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is also small numerically, and since it enters the ex-
pression of Eq. (28) along with the small weighting
factor R(K,), the net effect on dE.„/dk~s s, of the
terms in (28) for E,&0 is negligible.

We have also calculated the total exchange energy,
by numerical integration. The result for free electrons
as given by Wigner and Seitz is —72.0 kg cal/mole. The
effect of the periodic lattice has also been calculated by

Wigner and Seitz, and they find that to three decimal
places, there is no difference between the free electron
and periodic value. Our result is essentially the same,
although we get a slightly different numerical value for
the difference between the free electron and periodic
case, viz. , about 0.005 kg cal/mole. The smallness of this
correction is of course a consequence of the rapid de-
crease of g(x,y) and R(E,) with E,.
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The spin-wave theory in the Holstein-Primakoft formulation is applied to thin ferromagnetic films. A
magnetic anisotropy term is included in the Hamiltonian. A discussion is given of the dependence of the
magnetic properties on the temperature and on the number n of monatomic layers of the thin film. The
influence of possible parallel and perpendicular anisotropy is also discussed.

I. INTRODUCTION

HE first approach in the theory of ferromagnetic
thin films is due to Kittel. ' He showed that when

the thickness of the thin film is smaller than approxi-
mately 10 ' cm, the film becomes a single domain,
magnetized in a direction parallel to its surface.

By applying Bloch's theory of spin waves, Klein
et a/. ' ' have studied such a single domain for various
lattices. It should be mentioned that they have not
taken into account the effect of magnetic anisotropy.
This fact gives rise to a divergence in the final results
for the magnetization if the state of the zero spin-wave
vector is included in the sums which appear. With a
view to avoiding this difhculty, Klein et a/. have
omitted this state in the corresponding sums, but they
have not given a complete justification of this
procedure.

Recently, Doring4 tried to give a complete discussion
of the questions which arise in Klein's calculation. He
justified the omission of the zero spin-wave vector
state, but showed that even in this case the correct
calculations lead to a strange dependence of the
magnetization on the dimensions of the surface of the
thin film. Doring showed also that by introducing a
magnetic anisotropy term in the Hamiltonian, this
situation will no longer appear, i.e., the magnetization
will no longer depend on the dimensions of the surface

' C. Kittel, Phys. Rev. 70, 965 (1946).' M. J. Klein and R. S. Smith, Phys. Rev. 81, 378 (1951).
3 S. J. Glass and M. J. Klein, Phys. Rev. 109, 288 (1958).' W. D6ring, Z. Naturforsch. 16a, 1008, 1146 (1961).

of the thin film. However, as is known, ' when the
anisotropy term is taken into account, it is no longer
necessary to omit the zero spin-wave vector state and
the divergences in the calculation of the magnetization
will no longer appear. Doring has also discussed the
cyclic condition for the perpendicular axis of the film,
and has recalculated the magnetization, going further
than Klein et ul. to higher order terms. ' It should be
mentioned that Doring has not considered the case in
which the magnetic anisotropy is perpendicular to the
surface of the thin film.

In this paper, the spin-wave theory in the Holstein-
Primakoff (H-P) formulationr will be developed for
thin ferromagnetic films. We shall not take into account
the spin-wave interactions, which, as Dyson and
Oguchi' have shown, do not inQuence the first approxi-
mation of the H-P method. Oguchi has concluded in
his discussion, "which applies entirely to our case, that
the first approximation in the H-P method gives the
essential features of the problem, and that all the
correction terms are quite small at low temperatures.
In this manner, we restrict ourselves to the first
approximation of the H-P method in this paper.

5 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). The
authors showed that the magnetic anisotropy eliminates the
divergences in the magnetization of a monatomic layer.

