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Chemical Shift and Relaxation of Xe"' in Xenon Gas*
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The density-proportional chemical shift observed by Carr and his associates in xenon gas can be used as
a means of calibrating the spin-rotational coupling existing in a diatomic xenon system during collisions of
xenon atoms. The basis of this calculation is Ramsey s theory of chemical shifts. The value of the coupling
thus obtained is of the correct magnitude to account for the observed relaxation of Xe"' in xenon gas.

It is the purpose of this paper to point out that a
connection exists between the chemical shift and the
spin-rotational coupling constant, this connection being
given by Ramsey's4 theory of chemical shifts. It will be
shown that this connection can be used to determine
the spin-rotational coupling from the observed chemical
shift, and that the relaxation time T1 calculated from
this calibrated coupling is in excellent accord with the
observations of Hunt and Carr. '

The magnitude of the spin-rotational interaction in
xenon gas and its possible role in the relaxation of Xe'"
spins was theoretically examined originally by Adrian. '
He concluded that the coupling was insufficiently strong
to account for the relaxation. His theory was based on
a formula of Wick giving the magnetic held at a nucleus
of a diatomic molecule produced by molecular rotation;
this same formula, involving a sum over virtually
excited states, was also used by Ramsey in his theory
of the chemical shift. In Ramsey's theory the same sum
occurs in the chemical shift formula and is eliminated
between the two to give the direct relationship men-
tioned above. In Adrian's work the value of the sum is
estimated using some rough approximations which give
a result a factor of 13 too small to fit the observed
chemical shift data. In view of the crudity of the ap-
proximations used, the failure of this calculation by an
order of magnitude although somewhat disturbing is
perhaps understandable.

INTRODUCTION

A DENSITY-proportional chemical shift in the
Xe" resonance in xenon gas and liquid has

been found by Streever and Carr' and, more recently,
by Hunt and Carr. ' Their observations show that this
shift from the extreme low-density line is accurately
proportional to density over a wide range extending
from the rare gas well into the liquid phase. Also, Hunt
and Carr' working with purer samples than Streever
and Carr have found that the relaxation rate Tj ' for
Xe"' is proportional to the density.

The mechanism for relaxation of Xe"' is not finally
determined, but Hunt and Carr' have evidence that
seems to exclude several possibilities. Direct nuclear
dipolar interaction is by no means sufficient to account
for the observed relaxation rate. There is good evidence
that impurities such as 02 have been reduced to negli-
gible proportions and wall effects can be excluded. The
observed independence of T~ on magnetic field rules out
the anisotropic chemical shift mechanism. No Over-
hauser enhancement of Xe"' is produced on saturating
the Xe"' resonance whereas a 30'%%uo enhancement would
be expected if the Xe'" relaxation is caused by an elec-
tron-coupled scalar interaction between the two nuclei
during collisions. The absence of such enhancement does
not exclude a possible electron-coupled tensor inter-
action. which could be an effective mechanism for col-
lisions between Xe"' atoms. However, because of the
closed shell electron configurations one would expect
the scalar type to dominate.

There remains the possibility that relaxation in Xe"'
is caused by a spin-rotational coupling existing
(a) during atomic collisions or (h) during the transient
existence of diatomic molecules. The presence of such
molecules in small amounts has been suggested by
Bernardes and Primako6. ' These two possibilities diQ'er

only with respect to the duration of the association of
two atoms, since the molecules postulated by Bernardes
and Primakoff are bound loosely by Van der Kaals
forces, the same forces coming also into play during
binary collisions.

THE CHEMICAL SHIFT

The diamagnetism of the electrons of an isolated
xenon atom provides a substantial chemical shift from
the resonant field of a bare nucleus, amounting to about
70 G in a field of 12 000 G. The change in this shift due
to association with another xenon atom may be calcu-
lated by means of Ramsey's theory4 of chemical shifts.
In Ramsey's expression there appears the so-called
paramagnetic term in the form of a sum over virtually
excited states. The dichotomy between diamagnetic and
paramagnetic contributions is not gauge invariant,
although the total shift, of course, is. Using Ramsey's
gau e, the arama netic term is seen to be closel re-P g y*This work was supported by the United States Air Force lated to a silnilar sum, over excited states occurring in0$ce of Scientilc Research under Contract AF49(638)755 and

