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The dc transport problem in a polar crysal, in the range of optical mode scattering, is studied within a
weak-coupling model for the electron-phonon interaction. A full variational calculation is performed in the
presence of a magnetic 6eld and carried out to high accuracy on a digital computer. It is stressed that the
physical sects should be discussed in "magnetoconductivity, " rather than conventional "magnetoresis-
tivity" terms, corresponding to the type of experimental arrangement frequently used for these materials.
The model, which is, in principle, restricted to a small coupling constant (n«1), has some interesting dispers-
ive properties and is used as a working tool for an over-all picture of the transport problem in its full com-
plexity, when a magnetic field is present. Some experimental aspects are discussed and it is suggested that
a heuristic correction to the weak-coupling formulas might extend its practical range of applicability to
higher values of n. This is illustrated with applications to AgBr and AgC1, where a=2.

I. INTRODUCTION

'
N an ionic crystal the conduction electrons interact

rather strongly with the longitudinal polarization
waves due to optical mode vibrations of the lattice.
The strength of this interaction can be measured' by a
dimenstonless coupling constant n = (m/2rdPis)I"
Xe'(e„'—e, '), where e, is the static dielectric con-
stant of the crystal, e„is the high frequency dielectric
constant, ~ is the frequency of the longitudinal optical
modes, and m is the crystal band mass (here distin-
guished from the free electron mass m, ).

In the weak-coupling limit, n((1, the picture which
energes from standard first-order perturbation theory
describes the drift mobility of the charge carriers as
limited by 6rst-order scattering processes in which a
polar phonon is absorbed or emitted. At low tempera-
tures the carriers undergo, thereby, highly inelastic
scattering events. Howarth and Sondheimer' argued
that, under such conditions, it is not clear how to de-
scribe the scattering in terms of a relaxation time. In-
stead, they formally solved the Boltzmann equation by
a variational procedure. The essential result of their
calculation is a numerical function G(s) of the dimen-
sionless variable s=k&d/KT=O'/T. From this function
one can calculate the conductivity (or the mobility) if
one knows the appropriate parameters of the material
(dielectric constants, etc.). Howarth and Sondheimer
actually used the result of an earlier derivation' 4 of the
matrix element for the scattering which neglected the
contribution of the ion core electrons to the high fre-
quency dielectric constant. This does not a6ect the
function G(s) and is easily corrected; it is automatically

* Work supported in part by the Air Force Office of Scientific
Research.

f On leave of absence from the Instituto de Fisica "A. Santa
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taken into account, for example, if one uses Frohlich's'
Hamiltonian.

The Howarth-Sondheimer model for the transport
problem, which is, in principle, restricted to 0,(&1, has
been very useful in many practical cases, as is illus-
trated by Ehrenreich's extensive work, ' among others.
Ehrenreich has extended the calculations to the type of
isotropic but nonparabolic bands of the III-V com-
pounds and has also included free carrier screening
e6ects. This paper will not be concerned with either
these or the recent extension' to a many-ellipsoidal
band structure.

The present work is an attempt to study in detail the
properties of the weak-coupling model for the dc trans-
port problem in a polar crystal, without additional
complications concerning band structure, etc. Moti-
vated by current experimental work at the University
of Illinois, it was felt that further study was necessary
on certain questions connected with the weak-coupling
model.

The 6rst question concerns the limits of practical
applicability of the model, i.e., whether some correction
may be devised which makes it work up to higher
values of n. The variational calculation of the dc mo-

bility is outlined in Sec. II, where the notation is es-
tablished for the extensions to follow. A heuristic cor-
rection is introduced in the mobility formula, and this
is then compared with experimental results for AgBr
and AgCl where +=2.

The second question concerns the relationship of the
model to others in which polar scattering is described
in terms of a constant relaxation time. At low tempera-
tures it may be argued' that a slow carrier, having ab-
sorbed a phonon of very large energy, has a very high
probability of immediately re-emitting it. This is the
idea of resonant scattering' in which absorption and

'H. Ehrenreich, J. Phys. Chem. Solids 2, 131 (1957); 8, 130
(1959);J. Appl. Phys. Suppl. 32, 2155 (1961).

D. J. Olechna and H. Khrenreich, J. Phys. Chem. Solids 23,
1513 (1962).

7 T. D. Schultz, Phys. Rev. 116, 526 {1960);Technical Report
No. 9, 1956, MIT Solid State and Molecular Theory Group
(unpublished).
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emission merge into one second-order process. The cal-
culation for this type of elastic scattering yields a con-
stant relaxation time independent of the kinetic energy
of the carrier. Kith a single isotropic mass, there is
then no dispersive behavior in the gas of carriers.

Now, a magnetic field is a probe which can feel the
difference between a dispersive and a nondispersive gas.
With a single isotropic mass and a constant relaxation
time, the resistivity is not changed by a magnetic field,
whereas a nonzero magnetoresistivity is exhibited by
the (dispersive) model of first-order inelastic scattering,
as was pointed out by Lewis and Sondheimer. ' A simple
observation of magnetoresistivity would seem a de-
cisive experiment. However, in many polar materials
this experiment is very hard to perform. In order to
measure resistivity, as is usually done in a reasonably
good conductor, one has to maintain a measurable
steady current through the sample. Rather, the experi-
mental arrangement which seems to be more convenient
in these materials consists in maintaining an electric
field inside the sample, and then measuring the
(transient) drift of change. Thus, the ordinary concept
of magnetoresistivity is irrelevant to the transport co-
efficient actually measured in these conditions. As a
matter of fact, both the dispersive and the nondispersive
model exhibit a nonzero magnetoconductivity. These
concepts, and other phenomenological relationships, are
explained in Sec. III.

One purpose of this work was to take a broader view
and formulate the galvanomagnetic properties of the
weak-coupling model in "magnetoconductivity lan-

guage. " It is suggested that this should be the policy of
future theories which might truly describe polarons
(rather than weakly perturbed electrons), since this is
likely to be the frame of the experimental information.
Thus, for example, Tippins' recent work, which has
elucidated the shape of the conduction band structure
in AgBr, and in AgCl, is all magnetoconductivity work
(although the measurements were performed at very
low temperatures, where optical mode scattering is
frozen out).

The variational calculation outlined in Sec. II is ex-
tended in Sec. IV where detailed computations of the
galvanomagnetic coefFicients are performed. The im-

plications of these calculations are discussed in Secs. IV
and V, where some suggestions are made for future ex-
perimental work.

To sum up, this is the study of the properties of a
model. It is simple and not at all rigorous, but it has the
practical advantage that the calculations car be per-
formed at arbitrary temperatures and magnetic fields.
It can be used for an over-all picture of the dc transport
problem in its full complexity. It was thought that such
a study might be a helpful guide for future developments.

