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Acceleration of Molecular Excitons by an Electric Field
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The average location of a molecular exciton wave packet in a long, linear chain molecule in the presence
of an electric field directed along the chain is investigated by perturbation theory. Neglecting end effects,
and using the Born-Qppenheimer approximation, it is shown that the exciton behaves like an electric
dipole —it acquires a constant acceleration along the chain, to first order, due to the gradient of the electric
field. The exciton dipole moment is proportional to various atomic dipole moments induced by the applied
electric field. It is also shown that the electric field results in long-range atomic coupling even if the coupling
Hamiltonian is of the nearest neighbor type only.

INTRODUCTION

EGINNING with Frenkel's and Peierls' original
papers' ' on molecular excitons, a considerable

effort has been devoted to this area with the primary
effect of determining stationary states, transition
probabilities as well as coupling of excitons to phonons.
These investigations, devoted to a study of "stationary"
excitons in molecular crystals, are discussed in a recent
work by Davydov, 4 as well as in a review by McClure. '
There exists also some experimental evidence' that
exciton wave packets may be formed, which transfer
energy from one atomic site to a site many atomic
distances (1000 k) away. Aspects of this problem of
nonstationary excitons have been studied by a few
investigators, '' but there are still many interesting
unanswered questions. One of these questions, examined
in this paper, concerns the effect of an external electric
field on the motion of a free exciton wave packet (i.e.,
not coupled to phonons) in a long, linear chain molecule.
In particular, we are interested in determining the
acceleration (if any) of an exciton by an electric field.
We choose the Rnite model in preference over an
infinite (or semi-infinite) crystal because we wish to
impose an electric field over the whole physical space.
This field is to be treated as a sma/l perturbation.

THE EXCITON AMPLITUDE AND THE
ACCELERATION MATRIX

We review briefly here the manner whereby station-
ary and time-dependent exciton amplitudes are con-
structed. Consider a system of N identical atoms whose
nuclei are assumed infinitely heavy; phonons are,
therefore, neglected. Let X (k) represent the uth state

' J. I. Frenkel, Phys. Rev. 37, 17 (1931).' J. I. Frenkel, Phys. Rev. 37, 1276 (1931).
R. Peierls, Ann. Phys. 13, 905 (1932).

4 A. S. Davydov, Theory of Molecular Excitons (McGraw-Hill
Book Company, Inc. , New York, 1962}.

'D. S. McClure, in Solid State Physics edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1959), Vol. 8.' E. J. Bowen, J. Chem. Phys. 13, 306 (1945).

7 R. E. Merrifield, J. Chem. Phys. 28, 647 (1955).
J. I.. Magee and K. Funabashi, J. Chem. Phys. 34, 1715

(1961).

of the kth atom, obeying

H p(k) X (k) = e„X.(k); k = 1, 2,

Neglecting coupling between the atoms leads to

Hollo= ~opo&
where

(2)

&o= 2 &o(k) ~o=&eo, and &po= II Xo(k)

Equation (2) refers to the molecular ground state. For
a situation in which the jth atom is excited, but all
others are in the ground state, we get an X-fold de-
generate set of wave functions ppi(j), which satisfy

where'

+p'p&(j) =~i'pi(j) (3)

Ei (E 1)op+pi an——d— pi(j) =Xi(j) II' Xp(k).

One now adds a coupling term V to Ho, and we assume
in particular that it couples nearest neighbors only; i.e.,

V= V(1,2)+ V(2,3)+ .+V(1V—1, X). (4)

We now seek the eigenfunctions of H= Hp+V; corre-—
sponding to the yi( j), these are given to zeroth order by

cp opi(m)

and obey the equation

H%'I, =EI,@'g,' k= 1, 2, E. (6)

The vector c~ —=g &~), m=1, 2, . X is a represen-
tation of a stationary exciton obeying the equation

Qm Kmgm E'lrgr

r=i, 2, 7; k=1, 2, 7 (7)

' Although the X's are assumed properly antisymmetrized with
respect to electrons belonging to a given atom, electrons belonging
to different atoms are not antisymmetrized in the p's. Formation
of the Slater determinant, as is done for example in Davydov
(reference 4), leads to wave functions which are no longer exact
eigenfunctions of H0. This problem will be examined in a later
paper.
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and setting
H+=hi(M/Bt)

'Ii(t) =P, g„(t)q, (r).

If, in particular, %(0)= yi( j), then (8) is supplemented
by f, (0)=f)„;,and has the solution

where H„„is just (pi(r), H(pi(nz)). Equation (7) can be
viewed as a Schrodinger equation for the exciton
amplitude g, '~) de6ned over a space of X discrete points
labeled by r. This is made reasonable by the fact that
Ig, (")I' is the probability of finding the excitation
localized on atom r, if the molecule is in state k.

