* resonance,
namely, 11.6 p.

Concentrating on the pion-nucleon system for the
moment, we note that the inclusion of the ZE channel
lowers the position of the 3, 3 resonance by roughly a
pion mass in this model. Furthermore, the width of the
resonance is computed to be I'j2= 73 MeV if we again
arbitrarily evaluate the phase space factor at the ob-
served position. This value is to be compared with the
100 MeV half-width obtained in the single-channel
model. Both of these effects strongly suggest that the
inelastic channels will be of importance in more exact
treatments of pion-nucleon scattering. In addition, the
e6ect of the two-particle inelastic channels in the T=-,'
system is to reduce the magnitude of the small negative
Sx phase shift and improve the agreement with
experiment. "

In calculating widths and branching ratios for the
remaining pe/s resonances, we consistently evaluate the
sensitive phase space terms at the observed resonance
locations. The T=—', cascade-pion resonance width is
computed to be I'//2=5. 8 MeV in this model, in close
agreement with experiment. ' For the I"i*,with f= e, the
branching ratios into the A~ and Zvr channels were
calculated both for the equal mass model of Sec. IV and
the correct mass treatment of this section. In the first
case, we obtain Am 91%, Zsr 9%, while introducing the
actual particle masses modifies this to An 94%, Zn- 6%,
in relatively good agreement with experiment. " The
width of the Z resonance was not evaluated because of
the lack of experimental data, while the I'0* width was
omitted because of its sensitive dependence on the
pa, rameter f

It is, of course, dificult to gauge the effects of dy-
namical singularities not included in our approximate
model. However, qualitative remarks concerning the
inhuence of such diagrams as single p or co vector meson

exchange between the baryon and meson lines can be
made if p and M are assumed to couple, respectively, to
the conserved isotopic spin current and the conserved
hypercharge current. Using the simple rules'~ that p
exchange is repulsive when the isotopic spins are parallel,
and attractive otherwise, and that like hypercharges
repel in the case of co exchange while unlike hypercharges
attract, we may draw the following rough conclusions.
In the pion-nucleon system the p exchange is not suK-
ciently repulsive in the T=-,' state to prevent the 3, 3
resonance from occurring, nor is it attractive enough in
the T= ', state —tomake the pe/2 phase shift positive in
the low-energy region.

Although the vector meson exchange terms are not
the dominant interactions in the pe/: amplitudes, they
are likely to be important in determining resonance
positions. In this regard we note that the vector meson
terms are attractive in both the F&* and ™*systems, as
contrasted with the repulsion in the X3,3* system noted
above. In the Z amplitude we may suppose the vector
meson sects to be small because of a cancellation be-
tween the p and co. On the basis of these extremely
sketchy arguments it is interesting to speculate on the
possibility of a dispersion theoretic verification of the
"equal spacing" rule" for the resonances of the tenfold
representation. The resonance locations obtained in this
calculation LEq. (29)j show a general equal spacing
structure which might easily be improved by including
the vector meson contributions.

Finally, we wish to point out two possible experiments
relating to the coupling constant parameter f The 6rst.
concerns the obvious question of the existence of a I'0~

resonance in the P3/Q state. In particular, if the known
I"0* at the total energy 10.2 p, turns out to have these
quantum numbers, then the value f= ei would seem very
reasonable. If, however, the predicted resonance is
found much higher or does not exist at all, then f must
be made larger in this model. As mentioned previously,
the prediction of the tenfold family of resonances is
relatively insensitive to such adjustments of the coupling
constant parameter.

An independent experimental check on f follows from
the observation that in this model, if the Z-A. Inass
difference is ignored, the effect of the single baryon ex-
change term in the 1=0 ÃE system is very sensitive
to f. For f greater than ie (and less than 1) the inter-
action is repulsive in the pe/2 state, while values of f less
than 4 lead to an attractive interaction. On the basis of
rough arguments, we expect the vector meson exchange
diagrams effectively to cancel each other in this isotopic
spin state. Hence, the sign of the pe/2 phase shift in the
low-energy region may indicate the appropriate value of
f. Similarly, if these oversimpli6ed considerations are
valid, we would expect the pi/2 phase shift for T=0 XE

27 J. J. Sakurai, Ann. Phys. (N. V.) 11, 1 (1960).
M. Gell-Mann, in proceedings of the 196Z International Con-

ference on IIegh Energy P/tysies at CERN-(CERN, Geneva, 1962).
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scattering to have the opposite sign to that of the pyg
state.

Of course, if the "*resonance is not in the p3~2 state,
or if the predicted Z—is not found, then the basic as-
sumption of this paper, namely, the octet-model ex-
pressions for the Vukawa-type coupling constants, must
be re-examined. On the other hand, if these predictions
are borne out experimentally, then one may feel reason-
ably confident that the coupling-constant expressions
evaluated in the neighborhood of f=»~ will remain
meaningful in more refined dynamical treatments. When
the usual factor of 4m is absorbed into the coupling

constants and the definitions of Appendix I are used, the
numerical values obtained with f=»' are

gN
2 —hZK2 g2

gh~ ghK gh)I =gZ)) =g )I
—4g 11

gZ& =g=-& =gZK =4g =4,
hhK gNg

These values appear to be consistent with the experi-
mental data now available.

In conclusion we would like to thank Dr. J. Uretsky
and Professor J.J.Sakurai for several helpful discussions.