by a grant from the National Science Foundation.
' R. I.. Streever and H. Y. Carr, Phys. Rev. 121, 20 (1961). 4 Q. F. Ramsey Phys Rev 78 699 (1950)' E.R. Hunt and H. Y. Carr, Bull. Am. Phys. Soc. 7, 293 (1962). 5 F. J. Adrian, thesis, Cornell University, University Micro' N. Bernardes and H. Primairoff, J. Chem. Phys. 30, 691 (1959). films Inc. (1955).
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Wick's theory' of the magnetic Geld at a nucleus of a
diatomic molecule due to rotation. Eliminating the
excited state sum between the two expressions, Ramsey
arrives at the result

o = (e'/3mc')(0~ +p 1/rp~ 0)
+(e/3mc&a)(H, Zea—/cR). (1)

function of the isolated atom must be used. In order to
estimate the order of magnitude of the first term we
shall neglect the exchange forces and take for the per-
turbed wave function of the diatomic system a Slater-
Kirkwood function"

1/rp ——(1/R)Q (rp'/R) "8 (costs'), (2)

Here, r~ is the distance of the kth electron from the
nucleus for which the shift is being calculated and the
sum is over the electrons of both atoms. II„is the mag-
netic field at that nucleus due to rotation of the di-
atomic system, co is the angular velocity of the line of
centers, Z is the atomic number and R the internuclear
separation. Equation (1), as shown by Ramsey, does
not depend on the perturbation theory used in its deri-
vation, but can be obtained on more exact grounds.

In order to compute the shift observed by Carr, ' ' one
must first find ha, the difference between (1) and the
a of an isolated xenon atom. This Do- is the instantaneous
shift and the observed shift is found by taking an ap-
propriate statistical or kinetic average of Acr.

In the first term of (1) we separate the g p into sums
over atom A at whose nucleus the shift is being evalu-
ated and over the other atom B. For the latter part we
expand as follows:

where fp is the ground state wave function of the un-
perturbed system and

(6)

In (6), (x;,y;,s;) is the position vector of the ith electron
of atom A and (f,,r1;, a;) that of the jth electron of atom
8 each referred to the respective nucleus and both s;
and $; are measured along the line of centers. )ig are
variation parameters and (v')op is the expectation value
of e' for the unperturbed system. Restricting the sums
in (6) to the outer shell electrons all X,; are equa, l and
have the common value'

)~= (e'mn/4$pAsRo)'"

where n is the polarizability of a xenon atom and
Xp(= 6) is the number of outer shell electrons. Assuming
fp is a simple product wave function one finds for
the expression in the curly brackets in Eq. (4)

(8)

where r~', 0~' are coordinates of electron k at atom 8
relative to nucleus B. We may now rewrite (1) as

a—(e'/3mc )(0
~

P"1/rp
~
0)+ (e'/3mc') (Z/R)

+ (e'/3mc'R')(0
~ P ri, ' costs'(0)

+ (e'/3mc'R')(0
~

pe rs"Ps(cosep')
~
0)

+eH„/3mcoo Ze'/3mc'R. (3—)

In this expression the second term cancels with the last
term, and the third term vanishes by symmetry con-
siderations. ~ The fourth term is very small. Its value
has been estimated, using a Slater-Kirkwood wave
function for the ground state, to be 2)(10 ".Neglecting
this small term, we are left with the first and fifth terms.
From this result we must now subtract the diamagnetic
shift of an isolated atom and finally obtain for 20-,

ha= (e'/3mc') f(0~ P" 1/ra[0) —(0~ +"1/ra[0)p}

—P (3n'/8R') (r-'). . (10)

Putting +=4)(10 ' cm', R=4X10 cm, and
(r '), =10+a cm ', we find for the first term of (4)

(&a)i———1.4X10-'.

This is entirely negligible compared either to the ex-
perimental value of Aa (inferred from Hunt and Carr's
data') of —3.8X10 ' or to the theoretical value of the
second term of (4) based on Adrian's' estimate of H„:
(ha)s= —3X10 '. We, therefore, neglect the first term
of (4) and arrive at the very simple result

Aa= (e/3mea&)H„. (12)

Quite generally H, will be proportional to ca, the pro-
portionality factor depending only on R. That is,

where the averages are over the unperturbed wave func-
tion. We are interested only in the order of magnitude
and so will neglect (r), and put'

(r') =3 (A'n/4E me')'"

Using (7) we then get

+eH, /3mcta. (4)
~ ~

In the first term, the subscript 0 means that the wave

H, =taf(R),

Ao = (e/3mc) f(R)

(13)

(14)
' G. C. Wick, Phys. Rev. 73, 51 (1948).
'7 This is certainly the case if the interaction between the atoms

is of the dispersion type. In any case it is negligibly small.