One can 6nd the corresponding time-dependent
Schrodinger equation for an exciton wave packet i'„(t),

Ai (Bt,/Bt) =P H„„i ()!), (8)

by starting with a molecular state 4'(t) obeying the
equation

If one now uses (12) and (18) one finds that all Q„are
zero except Q» and Q» which are given by

Qii= —Q»= (2/@')P' (19)

These two terms clearly represent the effects of the
molecular ends —acceleration due to reflection. This
end effect disappears for an exciton wave packet which
originates at t=0 on the central atom of the chain.
By symmetry, (x) is a constant in this case.

APPLICATION OF A LONGITUDINAL
ELECTRIC FIELD

Now consider the application of a stationary electric
field parallel to the molecular chain, which dimension
we shall call s and assume that the kth atomic nucleus
is located at kR, R being the interatomic distance.
Assume the potential can be represented by a power
series in s:

f'. (&)=E~ g.*'"'a '"' exp[( —i/&) E~&] V= Vo+4&+~2&'+ (20)

by virtue of the orthonormality of the g&~)'s. From
(10), I

i', ()l)
I

is the probability of finding the excitation
localized on the rth atom at time t if it was localized on
the jth atom at t=0.

Now specialize this theory to a linear chain molecule,
consisting of X identical, equally spaced atoms;
assuming nearest neighbor coupling, we write:

Due to the presence of this potential, there are addi-
tional terms in the Hamiltonian of the free atom, one
such term per electron. I.et s(k, j) represent the s
coordinate (as measured with respect to the origin of
the molecular coordinate system) of the jth electron
belonging to the kth atom. We then get a potential
energy term

Hkk +1+(iy Hk, k+1 Py (12) U(k, j)= —eV[s(k, j)]. (21)

all other matrix elements being zero. It can be easily This can be transformed to Primed coordinates, defieed

shown" that relative to the kth rINclels:

2 ~'(' kr~
g

(&) =g~(~) —
I

Sill
iX+1) %+1

E), Ei+n+2P co——s[kir/(X+1)].

(13)
This leads to

z(k, j)=kR+s'(k, j). (22)

U (k,j)=—e( V()+X,[kR+s'(k, j)]
y)(,[kR+s'(k j)]'+ ). (23)

The average position of the exciton packet is obviously
given by

If each atom has r electrons, we find that the new
Hamiltonian is

(&)= 2 kIi ~(&) I'

It follows from (8) and (14) that

(14)
r

Ho'(k) =Ho(k)+Q U(k, j)
j=1

= Hp(k)+ U(k). (24)

(15) The new Schrodinger equation becomes

where
V, =(1/Ai)H, (r—m)

(16)

(17)

H()'(k)X '(k)=e '(k)X '(k).

To first order in ) 1, X2 we get

e '(k)=e +(X (k),U(k)X (k)) (26)

and the acceleration matrix Q„ is

Q, = (1/f)')Q„H„„H„(2N—m —r). (18)
(X„(k),U(k)X. (k))

X '(k)=X (k)+ P' X„(k) (27)

' J. L. Magee, in Comparative Effects of Radiation, edited by
M. Burton, J. S. Kirby-Smith, and J. L. Magee (John Wiley 8z
Sons, Inc. , New York, 1960), p. 130.

=X (k)+l( Q'))„.(k)X„(k), (28)
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where X stands for both X& and X2, and, obviously

(X„(k),U(k)X (k))
X~„.(k)—= (29) Q, '=Q, , +xq„. (38)

Similarly, the new acceleration matrix Q„' is related
to Q„by

We now use Eq. (28) to construct the various 1V-

particle wave functions p„', obeying the equation

(3o)
where

Hp' ——Q Hp'(j).

In particular, we are interested in the new ground-state
function

(31)

and the function

(32)

representing a state with the kth atom alone being in
the first excited state.

It is now of interest to calculate the energy levels
Ei'(k) corresponding to the various ppi'(k). To do so,
we use Eqs. (23) and (25). This calculation simplifies
by virtue of (a) an assumed absence of a static atomic
dipole moment, thus leading to (X,sp'X )=0; and
(b) the identity of the 1V atoms so that (X (j),s"X (j))
is independent of j.It can then be easily shown that

Ei'(k) =Ei+ (1V —1)pp e P{r(Up+lb ijR+li2 j'R')

r

+ (1V—1)X2 Q(Zs )pp+li2 Q(Z8 )ll), (33)
$=1 $=1

(~)'=l 2- { *(t)q-&-(t) (40)

where 1 „(t) is just the zero-field exciton amplitude
constructed out of the sin/krir/(1V+1)j according to
Eq. (11).To find (40) we use the fact that the matrix
element H„' can be related to the zero field H„by

H,„'=H,„+Ah, . (41)