B. F. Lewis and E. H. Sondheimer, Proc. Roy. Soc. (London)
A227, 241 (1954).' H. H. Tippins and F. C. Brown, Phys. Rev. 129, 2554 (1963).

II. MOBILITY CALCULATION IN A
DC ELECTRIC FIELD

Howarth and Sondheimer's calculation is repeated by
Ziman ' in a more concise fashion, in which some irrele-
vant details of the collision term are omitted by apply-
ing the variational method to the original form of the
Boltzmann equation. This technique will be adopted
here and the theory extended to the case of a magnetic
field. Ziman's derivation of the mobility will be now
outlined for the sake of establishing the notation.

For a gas of carriers of wave vector k and kinetic
energy E=k'k'/2m, the nonequilibrium distribution
function is written as

fl =fle @s-
BE

where fj,a=Ac e~~~ is the equilibrium distribution.
The basic quantity in this calculation is a quadratic
form of the collision operator I', which represents the
rate of entropy production due to collisions:

1
(C ~—C ~ }sfI

o—dkdq. (2)
qk

Here q is the phonon wave vector, K is the Bose-
Einstein distribution function Lexp( —0"

~

T) 1] ', and-
y ', which is proportional to the dimensionless constant
n, is defined so that it involves no mass parameter:

1 a)'f 1 1)
4s 5e~ eq)

Changing to an integration over energy, the weighted
volume element dk becomes

1 2m s"
dk =

J f
E'"dE.

2s'4 fl' I

With an electric field f of magnitude 8 and unit
direction u, the appropriate form of Cz is u kp, where

p is linear in 8 and is evaluat d to successive orders of
approximation with the variational technique. One
expands y and writes, in the eth order of approximation

N

C g'~& =k.up&"& =Q c„(p,(k).
r=0

In this case the functions used were

p„=k uE"

corresponding to a power series expansion of p. Equa-

' J. M. Ziman, E/ectrons and Phonons (Clarendon Press,
Oxford, 1962), Chap, 10.
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tions (2) and (4) give

(@"")IPC'~( ')= 2 c (o.lP(.)c.
r, s=0

X,—=I'(r+5/2)/I'(5/2), evaluation of the integrals J,
gives

eA r)ss" (KT)s)'
J, u= (Kr) Z„=—g(KZ) Z„. (10)

21/2~3/2' 4

r, s=0
c,P„c, (6. )

In terms of the dimensionless integrals 6„,of Howarth
and Sondheimer (not to be confused with Kronecker's
symbol), the result is, after some mathematical
manipulations,

The drift mobility (see Sec. III) is

p, =(1/ee)u Jh—'

where )s is the carrier concentration. From Eqs. (8)
to (11), one can. write for the mobility calculated to
sVth order:

3m&'y Re r, s=0

tr g 9„.(12)
Lee(P

The power dissipated in the collisions is supplied by
the external field. From the drift term of the Boltzmann
equation one obtains the rate of energy input through
an integral of the form

Here 6„,' is the reciprocal of the matrix 6 of elements
8„,. The last factor in parenthesis is a characteristic
function of this model and has dimensions of mobility.
This will be here called p:

B 10—e vuCk

2'mse2XA e'/" N

(KT)"+'o =(P(K—T)"+'5. (7) )((' '=—2 (J 'u)(P ') (J 'u)

Thus, when C» is expanded as in Eq. (4), one has to
evaluate the integrals

SfsoJ„=— eve „dk.
BE

3y(KT)'i' e'—1
=@=

y 27/2~1/2e~s/2

The mobility formula can then be written as

N
~()v) —pp(&) ~ p(&) =

(13)

(14)

The implication of this is that the total current J is, in
the Eth approximation,

1V

J= P J,P„'J,u. -
r, s=0

(9)

The matrix terms P„aregiven in Eq. (7). Defining

Application of the variational principle then says that
the unknown coeKcients of C ~(~) are obtained from the
variational equations

P P„,c,=J, uS. (8)
s=0

r, s=0

In this way, the successive approximations evaluate to
different orders a dimensionless function P(s), whose
relationship to Howarth and Sondheimer's function is

16
p(s) = sei'e sG(s—)

9x
(15)

The result can be finally expressed in terms of Bessel
functions, " which are tabulated and have known
asymptotic expansions. The functions G('& and G(') are
given by Howarth and Sondheimer. To second order
one obtains from (14)

P (2)—

37 165 217~ ) 19 1081 (r 23 299
~

I
"+—s'+ "+ IKr' —

I
»'+—"+ ~ K)Ko—

I "+—"+
4 4 8 ) 'E 4 32 k 4 8

47 117 q 3 183—s'+—&'+24 IK)'+ -ss+—s' —18s IK)sKo ——s'+ ss IK)Ko' —-s'+ s' Ko'
8 & 4 2 i 2 8

The Bessel functions K„arehere to be understood as
K (-', s). One can now study the limits of high and low
temperatures.

The high-temperature limit (s«1) is of academic
interest only since it might mean actual temperatures
of more than 1000'K, However, it is of some interest

to study the sequence
s 9 2i7 217

P(o) — ~ P(r) — s. P(2) — s — P(l) (16)
2 16 384 216

in the high-temperature limit.
"G. N. Watson, A Treatise on the Theory of jesse/ Functions

(Cambridge University Press, New York, 1922), p. 172,
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x (A(u) 3~'

p= (e'—1).
2'~'rem'~'

(20)

This formula was also derived by Frohlich' on the as-
sumption of elastic resonance scattering. He obtained
a constant relaxation time r = (2n&uX) ' which leads to
Eq. (20). However, if one calculates the relaxation time
for the momentum of the carrier (rather than for the
distribution) one obtains exactly three times the above
result.

The low-temperature mobility has been studied by a
number of authors. In all treatments, even in "true
polaron" theories, like that of Low and Pines, " the
conclusion is that y~ (e'—1), as one would expect on
physical grounds from the phonon density number.
Recently, a mobility calculation has been performed"
using Feynman's model" of the polaron. This is perhaps
the best calculation so far performed for high applied
frequencies, and it contains some interesting predictions
for high o.. However, the authors derived the dc mo-
bility by taking the limit of zero frequency, and thus
concluded that p~ (e*—1)/s. One would expect the
results of a polaron theory to agree in the weak-coupling
limit with the dc mobility obtained from the Boltzmann
equation. The sequence of approximations shown in
Eqs. (18) and (19) is interesting because it shows that
a formula going like (e*—1)/s is obtained in zeroth
order, which is known to be a bad approximation in this
region (s))1), although it is quite good in high tem-
peratures. The next approximation restores the simple
exponential law for s)&1 by introducing the factor 2s/3.
Indeed, Kadanoff" has recently reconsidered the
Feynman model for the dc mobility and derived a result,
valid in the low-temperature limit, which introduces
precisely the factor 2s/3.

~ F. E. Low and D. Pines, Phys. Rev. 98, 297 (1953)."R.P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M.
Platzmann, Phys. Rev. 124, 1007 (1962).