' J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
P H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
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We must now make a suitable statistical or kinetic
average of (14). The proper statistical average is ob-
tained by integrating (14) over the radial density func-
tion. For low densities

(ha).»= (e/3mc) e "' "'rf(R)N4~R'dR, (15)

where N is the number density of atoms and u(R) the
interaction potential. The rigid-sphere model,

n(R)= oo, R.(R„
=0, R&R

gives

((Aa), ), , = (4~eN/3mc) f(R)R'dR (1. '?)

The Lennard-Jones potential

tt(R) =«E(a/R)" —(a/R)'j
gives

((~a)-)»

RELAXATION TIME

In computing the relaxation time one has the option
(as in the case of d,a) of using either a kinetic (time)
average or a statistical (ensemble) average. Each pro-
cedure has its advantages. The kinetic average is the
simplest in the low-density case for collision dynamics
based on the rigid-sphere model, but becomes almost
unmanageable for more realistic models and at higher
densities. The statistical average, although manageable
for realistic potentials, must be based at present on the
approach of Oppenheim and Bloom" which involves
"the constant acceleration approximation. " Although
this approximation is probably a good one, its re-
liability has not yet been adequately tested.

We shall lrst calculate 7» for the low-density case
using a kinetic average with the rigid-sphere model.
Later we shall discuss the application of the Oppen-
heim-Bloom theory to this problem.

Consider a Xe'" atom moving through the gas and
making random collisions. The very small probability
of a nuclear spin Aip as a result of a single collision is,
by perturbation theory,

4xesca' ds
expL —ys'(s' —1)]f(as-'») —, (19)

9mc S

W =A-'
~

X' (t)e '"o'dt— (24)

((Aa). ), . =4m.eNE/9mcR„', (20)

where y=—4s/kT.
From (17) and (19) we see that measurements of

(Do.), do not determine H, directly, but only certain
integrals of H, over R. In order to obtain a useful result
that can be inserted in the theory of relaxation, some
form for the function f(R) must be assumed.

It may be expected that f(R) will be a rapidly de-

creasing function of R. It will suffice to take

f(R) =ER ".Assuming some value for I, the constant
E can be determined from the shift data and then used
to Gnd a value for T~, If exchange forces are neglected
so that only Van der Waals interactions are included
one finds' e= 6. For definiteness we shall assume this
value for n although the final result will not depend
critically on the value of e assumed. Kith e= 6 we get
from the rigid-sphere model t Eq. (17)]

Here, cop ——pHp is the Larmor frequency in the large
steady field Ho and 3C is the interaction Hamiltonian

se'= —~PI H„. (25)

X'= —(7A/pR') f(R)I Rx P. (26)

Since &'(t) is a very sharp function of time, the limits
of integration in (24) have been taken from —oo to
+ oo. For the same reason the factor e '"o' may be re-
placed by unity. Thus, from (25) we obtain

An alternative expression for BC' is obtained from
(13) noting that

es= RXP/pR'

where the relative momentum P=pV„p is the reduced
mass, and V, the relative velocity. Thus,

and from the Lennard-Jones potential, taking"
&=319&10 "ergs and T= 298'K,

1+2 H, (t)dt sin'8, (27)

((Zo), )L s = 1.672 (4vr/9) (eNK/mca').

If in (21) we put" a= 3.94)& 10—' cm and for E, Adrian's

result, ' —2.1&&10 " cgs units we obtain (ha, ~)—3.3&( 10 8 per amagat.
This is to be compared to Hunt and Carr's result, 2

where 0 is the angle between H, and Hs. Since H„ is
orthogonal to the orbital plane, 0 is constant during a
collision. We may anticipate subsequent averaging over
collisions by replacing sin28 by its average over the unit
sphere of 2y'3, obtaining

((Aa), ).„~=—4.2&&10 7 per amagat (23) 8' =—'y2 EX, (t)dt (2g)