It follows, by substituting (41) in (18) that, to first
order in X

Q„'= (1/A)p„(222 —m —r)I H„„H„
+li(h, „H +H„„h„)$. (42)

This means that q„ is shown to be

q, „=(1/A)P„(222 —m —r)(h,„H„„+h„H,), (43)

where, of course, H„„ is given by Eq. (12). The use of
this equation leads 6nally to

The average acceleration of the wave packet in the
presence of the electric 6eld is, of course,

(39)

We now use the fact, as shown in Eq. (19), that all
elements of Q„are zero except Qii and Q~~. Since we
wish to ignore the end effects and concentrate on the
acceleration due to the electric field alone, we now
assume that (a) The molecule is very large, 1V»1.
(b) The excitation originates at the center, i.e., at
(1V+1)/2.

It follows then that for a su%ciently small time
interval t, {i(t)=0={~(t).We can, therefore, neglect
Q, altogether, and the acceleration, to first order in
X becomes

where

(Z, ')pp ——(Xp,z,"Xp), (Z,')ii ——(Xi,s,"X,). (34)

q, =P/A{(m+2 —r)(hr ~i—h„ i ~)
+(m —2 —r)(h, i—h„+i, )). (44)

Since Eq. (33) is independent of k, we can conclude
that the qi'(k) form an 1V-fold degenerate set of wave
functions with energy Ej'.

At this point we again introduce the coupling po-
tential U from Eq. (4) and proceed to construct exciton
wave packets and operators on the basis of Eqs. (30)
and (31). This new wave packet {,'(t) is related to
{„(t), to first order in X by

i, (t)={.(t)+~u.,(t)

and obeys the equation

The problem becomes now the determination of h„.
First of all, from Eq. (37).

Hrm = 6i bra+ Vrm

= (p,+hb)p„+V, ', (45)

V,„'=V, +X{p L~.,(m) W.(.,m)

where b can be read off from (33).
We now evaluate V, ' to first power in A, using (28)

in (32). It can be readily shown that V, ' consists of
the following sum:

8f'r
P„H„„'1„'=Az

Bt
(36)

where
+rt„*(r) W( rm)] I+, +1., *), (46)

where
H, '=(qi'(r), (Hp'+U)p i'(m)). (37)

W, (r,m) =(yi(r), VX, (m) ii' X—p(j))
jism

(47)
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and
Lrm Q (pl'(r), UXi(m) g 2).0(j)X(j)) (48)

o+0

Let us now combine terms. Define

A, = b+—Q' (12.y.i+c2.*y.i*),
o &0,1

Since o is not zero in (48), L„vanishes for all r and m.
As for W, (r,m), the following statements hold:

(1) When o =0, Wp(r, m) is nonzero for all r and m
because t/' couples the ground state of the molecule to
every state in which arIy ore atom is excited. The
aPPlied electric field generates, therefore, a kind of long
range coupling between two states with widely separated
excited loci by causing transitions from one of these
excited states to the ground state Furth. ermore, Wp(r, m)
is independent of r and m as long as r is neither 1 nor N.
As stated before, we are not concerned with end effects,
and, therefore, ignore this latter case. This enables us
to set Up(r, m) = 2)0 fo—r all r and m.

(2) For 0 AO, 1, W (r,m) is nonzero only for m=r,
r&1; i.e., the nearest neighbor coupling comes into
play again. The value of W, (r,m) depends only on o.

and on
~

r—m ~; hence,

W. (r,m) =c2.5, +P.(b,pi+5 „1).
We can now write Eq. (46) as follows:

U„'= U, +)((rtpi(m)i)0+rtpi*(r)i)0*

8A2 =—Q (~2~~1+c2& ppgi ),
o+0,1

&1=—2' (v. ip.+v.i*p.*),
o+0,1

0)~1Pnp

(r+0, 1

(5&)

Ci= 2)0701+2'0 701

C2= ~0&01.

l(q„„=—X2(R(82+C2),

It follows from (51), (56), and (57) that

Xh„„=b„„p.iA 1+)i28mA 2]
+ (b +1+b —1)p 11ll+l(2m' 2+)12' 2

+)~lC1+)~2mC2+rC2 ~2 (58)

where A1, A2, 81, and C1 are real.
We can now evaluate q„by introducing (58) into

(44). It is immediately obvious that only the X2 terms
survive. In particular:

+ Q'rt. i(m)[u.b„„+P.(b„,+1+5„„1)]
rr+0, 1

+ P'rt. ,*(r)tc.*b, +P.*(b„„+,+b „,)]'i. (50)
o+0,1

8p
Xq„+1——Xq„+1,.———X2(R(A 2+C2).