6In order to calculate these terms, Doring performed some
approximations, some of which were not entirely justified.' T. Holstein and H. PrimakoB, Phys. Rev. 58, 1098 (1940).

s F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).' T. Oguchi, Phys. Rev. 117, 117 (1960).See also, F. KeGer and
T. Oguchi, iMd. 117, 718 (1960)."See reference 9, especially p. 122.
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Ke shall calculate the dependence of the spontaneous
magnetization on the temperature and the number e
of monatomic layers of the thin film. Also, the inhuence
of magnetic anisotropy on the magnetic properties of
thin films is considered. To this aim, we will introduce
in the Hamiltonian a magnetic anisotropy term, which
takes into account the possibility of a parallel and a
perpendicular magnetic anisotropy. We note that the
inhuence of magnetic anisotropy on the magnetic
properties of ferromagnetic thin films has also been
studied, by using the trace theory of Heisenberg, in
some previous papers of Corciovei, ""who developed
Valenta's method. '3 Recently, Corciovei and Qhika"
have passed to the third-order approximation in the
trace theory of Heisenberg.

In the present paper, the inRuence of a small per-
pendicular anisotropy" is found to be unimportant.
On the contrary, the parallel magnetic anisotropy has
a very interesting inhuence on the family of curves
which give the dependence of spontaneous magneti-
zation on T for various m.

exchange term, we shall consider only the interactions
between nearest neighbor atoms. In this manner,

x. = —J P S.;S, ;,
&.3."'} '

where J is twice the exchange integral corresponding to
two nearest neighbors and by ( ) we indicate sum-
mation only on the pairs of nearest-neighbor atoms.

%'e shall assume that the magnetization axis, which
is situated in the plane of the film, is the i, axis which
does not represent a restriction of the problem. We
can, thus, suppose that there is a small magnetic
anisotropy in the same direction, which we shall call
parallel anisotropy. As is known, ' there exists also a
perpendicular magnetic anisotropy corresponding to
the i, axis."To the parallel and perpendicular magnetic
anisotropy will correspond two internal anisotropy
magnetic fields, H» and H& which are not equal. In a
manner similar to that of Doring, 4 we can now write
the anisotropy term of the Hamiltonian in the form

3'..„;,= gm~(H, —Q 5„,+H„Q 5,&,),

II. THE FIRST-ORDER APPROXIMATION
IN THE H-P METHOD

In our study of the ferromagnetism of a thin film, we

shall proceed with the H-P method for the spin-wave
theory, in contrast to Klein et al.' ' and Boring, 4 who

have applied the results of spin-wave theory in Bloch's
formulation.

We shall consider that the thin film is a cubic simple
lattice, whose unit vectors are i„ i„, and i„so that i,
is perpendicular to the surface of the thin film."The
thin film can be divided into n monatomic layers
parallel to the surface of the thin film, which shall be
numbered by v (v=1, 2 e). In this manner, the
position of an atom is given by the number of the
monatomic layer to which it belongs and by the vector

j in the plane of the layer. Evidently,

1=a(1 v&v+7 z&z),

where a is the lattice constant, j„and j, are integers

(jv, J,=1, 2 X), and X.' is the number of atoms in
a layer which is supposed to be a square. Thus, any
atom can be denoted by vj.

The Hamiltonian GC will contain an exchange term
3C. , an anisotropy term BC,„;„and the Zeeman term
Xz. We shall denote the spin operator of the vj atom
by S„and its components in the three directions i,,
i„, and i, by S„„S„„,and S„;„respectively. In the

"A. Corciovei, Czech. J. Phys. 10, 568, 917 (1960).
"A. Corciovei, J. Phys. Chem. Solids 20, 162 (1961).
13 I.Valenta, Czech. J. Phys. 7, 127, 136 (195'l}.
'4 A. Corciovei and G. Ghika, Czech. J. Phys. 22, 278 (1962)."We note that in references 12 and 14 the eGect of hypothetical

very large internal perpendicular magnetic anisotropy 6elds is
studied. Such e6ects will not be studied in the present paper.' lt should be stated that we assume that the cubic lattice is
not perfect, but is compressed or dilated along the i direction.