"G. K. norton and J. W. Leech, Proc. Phys. Soc. (London)
(to be published). "I. OPPenheim and M. Bloom, Can. J. Phys. 39, 845 (l9(j].).
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tion of the Korringa type

40m e'E 4i7
Ti ((So). )'=

21 m'c'y'V,
(40)

In order to evaluate the right member of (40) one must
assume a value for E. , the effective rigid-sphere atomic
diameter. It is probably incorrect to take E. =g, the
value of R at which the I ennard-Jones potential
vanishes. A better procedure is to compare Eqs. (20)
and (21). Equating these, we find

R„=a/(1. 672)'" (41)

Inserting (41) in (40) we get

Ti((ho'), )'=3.56X10 s per amagat. (42)

MSCUSSION

We have shown that the measurements on the chemi-
cal shift of Xe"' in xenon gas can be used as a calibration
of the local field at a Xe'" nucleus due to the rotating
diatomic system in an atomic collision and that the
local field so determined accounts well for the observed
relaxation time.

The possibility of determining H, from the shift data
rests on the validity of Eq. (12). This equation has
been justified by the use of Ramsey's formula (1) and
the neglect of certain terms in the resulting Eq. (3).
The neglect of these terms is rendered plausible by an
order of magnitude estimate of them. The terms ne-
glected are estimated to be several orders of magnitude
smaller than the observed ~0.. The final term included,
however, has a theoretical value smaller than the ob-
served d,o. by one order of magnitude )see Eqs. (22)
and (23)j. This discrepancy is disturbing and points
to the desirability of a more refined calculation of the
local field, H„.

Nevertheless, there seems little doubt that the spin-
rotational coupling is the effective mechanism for the
relaxation of Xe'29 in the gas. Unlike relaxation which
can be produced by a variety of mechanisms, the
chemical shift can only be due to the distortions of the
electron clouds in collisions. Thus, the calibration of H„
by this shift seems unambiguous.

The closeness of the agreement noted between experi-
mental and theoretical values of Ti((ho), )' is probably

"E.R. Hunt and H. Y. Carr, preceding paper, Phys. Rev.
130, 2302 (1963).

Using Hunt and Carr's latest data, "Ti '= (5.0+0.5)
X10 'sec 'amagat ' and (ho),~=(4.22&.05)X10 7

amagat ', we get

LTi ((Ao.),~)'].„o——3.6 (&0.4)X 10 ' per amagat. (43)

The remarkable agreement between (42) and (43)
is, of course, largely fortuitous because of the theoretical
approximations made.

fortuitous. By taking H„=EX ' we have neglected
overlap forces which are especially effective in close
collisions. However, generalizing to H, =EE. "does not
affect the order of magnitude of the theoretical
Ti((ho), )' for I considerably larger than 6 (see
Appendix). Another source of inaccuracy is the fact
that Eq. (40) is based on the rigid sphere model in the
collision dynamics. Some mitigation of this error is ob-
tained by use of Eq. (41) for R . This effectively small
value of E does not imply that atoms get that close
together during a collision but rather it takes account
of a longer time of association resulting from the at-
tractive part of the interatomic potential. This way of
including a realistic force law is, however, not very
satisfactory. It would be much better to include such a
realistic potential in the calculation of T~ from the start.

The Oppenheim-Bloom theory" of relaxation in
Quids provides a way of doing this. Recently Oppenheim
and Bloom'4 have inaugurated such a calculation by
the use of the interaction Hamiltonian of the form (26)
in their formalism. We have been able to show that
their theory leads to a result for T~ which for a realistic
potential can be determined by machine calculation.
We have also shown that for the rigid sphere model
their equations gives a result for T& which differs from
(39) by only 13%. This small difference which is pre-
sumably due to their use of the "constant acceleration
approximation" shows that at least in this case this ap-
proximation is reliable and lends support to its use in
the more general case.

We have based our calculations on the assumption
that xenon gas is monatomic. Bernardes and Primakoff'
have shown theoretically that diatomic xenon molecules
bound by van der Kaals forces may exist in small per-
centages in xenon gas. The possible presence of such
molecules suggests that the mechanism involved here
for relaxation might prove to be more effective than in a
monatomic gas because of the longer times of association
of a diatomic system. We now present a rough calcula-
tion to show that such molecules in small percentages
would be less effective than atomic collisions in pro-
ducing relaxation.