' R. P. Feynman, Phys. Rev. 97, 660 (1955)."L.P. Kadanoff (private communication).

This means that

y, "'=1.01p,&'~=1.13'& ' (s&&1). (17)

Thus, a zeroth-order approximation gives the correct
temperature dependence and is very close in numerical
value to the exact' result Ii= s16/9~, which is almost
equal to F(').

In low temperatures one obtains
gl/2~-', z 2s

P(0) = ~ Po) — P(o) ~ P(2) =Po) (18)
3

Thus,
23

p(2) =g(&) =—~(0)))~(0) (s))1) (19)
3

The zeroth-order approximation is now very bad, while
in first order one obtains the exact solution. The low-
temperature mobility formula is then, from (18) and
(14):

The low-temperature region is very interesting for a
physical discussion of the principles involved in the
theory, but the experimental data are usually beset by
all kinds of complications, such as additional scattering
mechanisms and trapping of the carriers. Experime-
tally, the best region is often that of intermediate tem-
peratures, which is theoretically difficult. The possi-
bility of performing calculations at arbitrary tempera-
tures is an attractive feature of the weak-coupling
model. It has often been claimed that this theory is not
subject to any restrictions in temperature and is valid
for arbitrary values of s. Upon reQection, this is not very
obvious. One could support by physical arguments the
idea that this model, while valid in very low and very
high temperatures, might be unjustifiable, or at least
at its worst, when T is close to O'. It is, perhaps, more
reasonable to regard the practical feasibility, rather
than its justification, as the virtue of the model. With
this proviso, one can perform the calculations at arbi-
trary temperature with formulas (16) and (17) and the
calculated values of F(s). The results of the present
computation (Table III), performed to high accuracy
with a digital computer, reproduce the numerical esti-
mates of Howarth and Sondheimer in high and low
temperatures, but yield somewhat higher values in the
region 1&s(2.

For purposes of comparison of theory with experi-
ment, it is necessary to first obtain a characteristic plot
of the material: s versus T. Similarly, a second char-
acteristic plot giving p, versus s can be evaluated. In so
doing, the mass parameter contained in p should be
carried through. By definition, in this "nonpolaron"
theory m is the crystal band mass of the electron. For
not too strong coupling, the polaron mass m* is given
approximately by m*=m(1+n/6). This can be de-
rived, for example, from the low-temperature theory of
Lee, Low, and Pines. " Using a free-energy analysis,
Yokota' attempted to extend this theory to include
finite temperature effects, and concluded that

m*=m 1+
6(2%+1)@'

(21)

which introduces a negligible correction at low tem-
peratures (X«1) but affects m* considerably by making
it lighter as T increases. Van Heyningen's work" shows
that the Low-Pines low-temperature formula, when
corrected with the Yokota factor, fits fairly well the
observed drift mobility in AgC1 from about 50'K
(s=5.5) to 300'K (s=0.77).

In a purely heuristic manner, one might hope that
the weak coupling theory is acceptable up to higher
values of n if m is simply substituted by m*. (In the
same spirit, one might hope that the Yokota factor
could help beyond the low temperature region. ) To be

"T.D. I.ee, F.E.I.ow, and D. Pines, Phys. Rev. 90, 297 (1953)."T.Yokota, Busseiron Kenkyo 69, 137 (1953).
' R. van Heyningen, Phys. Rev. 128, 2112 (1962).
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FIG. 1. Plot of s vs T for AgBr and AgCl.

sure, this is an incorrect procedure, equivalent to re-
1' th ass but not the coupling constant.

There is no u priori reason why such a procedure s ou

model of carriers which behave rather like polarons in
their (heavier) inertial response to the driving force,
while behaving rather like electrons in a time average
over their complicated scattering events.

AgC1 and AgBr seem to have standard conduction
b d t t es' "and the free carrier concentration inband struc ures
actual samples is sufficiently low1 to make the free
carrier screening corrcorrection' quite negligible. Thus, they
constitute good materials to study the unmas e e ects
of the size of n(=2). Also, samples can be prepared in

lished" over a wide temperature range. Given t e inter-
esting size o 0, inf i these materials it was thoug t worth-
while to perform a semiempirical mobility ca cu ation
for the experimental temperature range using Yokota's
polaron mass in formula (13).

From experimental data on the reststrahl frequency
, b g t l. " and from dielectric constant meas-

urements by Eucken and Buchner22 at different tem-
peratures one can evaluate co= &e„„,"

~

varying function oi t' f T Thus the first characteristic
plot (Fig. 1) was obtained for AgBr and AgCl. Next,

TABLE I. Mass parameters (in units
'

s of m estimated from ex-
perimental data on the drift mo

' '
yobilit of electrons in Ag . ow-

tained in the model. The tabulated value is simply m(1+0.

(a)a
(b)b
(C)'

0.48
0.35
0.29

(0.67)
0.47
0.39

2.4
2.1
1.9

a Howarth-Sondheimer formula (reference 18).
b Present calculation.
& Low-Pines-Yokota formula (reference 18 .

the formula to fit the experimental data on the low-
temperature side. This results in quite a good agreement
with the data around room temperature. The worst

IjI

351L lO

30-

l
25.

IO.

one cancan evaluate p as a function of s. In the resent
calculation the polaron mass (21) carries witith it the

t 1 band mass ns. This parameter was adjuste y
~ ~ ~

a whichfitting the observed drift mobility in the way w

will be explained below. The second characteristic plot
(Fi . 2) was obtained with the values of m t us ad-

t d. For the reasons explained in ec. , yonl driftjus e . or
mobility data were considered, discar ing low-field
Hall mobility measurements.

In A Cl very good data exist due to Haynes and
Shockle " and to van Heyningen. The a

n g ) v " The latter alsooc ey
estimated the mass parameter needed to fifit his data
wit i erenh d'ff t theories. He found that Howarth and
Sondheimer's weak-coupling formula was una e o
explain the experimental results over the whole tem-
perature range o ef th measurements. The curve calcu-
1 d b van Heyningen using the Howarth-Sondheimer
formula is reproduced for comparison in ig. o e
line). The full line is the result of the present calculation
intro ucing ed

'
the Yokota polaron mass instea of tie

m is thencrystal band mass m in Eq. (13). The mass m is t en
contained in the mobility formula in a more compli-
cated fashion, as it also enters into the definition o o.

and is regarded as an adjustable parameter. Its va ue,
given in hne (b) of Table I, was obtained by adjusting

' G. Ascarelli and F. C. Brown, Phys. Rev. Letters 9, 209

"D. C. Burnham F C. Brown, and R. S. Knox, Phys. Rev.
(1962)~

~ ~ ) ~

- h Z Ph sik Chem. (Leipzig)
(London) A261, 10 (1961).

"A. Kucken and A. Buchner, . ysi .
82?, 343 (1934).