where g is the gyromagnetic factor, and no~ is the Bohr
magneton. As for the Zeeman term, it can be written
in the form

Kz= —g~a P (H*S„,+H„S„„+H,S„;,),

where

5„,+iS„;„=. (25)'~'f„;(5)a„,
5 ). &5 l.= (25)'"—a.i*f.l(5),

Sv„—S—a„; a„j,

(7)

f i( )=( —a i*a)/ 5)'" (7')

As is known, we can write the series expansion of

f.;(5) in powers of a.;*a„;,but we shall not enter into
the complexity of this problem. ' As mentioned in the
introduction, " we shall restrict ourselves, in order to
obtain the essential features of the problem at low

temperatures, to the first approximation of the H-P
method, In this approximation, f„;(S) may be replaced

'7 For justi6cation see, also, footnote 16.

where H„B„, and H, are the components of the
external magnetic field H in the three directions.

The total Hamiltonian 3C will be

~ex+~an is+Xz.

In the H-P theory, the creation and annihilation
operators a„;* and a„;, for each atomic spin, which
satisfy the following commutations rules are introduced:

avjav'j' av'j' avj —&vv'&j j'q

avjav'j' av'j'avj = avj av'j' av'j' avj

and the spin operators are related to these operators
by the relations
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by 4. Performing the calculations, the three terms of the Hamiltonian become

K. = —JSP P (a.;a„'*+a„;*a.
& )—JS Q P (a„;a„.&*+a„*a,~)+JSP P (a„*a»+av~ *a» )

v (jj')

+JS P P (a *a„.+a '*a )—JS'elPsp/2 —JS'(m —1)1Psi
(vv')

3C, ;,= gm—gH, (S/2)'" P P (a„;+a„;*) gm—~H„Q Q (S—a„Pa„;),
v V

3.'z= gm~H,—(S/2)" Q Q (a;+a»*) +igmg H„(S/2)" Q Q (a .—a *) gm~H,—Q Q (S—a»*a»),
v ] v ) V

where so is the number of nearest neighbors of any
atom in the same layer, and s& is the number of nearest
neighbors of any atom in a given nearest layer of the
layer of the atom under consideration. Evidently, in
our case so ——4 and s&

——1.

and the new operators satisfy the following commu-
tation relations:

~vh~v'h' ~v'h' ~vh ~ vv'~hh'p

~vh~v'h' +v'h'~vh ~vh &v'h' ~v'h' @vh

III. CANONICAL TRANSFORMATIONS It is now evident that (10) is also a canonical trans-
formation.

We introduce the notation
Ke shall now perform some canonical transfor-

mations, in order to transform the Hamiltonian into
a sum of independent oscillators. Firstly, it is possible
to perform a Fourier transformation and to introduce
new creation and annihilation operators u, h and c„h,
where h is the propagation vector within the la er
namely,

~h=(1/sp) g expLih(j —j')), (12)

j given

h= (27r/Sa) (m„i„+m,i,)=h„i„+h,i„
where m„and m, are integer numbers such that

(12')ph =
p (coskga+ coskga) .—X/2 &m„, m, &E/2.

)
where in the sum only the pairs with a 6xed j are

(9) considered. It is evident that for cubic simple lattices
we have

The Fourier transformation is

a„~= (1/X) Ph exp( —ihj)a„h,

a„;*=(1/X) Qh exp(ihj)a„h*,

Taking into account the fact that

Q; exp( —ihj) =cVb,;,
(10)

it is easy to show that

K,~= —(JSsp/2) p Q yh(avhavh*+avh*avh) —JS p p (a.ha„h*+a„h*a„h)+JSQ (zp+sqv) p a.h*a„h
v h |',vv') h

—JS'elPsp/2 —JS'(e—1)1Psg,

3C, ;.= —gmgH, (1PS/2)'" p (a„p+a„p*)+gmsH„Q p a„h a„h gmgH„elPS, — (14)

Ks ———gm~Hg(1PS/2) Q (avp+avp*) gmgH„(N S/—2)'~ Q (a„p avp*)+gm~H—v Q Q a„h a„h gmgHvelPSv—

where
sqv=2 fol v=2 3 ~ ~ s—1

for v= j., s.