A

(59)

z..=p(z,)... z.:=Z(z, )...
s=1

(54)

Equation (50) combined with (41) and (45) enables us
now to express Xh, through the formula

)(h, =KB, b+l(LF(m)+F(r)*], (51)
where

XF(m) =X P' ~., (m)L~.b„+P.(b„„+,
o +0,1

+b„, 1)]+2)pr)01(m). (52)

We must now evaluate Xi). , in particular (X„UX ).
It follows from Eq. (23) that, for o Wo(,

(X,(k),U(k)X (k))= e()ii+2kR—)12)Z, e)(2Z, ', —(53)

where

All other q„= (8pX2/A)(R(C2), where neither r nor m
take on the values 1 or X. (R(y) means the real part of y.

We now introduce (59) into (40) and find the
following expression for the acceleration:

4 X2
(a)'= (R((a,+C,)P, f,*f-,

5

+2(A2+C2)g„ i „*(i„+1+/, 1)

+2C2r. f.* r.- i-} (6o)
mAr, r+1

We shall now prove two theorems which greatly
simplify the above expression.

Theorem l. P„f„*(f',+ +i1, 1)=0 for an exciton wave
packet which originates at the center of the molecule,
i.e., at (iV+1)/2.

Proof. It follows from Eqs. (8) and (12) that

using the notation of (34). It is now useful to define
two new symbols Ap and cu, by

Ai (ai-r/at) =~'i „+P(f,+,+f„,),
Where c2'= 01+c2. HenCe,

(61)

Xy. =——e()iiz, +X2Z. 2)(0 —0.) ',

0). —=—2eRZ. (0 —0.)
—'.

This enables one now to write in Eq. (52)

~F (m) Q (l(1 r 1+l(2m(p 1)L12 b +p (b +1
o+0,1

+b'av —1)]+2'0(lil Ypl+X2m(001). (56)

o(' ))ti Bt r
Z. i-.*(f,++f, )=- —+—Z, |-,* . (62)

p p Bt

We now use Eqs. (11) and (13) to evaluate Bfr/Bt

Bi r iu' 2iP kir
P& g2„()ogp(&) cos e ( 'I I)&2'& (63)

Bt h h %+1
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where the subscript zero in gp'k) indicates (.V+1)/2,
i.e., the molecular center. Equation (62) now becomes

Pr fr (fr+1+i r 1) 2—+rjk gr gP
E

yg (s)g @(j)g(—j/5)&%k' —kj') (64)

where we use the assumption of the theorem. The
consequence G=O follows immediately.

Since G=O, we can evaluate Qk, j i k*(t)f, (t) at t=0.
But at t=0, f (j)=5 p. Hence,

Zk; f k*(j)~,(j)=1
It follows from these two theorems that

which, by virtue of Q„g,*&k)g„'j)=8kj, reduces to
Zk fk*

jgk, k+1

since pk f k*f'k ——1. We then conclude in (60) that

(7o)

Q, fr*(Fr+1+i'r 1)=2+k~gp~k) ~'COS . (65)
X+1

6=—E, f *(~)i (j)
dt

(66)

Again we use Eqs. (8) and (12), and find

6= Zkj[—f'k*( j+1+fj 1) i j(—0k+—1 +ik 1)] —(67)
Aj

Now

Qk(t ky1+fk 1) Q f —k+ 2 f k
k=2

X—1

k=2

(68)

This sum can easily be shown to be zero by replacing
~

gp&k)
~

' by its value [2/(X+1)][sin(kyar/2) 7', thus
eliminating all even values of k, and then comparing
cos[kn./(X+1)7 with its symmetric term cos[n.—kyar/

(X+1)$.
Theorem& Z. Assuming f'1(t) =0=fear(t), the double

sum pk, t k*(t)t;(k) is time-independent.
Proof. Consider

(a)'= (4p~,/e) 6t(a,+C,), (71)

i.e., the exciton acquires a constant acceleration due to
the Xp part of the electric Geld. Since Bp+Cp is a term
linear in the various atomic dipole moments Z, , and
Xp is the (constant) gradient of the electric field, we
conclude that the exciton wave packet behaves like a
classical electric dipole, with a moment which is a
linear combination of the various atomic moments.

CONCLUSIONS

In principle then an electric 6eld can be viewed as a
device for guiding an exciton wave packet in a molecule
or crystal. On the other hand, since the acceleration
depends on the field gradient which should be signi6cant
over atomic dimensions, the actual utility of an external
6eld appears dubious. But there still exists the possi-
bility of accomplishing the desired effect by means of
intense local fields produced by microscopic charge
distributions.

There are a number of obvious questions to which
answers should be sought: (1) What is the order of
magnitude of the electric dipole moment associated.
with an exciton? (2) How does the electric field affect
the width of the wave packet'? (3) What is the influence
of phonon coupling on the acceleration of excitons?
(4) Is there a corresponding effect, due to an external
magnetic field P