I 2 I 8 '7 8 9 lO.
' '

ll I l5 l4

FzG. 2. The function p vs s, evaluate us' gin the Yokota mass
m* instead of m, and taking m=0.26 m, for AgBr and m=
m, for AgCl.

23 J. R. Haynes and W, Shockley, Phys. Rev.. 82 935 1951).
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discrepancy with experiment amounts to about 30%
and takes place when T(O'. As argued above, this is
the region in which one has least trust in the calculation.
This, however, might well be fortuitous and could arise
to some extent from poor data, derived from old meas-
urements of the dielectric constants. Table I also shows
that the mass parameter derived in the present calcu-
lation is appreciably lower than that obtained with the
Howarth-Sondheimer formula, and closer to the values
estimated by van Heyningen using formulas based on
intermediate coupling models for the polaron mobility.

In AgBr, drift mobility data are available'4 between
about 77 and 200'K. %hen extrapolated to 300'K,
they tend to agree with isolated measurements per-
formed by other authors" "at that temperature. How-
ever, the data so far available are not as good as in
AgCl. They show appreciable spread among themselves
and, on the low-temperature side, they soon tend to
level oG, possibly due to shallow trapping effects. On
the other hand, the effective mass is now known ex-
perimentally from the cyclotron resonance work of
Ascarelli and Brown, "which presumably measures the
low-temperature polaron mass.

Figure 4 shows the experimental mobility data for
AgBr and two alternative theoretical curves obtained

I I I I I I I I I I I I I

I I I I I I I I I I I

Theor. with m/me=0. 26
m/m ~0,27

IOOO—

co~
C
CP

O„ 100—

I Ii I i I ~ I i I i I I I I

300 200 i60 I40 I20 IOO 8077 70
ToK =

IP I I I I I I I I I

2 3 4 5 6 7 8 9 IO I I

IO /T'K

I I I I

I2 13 l4 l5 l6

FIG. 4. Temperature dependence of the drift mobility of elec-
trons in AgBr. Theoretical curves: Present calculation, with two
different values of m/rp4. Experimental data: +, A, V, ~, g, and
0:Chollet-Rossel, 1959 and 1960, different samples; i with error
Gags, Irmer-Suptitz; 0 with error flags, Yamamaka-Sakai-Suita.

lppp—

OI
E
CP

O
Ipp—

v
0

v Exp. o
o "

b
Theor. 0) m/m =0.48

in the present calculation. The calculation was done
again using the Yokota polaron mass as for Agcl. The
full line was adjusted to pass through some of the data
reported by Chollet and Rossel, '4 so as to fit the room-
temperature measurements by the other authors. "' "This
resulted in a value of the mass parameter which over-
estimates the experimental mass by about 24%%uo. It is

perhaps more reasonable to compromise with the lower
mobility data. This was done in the dotted line, at the
expense of overestimating the cyclotron resonance mass

by about 31% (Table II, line b).

TABLE II. Mass parameters (in units of ra,) estimated from
experimental data on the drift mobility of electrons in AgBr.
Low-temperature values for m~ and n. In case (a) the value of
m* means simply m(1+a/6).

IO
2

300 280

4 5

160 !40 I 20 IOO 90
T'K

I I I I I

6 7 8 9 10 I I

IO I.TDK
3

I & I i I i I i I | I I I

8077 70 645
I I I I

l2 l3 l4 l5 l6

(a}'
(b)'
(c)'
Expd

0.43
0.27
0.30

(0.60)
0.35
0.39
0.27

2.3
1.9
2.0

FIG. 3. Temperature dependence of the drift mobility of elec-
trons in AgCl. Exp a: Haynes and Shockley. Exp b: van Heynin-
gen. Theor a: Calculated by van Heyningen using the Howarth-
Sondheimer formula. Theor b: present calculation.

a Howarth-Sondheimer formula adjusted to low-temperature data only
(reference 19).

b Present calculation.
0 Low-Pines formula adjusted to low-temperature data only (reference 19).
d Mass derived from cyclotron resonance (reference 19).

"L. Chollet and J. Rossel, Helv. Phys. Acta 32, 476 (1959);
BB, 627 (1960).

'~ J. Irmer and P. Siiptitz, Phys. Status Solidi 1, 481 (1961)."C.Yamanaka, M. Saki, and T. Suita, J. Phys. Soc. Japan 11,
605 (1956).

The above numbers could still be improved, for
example, by including terms of order 0," in the polaron
mass. This, however, is not the purpose of this work.
The main lesson from these numerical estimates seems
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FIG. 5. Geometry for magneto-H

conductivity analysis.

sistivity p and Hall coefFicient R. It is easy to relate
them to the two mobilities. One 6nds

p=
md, (1+(ll AH/c)' j

to be that a simple-minded use of the Boltzmann equa-
tion and perturbation theory works fairly well up to
higher values of o. than allowed by the weak coupling
criterion. If m* is simply used instead of m, it seems
reasonable to expect quite good results up to n 1.This
makes it worthwhile studying the properties of the
model in detail.

z=— (25)
nec p, J 1+(pHH/c)'

The second relationship will be considered in the next
section.

Now consider the nondispersive model, with constant
isotropic r and m. The simplest choice of axes is that
for which u= (1,0,0) and u'= (0,1,0). The elements of
the mobility tensor are then

III. THE TRANSPORT COEFFICIENTS
IN A MAGNETIC FIELD

This section is devoted to the phenomenological
aspects of the type of measurements in which 8 is 6xed.
The vectors of interest are 8= hu, I=Hh and 3 =o" 8,
which can be expressed in any system of axes in the
crystal. It is convenient to consider the orthogonal set
u, u', u" of Fig. 5, defined so that u'J h. With 8 fixed,
the experiment amounts to measuring the components

u J=u o.u8; u'. J=u' 0"u8; u".J=u" o uB (22)

tM J.X= =@22j1+ (IJ,H/c)'

IHl/c

1+(wH/c)'

Then, from (23) and (24),

p e7
pc= @II=P=—.

1+(pH/c)' m
(27)

Each component has a transport coeKcient associated
with it. For an isotropic gas of carriers in a magnetic
field perpendicular to the electric field the quantity
u J" vanishes.

The transport coeKcient associated with u J is the
coedlcHeity mobility, p, :

p= ) R=
tNP, haec

(28)

Thus, there is a magneto|, omdncti~ity effect but the Hall
mobility is equal to the drift mobility at all 6elds. How-
ever, from (25):

p.= (ee)—' =u. p u; p= (me)
—'e.

g
(23)

Here, p is the mobility tensor, which does not depend
on the carrier concentration. For H=o, the coefficient
p, , is termed the drift mobility p, , as in Sec. II.