In this manner, the sums ( ) have been eliminated. In addition, we introduce the canonical conjugated
operators Q„h, I',h by the relations

a,h
——(1/2)'i'(Q. h+iP„h), a„h*——(1/2)"'(Q, h

—pI', h).
We obtain

QvhI v'h' I v'h'Qvh Pbvv'~hh'v (17)
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the other commutators are zero. The three terms of the Hamiltonian can be written

X.*=—(JSz /2) 2 2 v (Q. '+P. ')—JS 2 2 (Q. Q" +P. P" )+ (JS/2) 2 ( o+z ) 2 (Q '+P. ')
v h (vv') h

JS—(S+1)nE' (zp/2) JS—(S+1)(n —1)1Pz&,

X;,= get—aH, (1PS)'"Q Q„p+ (gmaH„/2) Q Q (Q„h'+P„h') —gmanÃ'H(((S+-', ),
v h

Xz = g~a—H.(&'S)"g Q.o gm—aH, (N'S)'" g P.o+ (gmaH, /2) g p (Q„h'+P, h') gma—nS'H, (S+,'). -

(18)

We introduce the notations

wo = —JS(S+1)nS'(zo/2) —JS(S+1)(n —1)$'z), n = ,' JS-, nh= —
o JSzoyh+ o JS(zo+2). (19)

In this manner, the total Hamiltonian K becomes

X=~o gma—nX'(H*+H») (S+z)+P ((nh+gmaH, /2+gmaH)(/2) P (Q„h'+P.h')

n(Qlh +Plh +Qnh +Pnh ) 2n Q (QvhQV'h+PvhPv~h) j g~a(H—*+K)P' S) g Qvo
(vv')

gmaH„(X'S—)"'P P p (20)

In this expression, for every h the oscillations for
various v are still coupled.

IV. THE COMPLETE DIAGONALIZATION
OF THE HAMILTONIAN

One sees that the solutions (24) are independent of h.
We can, thus, omit the superscript (h) in T'")„, and
x&"), and write simply T„,and xTV

The solution T„,of (24) must not vanish; it is, thus,
necessary to impose the condition

With a view to a complete separation of the Hamil-
tonian in a sum of terms of independent oscillators, we
shall perform a new transformation:

1—x

0

0 ~ ~ ~

x ~ ~ ~

1 X 0 ~ ~

0
0
0

Qvh Z T vrgrh~ Pvh P T VTPrhv

for which we impose the conditions

(21) ~ . —x 1 0
~ ~ ~ 1 —x 1

0 1 1—x

=0 (25)

Z Q."=Z C.", Z P."=2p.",

Q)hp+Q h'+2 Q Q.hQ"h=Q x(h), q, hp,

(vv') T

P1h'+P.h'+2 p P.hP" h= 2 *'"'.p.h'
(vv') T

These conditions can be transformed into

Zv T VTT VT ~TT

(22)

(23)

It is evident that the problem discussed above occurs
for e~&2. In the case e= 1, the canonical transforma-
tion is no longer necessary, and it can be seen formally
that x=2.

The solution of (25) is simple when n is small. For
example, one obtains for m =2: x&

——2, x& ——0; for e=3:
x1——2, xo ——1, xp

———1; and for n= 4: x1——2, xp= &2,
xp ——0, x4———V2. It is possible to show" that for a given
e the solutions x, can be written

x,= 2 cos[(x/n)(r 1)j, r= 1, 2, ~ ~ , n, —(26)

(—x'"',+1)T(h'),+T'h) p, ——0,

fol v=2, 3v, n —1,

(—x(h) +j)T(h) +T(h)
&

—0

Using (23) it is easy to verify that g,h, p, h satisfy the
rule

g ThP T'h' PT'h'g Th &~TT ~hh'

because the secular problem is very similar to that
which appears in the vibration of a linear chain of
atoms. It is to be noted that condition (26) corresponds
to the introduction of a cyclic condition in the i
direction of a thin 61m with 2e layers instead of n.