First assuming no molecules and only atomic colli-
sions, let us assume that H, is constant for a time 7-, of
a collision and vanishes outside that time. The Eq. (28)
gives 8"=6y'II„27.,'. If 7-0 is the mean time between col-
lisions, we get for T'~

T,(Ao)..'——;(e/mcus)'o& 'ro '. (44)

"I.Oppenheim and M. Bloom I'private communication).

1/Ti 'y'H 'r '/ro——-
On the other hand, by Eq. (12)

(~ )-=(~/3 )(&./ )( ./ o)

assuming some mean value for ~ during a collision.
These two equations give
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and integrating term by term, we get

2& =Q (2k+1) '(2k+ts —1)-'

+Q (2k+1) '(2k+ts+1) ' —1/(I —1).

These sums may be expressed in terms of the logarith-
mic derivative of the gamma function,

P(x) = —C+Q x/v(x+v),
v=1

and we get

28„=L1/(ts —2)pe (ts —2)—,f (I/2 —1)+C/2g
+ (1/I) L4 (I)—-'4 (I/2)+c/n —1/(~ —1).

This result may be expressed as

ts —1
8„= ——

~

-', +-,'+. + +ln2
~

——, (ts odd)
ts(n —2) 5 ts —3 1 2ts

e—1 f
I
1+a+. +

I

——. (ts even)
ts(N —2) k I—3) 2N

For ts= 6, we find Bs 7/36 ——and Js——7/458 M.
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Rotational Excitation and Electron Relaxation in Nitrogen*

MicHAEL H. MENTzoNI AND RoNALD V. Row

Applied Research Laboratory, Sylvania Electronic Systems, Waltham, Massachusetts

(Received 11 February 1963)

Using the expression given by Gerjuoy and Stein for the cross section for excitation of rotational states in
Ns by monoenergetic electrons, an exact expression for the average electron energy loss rate, (dW, /dh), is
derived in the case of a Maxwellian velocity distribution. The results are used in the interpretation of cross-
modulation experiments performed at microwave frequencies in an afterglow discharge. Computed results
are presented for several gas temperatures, T, in the range 300—735'K with the electron temperature, T„
being a running variable within 250'K of the gas temperature. It is seen that (dW, /dt) varies linearly with
(T, T), when T, is less t—han 10% in excess of T; and that the slope, proportional to the inverse electron
relaxation time, v, decreases as T 'I'. This is also predicted by an approximate, closed form representation
of (dW, /dh), which agrees extremely well with the exact computation. The experimental data on r, found
by microwave cross-modulation techniques, agree well with theory. Using Pack and Phelps relationship
between the electron momentum transfer collision frequency v, and T„it is found that the 6 factor varies at
T, s~s, with G/G, i...~„|ranging from 55.9 at 300'K, to 14.3 at 735'K.

INTRODUCTION

A S has been suggested by Gerjuoy and Stein' two
different approaches are feasible in order to

compare the theoretically predicted cross section for
rotational excitation with experimental results obtained
from swarm experiments. The 6rst approach, recently
utilized by Frost and Phelps, ' solves the Boltzmann
equation with the rotational excitation terms included;
and a reiteration procedure determines the collision
cross sections that yield the closest 6t to the presently
available data on transport coeKcients. In this paper,
we present a second approach which is based on the
cross-modulation phenomenon taking place during
the afterglow of a transient, quiescent nitrogen plasma. '
The electrons, being close to thermal equilibrium with
the gas molecules, can be expected to obey a Maxwellian
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velocity distribution. Thus, an average value of the
electron energy-loss rate can be computed and compared
directly with observed data on the electron relaxation
time, ~. This will also serve the purpose of determining
the validity of the assumptions used for the cross-
modulation experiment, namely, that the average
electron energy-loss rate, (dW, /dt), is proportional to
the excess electron energy, T,—T, T being the gas
temperature.

Of particular interest, to many workers in the field
of plasma diagnostics and ionospheric research, is the
fractional electron excess energy loss factor, or the G
factor. Apart from the cross-modulation phenomenon,
which can be used as a diagnostic tool, substantial
microwave heating of the electrons is often desired.
In the case of the noble gases, the electron temperature
for a specified field strength can be computed, since the
G factor is constant (i.e., independent of the electron

temperature. ) In molecular gases, this is far from being
the case and it is one of the purposes of the work
reported here to find how the 6 factor varies with T,.