The second quantity of experimental interest is the
Hall angle g&, defined by

u' J u' p. u

u'J u'p'u

From this one can de6ne the Hall mobility, @II by

pHLI
tang~=

c u'pu
@II=

B u p. u

Since u' p u and u-p. u are invariant scalars, one can
conveniently choose the reference frame to evaluate
these formulas.

The transport coef6cients in the more conventional
type of measurements (where J is fixed) are the re-

The second equality is just the counterpart of the state-
ment p~=p. The first equation means that, for the
nondispersive model (constant r and m) there is no
magnetoresistivity.

The above considerations show that the diBerence
between a dispersive and a nondispersive model is more
subtle in magnetoconductivity terms than in magneto-
resistivity terms. A study of this question requires a
detailed evaluation of the mobility tensor for the dis-
persive model and an examination of its properties in
terms of p, and p, ~. This is done in the following section.

IV. MOBILITY CALCULATIONS IN A
MAGNETIC FIELD

Equation (4) expresses the fact that an electric fmld

applied along a direction u upsets the equilibrium dis-
tribution by imparting an amount of drift momentum
in the direction u, to an extent measured by the function
p. If a magnetic 6eld is present in an arbitrary direction
h (Fig. 5), one expects drift momentum to be imparted
along u, u' and u", by various amounts given by func-
tions p, p', and y", respectively. The expansion of C z
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in the Eth approximation becomes then

This can be written as

3%+2
C~' '= 2 &A

p=o
(30)

with the convention that b, and P, correspond to the
c, and y„in Eq. (4) with the appropriate number of
primes as one spans the total set {P,).

The magnetic field is represented in the transport
equation by the magnetic operator

eBgo
(vX8).V'g.

Ac BE

The equation to be solved is then

N N

C g &"& =Q c,u kE"+Q c "u' kE"'
r=o

N

+ P c, "u".kE"". (29)
o

their notation, Lewis and Sondheimer expanded the
function C~ in a form equivalent to Eq. (30) (without
a term in u") and used, purely on the grounds of
plausibility, a set of equations similar to Eq. (31) of
this paper. For the case HJ 8 of the scheme developed
here, Lewis and Sondheimer's results turn out to be
equivalent to the results of the present calculation to a
first-order approximation. This point will be mentioned
again.

Now with the method of calculation. With the same
notation as in Sec. II, the matrix terms P„,are sub-
stituted by I,.=P,.+M,. These then form a matrix
with 3(%+1) rows and columns. It is easily seen from
symmetry considerations that the operator P only has
matrix terms between functions of the same subset. It
is practical to think of the 3(X+1)by 3(X+1)matrix
as a 3&(3 supermatrix whose elements are matrices
of (1V+1) rows and columns. The supermatrix of P is
then diagonal and the three diagonal elements are equal
to the (%+1)by (X+1) matrix P of Sec. II, i.e.,

P 0 0

XC„=(P+3II)C„=—e v. u8.
BE

P.I,.b.=l. u8. (31)

Lewis and Sondheimer' made a first attempt to study
the transport problem with polar scattering in a mag-
netic field. Their work. was restricted to the isotropic
model under consideration and to the case H J 8. Then
they used the well-known device of employing the
complex rotation in the plane of 8 and 8XH. (This
device would not be so obvious in a more general case,
where the third dimension has to be explicitly con-
sidered. Instead, an algebraic method will be presently
proposed to include the three dimensional case.) In

The way in which the variational principle is ex-
tended to this equation is explained in Ziman's book'
(Chap. 12). The "entropy production" (C»~XC») does
not obey a maximum principle because the operator M
is antisymmetric or, more physically, because the
Lorentz force does not perform work explicitly. While
not having a definite sign, one can still establish a
variational principle for a modified expression of the
form 2{ (C'&*

~

I-C z)+(C j,
~

X*Cz*)), where conjugation
would formally correspond to inversion of the magnetic
field. This expression becomes equal to the standard
rate of entropy production once the steady state has
been reached. By this device, independent variation of
C &* yields a Boltzmann equation for C» and vice versa.

In a practical application of the method, one de-
termines the coefficients b„ofthe expansion of Ci, (N&,

Eq. (30) by the resulting variational equations, which
constitute a formal extension of Eqs. (8), and are

)[M„./f
= —M.cosg 0 —M sing .

M sing

Here, M is a (1V+1) by (%+1) matrix of elements
given by

cosPM, ;—= (q, i My;")

eII cosP 8fq'
(u k)' E,'+&dk. (32)

wc BE

In this scheme 3f is clearly a symmetric matrix. Trans-
forming (31) to an integration over energy, the M;, 's

can be written as follows:

M;, =5R(KT) '+'F;, ,

where

pH. u"
5K= —6'

F (-'-) c

F (z+q+ -,')
r =—

U

The second equality defines the dimensionless variable
I'.

0 0 P

From the structure of the operator 3I it is also seen
by symmetry considerations that it only has matrix
terms between functions of different subsets. Specifi-
cally, the supermatrix of 3f takes the "oG-diagonal, "
antisymmetric form

M cosf
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The calculations are greatly simplified by the fact
that the supermatrix is blocked off in matrices which
are only I' or only M. This provides a natural way to
disentangle M and P for arbitrary orientation of H.
Moreover, the scalars J,.u of Eq. (31) are obtained
from the same vector integral of (10) with the corre-
sponding function f,. Again, for symmetry reasons,
this is zero unless f, is one of the functions &p„ofthe
first subset. This simplifies further the evaluation of the
transport coefFicients. The mobility tensor in the Xth-
order approximation, obtained from Eq. (31) is

1 N

t=t(H)= —2 J.I" 'J. . (34)

M cos((t A

In order to invert the supermatrix L one simply has to
solve the set of linear algebraic equations which arise
from the condition that LL ' must give the unit super-
matrix, i.e., if I is the unit matrix of (1V+1) rows and
columns:

Thus, it is only necessary to know three matrices of L ',
namely, A, 8, and C.

Having established how the calculation can be done
for arbitrary angle between H and 8, the formulas will

now be evaluated for HJ 8. Then cos$=1 and the
solution of (35) is

g —(MS)—l. g (PS)—1 ~ S—P—1M+M 1P —(37)

From (23), (24), (36), and (37), the two mobilities are,
in the Sth approximation,

N

p, ,(N)= —P J, u(MS) -'J u

(38)

p J, u(pS)„,—'J, u
r, so

~~(»)—
B eep, (»&

From the elements b„,and F„„onehas the dimension-
less matrices 6, I' and their reciprocals. Changing from
the physical variables (T,H) to the dimensionless
variables (2,I') one can define the dimensionless matrix

—M' cosP Msing —BD E-
—C —E F

.=r-Vy I'2t-'r =.(s I ). (39)

M sing —C —E Ii
It will be remembered that, in this case, Y=)((@i(;.Re-
calling Eqs. (7), (8), (13), and (32) one can finally
write the two mobilities in the form

I 0 0
I .=P'.(s,I'); ~N=PFN(s, l'), (40)

0 I 0 . (35) where in the Ãth approximation,

0 0 I
The resulting set of linear equations for the unknown
matrices A, 8, . Ii is easily solved by an obvious ex-
tension of the procedure one would use with ordinary
numbers and the unknown matrices can then be written
in terms of I', I' ', M, and M '. The matrix I' was
already inverted in the study of the problem for H=O,
and the matrix 3f is essentially a matrix of gamma
functions and is much easier to handle.