' C. Hemmer, thesis, Nordita Publication 27, 1959 (unpub-
lished). See also reference 4, p. 1148.
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Performing the transformation (21), the Hamiltonian corresponding to m monatomic layers takes the form

X=wp g—m~n¹(H.+H, &)(S+', )+-g g {(nh+gmgHg/2+gmggH, i/2)(q, h'+7).h'))
h

—n p p x, (q,h'+p„h') gm—I)(H,+H,)(N'S)" p (p T.,)q,o gm—~H„(N'S)" p (Q T„)77,p. (27)
h

Finally, we perform the transformation

q o q 0+fgmB(H, +H|)(¹S)'"Q„T„,7//(2no+gmz(H, +H„) 2nx, 7—,

p,o= p,p+(gmsH„(N'S)'" Q„T„,7/$2np+gm))(H, +H&~) —2nx, 7,

q h=q h p h=p h, fol h/0,
(2g)

where ao is nh 0. The transformation is evidently where k is Boltzmann s constant and T is the tempera-
canonical and the new operators satisfy the commu- ture. It is easy to show that we obtain
tation rules

qThPT h' Pr'h'qrh &aTT ahh'

With the transformation (28), the Hamiltonian
becomes a sum of oscillators:

X=wo+p p Dnh+gm~H, /2+gmI)H„/2 ax,)—
h

X (q,ho+P. h') 7+w, (H,+H,)'+w„H„'

w, +w, (H,+H,)'+w„H„'+w, (H,+H„)~

~
—u) h/(kT)

Xg g . (33)—gtt) h/(kF)

With the aid of Z, we can calculate the free energy
F= —kT lnZ in the form

where we have introduced the notations
F=w p+w. (H,+H, )o+w pH„'+w, (H,+H„)

+P P w, h+IoT P P ln(1 —g o ~h~(h )) (34)
g'm))'NoS(Q „T„,)'

4 (n p+ gmI) H,/2+ gm&H „/2 ax,)— r h h

V. THE MAGNETIZATION OF THIN FILM

'gmgP N'S(g, T, )' (30)

~ 4(n p+ gm))H, /2+ gm))H, &/2 nx,)—The components of magnetization on various axes
are given by

M, = —aF/aH. , M„= aF/aH„—,
M, = —aF/aH, .

w, = —gm))nN'(S+-, ').

On the other hand, the quantization can be per-
One obtains

formed according to the rule

(35)

A q'+Bp' ~ (2n+1) (AB)'"
and

M,= 2w, (H,+H,), —M„= 2w„H p,
—(36)

w, h=nh+ gms(H. +H&~)/2 —nx„ (32)

and n, h are the (positive or zero) corresponding quan-
tum numbers. By n we have designated the set of all n, h.

Now we can calculate the partition function Z. We
have

Z=P expC —&n/(&T)7,

where n is an integer quantum number.
In this manner, the Hamiltonian will have the

following eigenvalues:

F„=wo+w. (H.+K)o+w,H,'+w. (H,+K i)

+p, Q w,„(2n,h+1), (31)
where

2e 2ur~h/(hT)—
M, = —w, —PP ~

1+
~

. (37)
h . l 1 g 2w~hl(hT)) aH—

When H vanishes we obtain the spontaneous mag-
netization. It is seen that the spontaneous magneti-
zation on the Oy axis vanishes. Also, since the order of
magnitude of H& is 10 Oe to 100 Oe, we have m, H&&&m,

and, thus, the spontaneous magnetization perpendicular
to the thin film can be neglected as compared to the
spontaneous magnetization on the Os axis. Further,
we shall consider only the spontaneous magnetization
in the plane of the thin film on the Os axis.