APPENDIX I

Octet-Model Coupling Constants

In order to establish the notation for coupling constants used in this paper, we write the interaction Lagrangian
density for baryons and pseudoscalar mesons in the form

2;„»——(4~)' 'fg~ m E~N+gq (»». AX+H c ) .»g. q
—~ XXX+g .»» -. ~ +gqx(NAK+H. c )+err(.E~ XK+H.c.)

+kgb( AK'+H. c.)+herr ("~ XK'+H. c.)+g~»rIXN+g». „gAA+gr„gX X+g-.p
where the space-time dependence of the interaction has been suppressed. The particle symbols refer to the field
operators in the standard v ay and H.c. means Hermitian conjugate. The charge structure is contained in the
conventional isotopic spin representation, where

Z =—.,K*=i

is the isotopic spinor of the second kind for the K meson. It is convenient to include the factor of (4m)'~' in the
definition of the coupling constants so that, for example, we have gN '= 15 as the experimental value for the pion-
nucleon coupling constant.

In the Gell-Mann —Ne'eman octet model for the strongly interacting particles, there are only two independent
ways, known as D- and F-type coupling, in which to write Yukawa couplings which are invariant under unitary-
symmetry transformations. It follows that the most general form for these couplings is an arbitrary linear combi-
nation of the D and F-type expre-ssions. If we let dg be the coeKcient of the D-type form, and fg that for the
F-type form, then the resulting expression for the pion-nucleon coupling constant is gz = (d+ f)g. Without loss of
generality we may choose g= (15)U', in which case experiment restricts the coefficients to (d+ f)=1.

The combination, therefore, of the known value of gN and the octet-model assumption limits the twelve
Yukawa-type coupling constants to a one parameter set of expressions. Setting d=1—f,"we obtain the following
representation for the baryon-pseudoscalar meson coupling constants:

gN~= g)

g~-= (2/v3)(1 —f)g,

gz~= 2'
g=. -= —(1—2f)g,

g~x= (1/~~) (1+—2f)g,

g.x= (1—2f)g,

hex = —(1/v3) (1 4f)g,
—

hgK= g)

g~.= (1/v3) (1—4f)g, —
„=—(2/v3) (1—f)

gz = (2/v3)(1 —f)g,
g=- = —(1/&3) (1+2f)g

APPENDIX II

Isotopic Spin Factors

The isotopic spin structure given in the interaction Lagrangian density of Appendix I allows one to determine
easily the appropriate coefficients for the Born approximation terms arising from the single baryon exchange
diagram (Fig. 2). 9 e list the isotopic spin factors for each strangeness and total isotopic spin state, using the
notation (BC,A,DE) to represent the particles involved in each diagram (cf., footnote 14). The symmetry of the
matrices permits us to suppress half of the off-diagonal terms in each case. Finally, for the single channel cases, we
use the notation (BC,BC) to represent the total isotopic spin amplitude for the Born approximation contribution.

~ It should be noted that the parameter f is related to o, in Gell-Mann's notation (reference 9) by f= 1—cx.
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The resu1. ts are as follows:

S=l, T=O

S=l, T=l
S=O) T=-,'

N~ —(Nm, N, N~)
AE
ZK
Ãg.

S=O, T=—'
Q

(NK, NK) = 3 (XK,Z,NIC) (N—K,A, NK),

(NKPTK) = (NK, Z,NK)+ (iVK,A,XK),

AE zK
V3(N~, Z,AK) 2 (Nm. ,z,ZIC)+ (N~,A,ZK) v3 (cVvr, N,i')

(AK, ,AK) —&3(AK, ,ZK) (AK,A, Ng)
—(zK,=-,zK) v3(ZK, X,Nq)

(Ng, iV, Ng) .

S=—1, T=O

Em ZK
Nm 2(Nm, N, Nm. ) (iVm, A, ZK. ) (N—~,Z,ZK)
ZK 2 (ZK, ,ZK)

S=—1, T=l

ÃE
ÃX 0
Zx
E

Ag

Zm

+6(NK, N, zn-)

( Zm, A, Zvr) —2(z~,z,zm)
(NK, A,=-K) 3(iVK—,Z,=K)

+6(z~ = =K)
0

Aq

&2(NK, N, Ag)'
vS(Z~, Z,A~)
VZ("-K,=-,A~)

( Aq, A, Aq)

ÃE
SE 0

Az

Zn.

.4x
2 (NK, N, zm.) v2 (NK, N,A~)

(Zm, z,zx) —( Zx, A, Zx) —&2(Z~,Z,A7t)

(A~,z,A~)

E
—(iVK,A, K) (NK,Z, K)—

2(z& "= =K)
v2 (A~, -,=K)

0

Zg
v2(NK, N, zq)
Wz(z~, z,z~)

(A~,A,z~)
v2( K" zg)

(z&,z,z~)

S=—1, T=Z

S=—Z T

S=—Z, T=2

S=—3, T=O

S=—3, T=l

PV
W+

H~ Ng W Hg

zK
Wg

(z~,z~) = (Z~,A,Z~)+ (z~,z,z~),

zE
v3("-~,Z,AK) 2(=-~,Z,ZK)+ (=-~,A,ZK)
(AK,N, AK) ~i3 (AK,N, ZK)

(ZK,&T,zK)—

r,E
=~ 2(=-~ =- =~) (=~ A ZK) —(=-~ z ZK)
ZK 2(zK, iv,zK)

(gK PK) = 3(gK z ~K)—(EK A EK)

(HK HK) (HK Z HK)+ (HK A WK)

v3 (=~. ..q)
(AK,A, "-~)

vS(ZK, z,=q)