Furthermore, it is unnecessary to know all the
matrices of L '. For the magnetoconductivity measure-
ments one is interested in the three scalars u. p u,
u' 12 u, and u" t2 u. The vectors J, only have com-
ponents on u, u', and u", for P, belonging to {p,},
(()2'„},and {(()'„"},respectively. It follows that

u. t2(N) u= —g J, uA„J, u,
g r, @=0

N

F,(")(s,i )= P X,(r.)-'X,=(r.-')„()

r, @=0

N

p x,(s.)-9.,
r, so

FN (N) (s jr )
F,(N'(s, I )

(rp —ii)—ir) (N)

(rv i) (N)

(41)

The last equalities follow from the fact that X„=r„,.
When H=O, F,(s,O) is the function F(s) of Sec. II.

It is trivial to see that Eqs. (40) read the same as
Eqs. (27) of the nondispersive model only if the func-
tions of (41) are evaluated to lowest order. But it was
seen in Sec. II that this is a bad approximation, except
at very high temperatures. This approximation, on the
other hand, is exact in the limit of very high magnetic
fields. If one ignores quantization effects, this is to be
expected on physical grounds: in very high fields the
details of the scattering become relatively unimportant.
In this (high-field) limit, Eqs. (41) give

u' p(N'u= ——P J„uB„,,J, u, .
Sg ~=0

»
u" t2( 'u= ——P J„uC«J,u.

g8 r, a={)

(36)
( ( i 2

F (N) p'—2(rr —)g) (N)
l pH&

('rr —ig) (N)

(1'I" 'Ni —'I') (N' 1
P~(,N) —P—2

~oo

(42)
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showing that the zeroth approximation is, indeed,
exact. A simple relationship holds then for the two mo-
bilities, namely,

L35

I90-

I I

0
I
I
I
I
I
I

c ) (&~ ).ai
From (15), this means that

n—ecR=1 (H —+ ~).

(43)

(44)

I.25-

1.20-

O

I.I5-

I.IO

On the other hand, in the low-field limit one has from
(41) that plr(s, 0))p,,(s,0), or —necR(s, O))1.

The low-field Hall mobility is a quantity of con-
siderable experimental interest. Its ratio to the drift
mobility was estimated by Lewis and Sondheimer, in
the form —necR(s, 0).As explained above, their estimate
is equivalent to the first-order approximation of the
scheme developed in this paper. It will presently be
seen that this approximation is still far from accurate,
although it displays qualitatively the distinct features
of the dispersive model. Delves" used a numerical pro-
cedure directly on the Boltzmann equation and esti-
mated —necR(s, 0) for three isolated values of s. He
obtained somewhat higher values than Lewis and
Sondheimer.

The calculation outlined above was programmed for
a digital computer to evaluate fully F,(s, F) and
FrI(z, F) to third order, i.e., with 4)&4 matrices. From
the two characteristic plots, s(T) and p(s) one can read
the dimensionless variables in terms of T and H for a
given material. The ranges of s and I' were chosen so
that, from representative values of p for AgBr and
AgCl, they would correspond roughly to 20'K&T
(300'K and 0&H&6X104 G. Table III gives the
results for values of s chosen so as to correspond to
likely experimental conditions. The value of s=10 is
also included to indicate the trend in the temperature
dependence of the galvanomagnetic effects and for
eventual comparison with the results of more advanced
theories for stronger coupling. Obviously, low tempera-
tures are required for the mobilities to be appreciably
modified by the magnetic field. It is seen in Table III
that, at T= O~/3, for the maximum values of V which
have been used the conductivity mobility only decreases
by a few percent, and the Hall mobility still remains
practically unchanged.

In order to look for the distinctive features of the
dispersive model (e.g. , an appreciable decrease in the
Hall mobility) one should seek low temperatures, as
much as possible, and effectively high magnetic fields.
From Eqs. (42), a 6eld intensity is effectively high for
a material when F,FH becomes comparable to I' '.
From the data of Sec. II and Table III one would guess
that this is roughly the case for AgCl at T=70'K and
H=6X104. Under these conditions one can probably
ignore high-field quantum effects. Assuming m=0.4

zr R. T. Delves, Proc. Phys. Soc. (London) 73, 572 (1959).

I.O5- 'P

I,OO

Fro. 6. Temperature dependence of the ratio prr(z, O)/p, (z,0);o:
Delves, numerical work; Q: Delves, assuming r ~I&'~'. Dashed
line: Lewis and Sondheimer, 6rst-order approximation; +:Lewis
and Sondheimer, second-order approximation. Full line: present
work, third-order approximation.

m„the spacing between Landau levels can be estimated
as 2.8X10 " erg, which is to be compared with
ET=9.7X10 "erg.

Table III also gives the values of P, (s,O), which can
be compared through Eq. (15) with Howarth and
Sondheimer's estimate for their function e &G(s). The
other quantity of experimental interest in low fieMs is
Fir(s, O), if one is interested in the low-field Hall mo-
bility, or F&(s,O)/F, (s,0), which gives prr(s, O)/p, (s,0)
as can be seen from Eq. (40). This ratio is plotted as a
function of s in Fig. 6, where it is compared with pre-
vious estimates. It is seen that the convergence ob-
tained with the power series expansion is fairly good in
high and low temperatures, but is somewhat poor at
intermediate temperatures. This is typically the bad
region; it is also in this range that F,(s,O) turns out to
be a few percent higher than in previous approximations.

Very little experimental work has been done so far to
search for a check on the facts predicted in Fig. 6. Some
support for this may be provided by the recent work of
Halsted et al."on CdTe. In this material the estimated
value of o. is 0.39, and the weak-coupling model should
be appropriate. The authors of reference 28 measured
the low-field Hall mobility over a certain temperature
range. The drift mobility calculated with Howarth and
Sondheimer's function turned out to be systematically
lower. Delves' isolated points were used for an approxi-
mate interpolation to estimate the ratio pIr(s, 0)/p, (s,0).
When the calculated values of p, , (z,O) were multiplied

by this factor the result was larger in good agreement
with experiment. Since the theoretical values of p, (s,0)
are somewhat underestimated when the Howarth-
Sondheimer function is used, the same result is com-
patible with a lowering of Delves' numerical values

28 B. Segall, M. R. Lorenz, and R. E. Halsted, Phys, Rev. 129,
2471 (1963).
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TABLE III. The functions F, (s,y) and F&(s,F) evaluated to third-order approximation. The number following "E" indicates the
power of 10 with which the preceding number is to be multiplied. The ratio F~(z,0)/F, (z,0) is plotted in Fig. 6. The functions F, (z, I')
and FII(z, Y) can be used to compute the mobilities according to Eq. (40).

F,(z,O)

Z= 3.0
Fc Fa

Z=3.5
F

Z=4.0
F

0.65 3.699E—1 5.359E—4
0.70 4.026E—1 1.072E—3
0.75 4.368E—1 2.144E—3
0.80 4.728E—1 3.215E—3
0.85 5.107E—1 4.287E—3
0.90 5.508E—1 5.359E—3
0.95 5.932E—1 6.431E—3
1.00 6.383E—1 7.503E—3
1.05 6.857E—1 8.575E—3
1.10 7.370E—1 9.646E—3
1.15 7.913E—1 1.072E—2
1.20 8.488E—1 1.179E—2
1.30 9.753E—1 1.286E—2
1.40 1.1$8EO 1.393E—2
1.60 1.462EO 1.500E—2
1.80 1.895EO 1.608E—2
2.00 2.436EO 1.715E—2
2.30 3.493EO 1.822E—2
2.60 4.917EO 1.929E—2
3.00 7.560EO 2.036E—2
3.50 1.248E+1 2.144E—2
4.00 1.995E+1 2.358E—2
5.00 4.767E+1 2.572E—2
5.50 7.151E+1 2.787E—2
6.00 1.059E+2 3.001E—2
6.50 1.550E+2 3.430E—2
7.00 2.247E+2 3.859E—2
7.50 3.228E+2 4.28/E —2
8.00 4.603E+2 4.823E—2
8.50 6.519E+2 5.359E—2
9.00 9.179E+2 5.895E—2

10.00 1.303E+2 6.431E—2

7.559E+0 9.407E+0
7.559E+0 9.407E+0
7.556E+0 9.407E+0
7.552E+0 9.407L+0
7.547E+0 9.406E+0
7.539E+0 9.406E+0
7.531E+0 9.405E+0
7.520E+0 9.405E+0
7.509E+0 9.404E+0
7.495E+0 9.403E+0
7.480E+0 9.402E+0
7.464E+0 9.401E+0
7.446E+0 9.400E+0
7.426E+0 9.398E+0
7.406L'+0 9.397E+0
7.384E+0 9.396E+0
7.360E+0 9.394E+0
7.335E+0 9.392E+0
7.309E+0 9.390E+0
7.281E+0 9.388E+0
7.253E+0 9.387E+0
7.191E+0 9.382E+0
7.126E+0 9.378E+0
7.056E+0 9.372E+0
6.982E+0 9.367E+0
6.823E+0 9.355E+0
6.653E+0 9.341E+0
6.472E+0 9.326E+0
6.237E+0 9.305E+0
5.995E+0 9.281E+0
5.750E+0 9.256E+0
5.505E+0 9.228E+0

5.467E—4
1.093E—3
2.187E—3
3.280F—3
4.374E—3
5.467E—3
6.561E—3
7.654E—3
8.747E—3
9.841E—3
1.093E—2
1.203E—2
1.312E—2
1.421E—2
1.531E—2
1.640E—2
1.749E—2
1.859E—2
1.968E—2
2.077E—2
2.187E—2
2.405E—2
2.624E—2
2.843E—2
3.062E—2
3.499E—2
3.936E—2
4.374E—2
4.920E—2
5.467E—2
6.014E—2
6.560E—2

1.248E+1
1.248E+1
1.247E+1
1.245E+1
1.243E+1
1.239E+1
1.235E+1
1.231E+1
1.226E+1
1.220E+1
1.213E+1
1.206E+1
1.198E+1
1.190E+1
1.181E+1
1.172E+1
1.162E+1
1.152E+1
1.142E+1
1 131E+1,
1.119E+1
1.096E+1
1.071E+1
1.045E+1
1.019E+1
9.657E+0
9.118E+0
8.587E+0
7.947E+0
/.342E+0
6.779E+0
6.261E+0

1.531E+1
1.531E+1
1.531E+1
1.531E+1
1.530E+1
1.530E+1
1.530E+1
1.530E+1
1.530E+1
1.529E+1
1.529E+1
1.529E+1
1.528E+1
1.528E+1
1.527E+1
1.527E+1
1.526E+1
1.525E+1
1.525E+1
1.524E+1
1.523E+1
1.522E+1
1.520E+1
1.518E+1
1.516E+1
1.512E+1
1.507E+1
1.502E+1
1.494E+1
1.486E+1
1.477E+1
1.468E+1

5.823E—4
1.164E—3
2.329E—3
3.494F—3
4.656E—3
5.823E—3
6.987E—3
8.152E—3
9.316E—3
1.048E—2
1.164E—2
1.281E—2
1.397E—2
1.513E—2
1.630E—2
1.747E—2
1.863E—2
1.980E—2
2.096E—2
2.213E—2
2.329E—2
2.562E—2
2.795E—2
3.028E—2
3.261E—2
3.727E—2
4.192E—2
4.658E—2
5.240E—2
5.823E—2
6.405E—2
6.987E—2

1,995E+1
1.994E+1
1.989E+1
1.981E+1
1.970E+1
1.956E+1
1.939E+1
1.920E+1
1.898E+1
1.873E+1
1.847E+1
1.819E+1
1.789E+1
1.757E+1
1.725E+1
1.691E+1
1.657E+1
1.621E+1
1.586E+1
1.550E+1
1.514E+1
1.442E+1
1 371E+1
1.302E+1
1.236E+1
1.111E+1
9.981E+0
8.981E+0
7.899E+0
6.982E+0
6.206E+0
5.549E+0

2.400E+1
2.400E+1
2.400E+1
2.400E+1
2.399E+1
2.398E+1
2.398E+1
2.397E+1
2.396E+1
2.394E+1
2.393E+1
2.391E+1
2.390E+1
2.388E+1
2.386E+1
2.384E+1
2.382E+1
2.379E+1
2.377E+1
2.374E+1
2.372E+1
2.366E+1
2.360E+1
2.353E+1
2.346E+1
2.330E+1
2.313E+1
2.295E+1
2.270E+1
2.244E+1
2.217E+1
2.189E+1

which would bring them very close to the full line of
Fig. 6. In any event, this experiment seems to support
the idea that err(s, O) &la, (s,0), which is associated with
dispersive behavior in a magnetic field. It would be
interesting to see more work of this kind.

V. FINAL CONSIDERATIONS

From an over-all picture of the dc transport problem
in terms of a weak-coupling model it seems that a more
careful study of the galvanomagnetic properties would
be highly desirable and informative. Better polaron
theories should pay close attention to the question of
dispersive behavior; so far, the models leading to a
constant relaxation time have been mainly worked out
for zero magnetic field and it might -be that some of the
physical arguments need revision when a magnetic field
is present.

The experimental information so far available is often
rather incomplete, its main weakness being lack of
systematics. The temperature dependence of the low-
field Hall coefficient still oGers a wide scope for experi-
mental work. Alternatively, the same worker should
attempt to measure the two rnobilities p, (s,O) and
plr(s, O) for the same samples. In either case a wide
temperature range should be interesting, going up to

T)0™.The challenge for the theories in the absence of
a magnetic field is now in the intermediate temperature
range. In planning magnetoconductivity experiments,
it might be worthwhile making an eBort to achieve
electively high magnetic fields. The field dependence
of the Hall angle should be particularly interesting. A

systematic program for galvanomagnetic measurements
in AgBr and AgCl would provide very timely and
relevant information.

Another aspect of the work described in this paper
concerns the use of the variational techniques for prac-
tical calculations. The convergence, with the power
series expansion, is very good in the two extreme limits
H=O and H —+ ~. However, it is rather slow at inter-
mediate and low fields, as can be seen from the succesive
approximations to the Hall coefBcient in Fig. 6. It is an
open possibility that other variational methods, like
the ones recently developed by Baylin" and Blount"
might prove more practical, although this still has to
be tested. The improvement of the convergence is
probably to be sought rather in the expansion functions,

» M. Baylin, Phys. Rev. 126, 2040 (1962)."E. I. Blount (private communication).
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TAsLz III.—Continued.

Z=5.0
p

6.769E—4 4.760B+1
1.354B—3 4.739B+1
2.708E—3 4.659E+1
4.062B—3 4.532B+1
5.415E—3 4.365E+1
6.769E—3 4.169E+1
8.123E—3 3.952E+1
9.477E—3 3.725E+1
1.083E—2 3.495E+1
1.218E—2 3.268E+1
1.354E—2 3.049E+1
1.489E—2 2.840E+1
1.625E—2 2.643E+1
1.760E—2 2.460E+1
1.895B—2 2.290E+1
2.031E—2 2.134E+1
2.166E—2 1.990B+1
2.301E—2 1.859E+1
2.437E—2 1.738E+1
2.572E—2 1.628E+1
2.708E—2 1.528E+1
2.978E—2 1.351E+1
3.249E—2 1.203E+1
3.520E—2 1.077E+1
3.791E—2 9.706E+0
4.332E—2 8.006E+0
4.874E—2 6.727E+0
5.415E—2 5./41B+0
6.092B—2 4.794E+0
6.769E—2 4.070E+0
7.446E—2 3.501E+0
8.123E—2 3.046E+0

5.533B+1
5.532E+1
5.529E+1
5.523E+1
5.515E+1
5.505E+1
5.493E+1
5.479E+1
5.464B+1
5.446E+1
5.426B+1
5.405E+1
S.383B+1
5.359E+1
5.334E+1
5.308E+1
5.281B+1
5.254B+1
5.225B+1
5.196B+1
5.166E+1
5.106E+1.

5.046E+1
4.984E+1
4.925E+1
4.808E+1
4.697E+1
4.595E+1
4.479E+1
4.376E+1
4.286E+1
4.206E+1

7.917E—4
1.583E—3
3.167E—3
4.750E—3
6.333E—3
7.917E—3
9.500E—3
1.108E—2
1.267E—2
1.425E—2
1.583E—2
1.742E—2
1.900E—2
2.058E—2
2.213E—2
2.375E—2
2.533E—2
2.692E—2
2.850E—2
3.008B—2
3.167E—2
3.483E—2
3.800E—2
4.117E—2
4.433E—2
5.067E—2
5.700E—2
6.333E—2
7.125E—2
7.917E—2
8.708E—2
9.500E—2

Z=5.5
p

7.120B+1
7.031E+1
6.694E+1.
6.202B+1
5.628B+1
5.035E+1
4.468B+1
3.949B+1
3.490B+1
3.090E+1
2.745E+1
2.449E+1
2.194B+1
1.976E+1
1.787E+1
1.624E+1
1.482E+1
1.358B+1
1.249E+1
1.153E+1
1.067E+1
9.235E+0
8.073E+0
7.121E+0
6.330E+0
5.102E+0
4.201E+0
3.520E+0
2.877E+0
2.396E+0
2.026E+0
1.735B+0

8.149E+1
8.145E+1
8.131E+1
8.108E+1
8.076E+1
8.037E+1
7.990E+1
7.937B+1
7.879B+1
7.817E+1
7.751E+1
7.683E+1
7.613B+1
7.542E+1
7.471B+1
7.400E+1
7.331B+1
7.262E+1
7.195B+1
7.130E+1
7.067E+1
6.947B+1
6.836B+1
6.735E+1
6.642E+1
6.480B+1
6.346B+1
6.234E+1
6.119B+1
6.024E+1
5.944E+1
5.876E+1

3.000E—3
6.000E—3
1.200E—2
1.800B—2
2.400E—2
3.000E—2
3.600E—2
4.200B—2
4.800E—2
5.400E—2
6.000E—2
6.600E—2
7.200E—2
7.800E—2
8.400E—2
9.000E—2
9.600E—2
1.020E—1
1.080E—1
1.140B—1
1.200B—1
1.320E—1
1.440E—1
1.560E—1
1.680E—1
1.920E—1
2.160E—1
2.400E—1
2.700E—1
3.000E—1
3.300E—1
3.600E—1

Z = 10.0
~c

6.110B+1
1.585B+1
4.037E+0
1.826E+0
1.0SOE+0
6.902B—1
4.941E—1
3.755E—1
2.980E—1
2.446E—1
2.060E—1
1.770E—1
1.547E—1
1.370E—1
1.227E—1
1.109E—1
1.010E—1
9.254E—2
8.528E—2
7.896E—2
7.340B—2
6.408E—2
5.655E—2
5.035E—2
4.514B—2
3.691E—2
3.073B—2
2.596E—2
2.139E—2
1.790E—2
1.518E—2
1.303E—2

1.733E+3
1.720E+3
1.700E+3
1.673E+3
1.638E+3
1.595E+3
1.548E+3
1.497E+3
1.444E+3
1.391E+3
1.338E+3
1.287E+3
1.238E+3
1.191E+3
1.147E+3
1.106E+3
1.067E+3
1.032B+3
9.990E+2
9.686E+2
9.406B+2
8.908E+2
8.484E+2
8.1.23E+2
7.814E+2
7.321E+2
6.950E+2
6.666E+2
6.397E+2
6.194B+2
6.037E+2
5.912E+2

whose choice constitutes the hard core of the practical
difhculties. A simple power series expansion is not very
good for this problem. There are indications, from
current work at the University of Illinois, that other
choices can improve the convergence considerably. This
seems to be the real difficulty with variational calcula-
tions at the present time.
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