In formula (37) we can go from the sum to an
integral over dh„dh, and, for the spontaneous magneti-
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where we have introduced the notations

M p= gm))SnlV', qr =hT/(JS),
((I=gmeH„/(2JS).

(44)

0.1 .02 05 OC 05 Ok Q7 Q9 Og I Tjy

FlG. 1. Magnetization vs temperature for g=0.001 and for
diferent values of the thickness.

zation, we obtain

M, =gm))e.V'(S+-,')
N's' — ' ' ( 2e-' .~""'&

)I 1+
(2~)' ~(, ~), E 1 e'—~~h '" '

83)~h

dh, dh, , (38)
-a,=o

where we have also introduced the normalization factor
(Ea/2m)P. The main contribution to (38) arises near
the point h„=h, =O, as can be seen from (32) and (19).
Ke can, thus, approximate yh which appears in o.h by

y = 1—-'P (h„a)'+ (h,a)'7, (36)

and the integration can be performed by using polar
coordinates

h„= (o./a) cost), h, = (a/a) sine (40)

and replacing the square domain of integration with a
circle of equal surface. In this manner, we obtain

M, =gm))nX'(S+ ,')-

We note that q is the ratio between the "parallel
magnetic anisotropy constant" gm~LI» and the "ex-
change constant" 25J. In general, we have q((1.
Expression (43) gives us the general dependence of the
magnetization on the temperature, the thickness, the
parallel magnetic anisotropy, the exchange integral,
and the spin.

For r= 1, we have 1—x,/2=0. In this manner, it is
evident that the quantity )) eliminates in (43) the
divergency at 7-= 1. The unnatural procedure of
Doring of eliminating the divergency without intro-
ducing the magnetic anisotropy leads to some dif5.-
culties which cannot be overcome in a consistent
manner. In our opinion, only by taking into account
the parallel magnetic anisotropy, can we study the
problem in a consistent manner. As we have seen,
the perpendicular magnetic anisotropy introduces a
component of the magnetization on the Ox axis which,
of course, for the usual small values of H&, can be
neglected as compared with M, . In our approximation,
the perpendicular anisotropy does not inQuence the
magnetization on the Os axis.

Formula (43) shows that for small values of I, M,
decreases linearly with T. When e becomes very large,
we must obtain the well-known T'" decrease of the
magnetization which corresponds to the bulk material.
Let us demonstrate this fact. For simplicity we shall
put p=0 and we shall neglect the quantities

exp) —(2/(jp) (2'+ 1—x,/2+))) 7,

which are practically vanishing in (43) at low tem-
peratures. Passing from sum to integral and putting
r—i=y, we obtain

2&a 2m ( 2e 2m~(o)l(kT)—

l1+
e 2w~(a)l(kT)]—

M, =Mp 1—
4~ns

ln dy,
~
—~2y&i(nmq)

Bw, (a)
X o-d0-do

BB, - lr, =p

where we have also performed a series' development
(41) in the vicinity of y=O, where the main contribution

where w, (0) is obtained from (32) and (19) and has the
expression

w, (g) =JSa'/2 JSx,/2+ JS+gmeH, /2—

+gmeH„/2. (42)

By performing the integration, it is easy to show that
ae

M, =3fp

4 ~S

1—expL (2/pp) (2 +1 x /2+)))7
ln

1—expt —(2/(o) (1—x,/2+ g) 7
(43)

o'i & os G4 08 Qs 02 08 OB I $/g,

FIG. 2. Magnetization vs temperature for q=0.01 and for
diferent values of the thickness.
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of the integral appears. Further, we introduce
u=~y/(egp) and obtain

3/2 1
Mz=Mo 1 ln dl,~'S o 1—e "' 0$

where we have approximated the upper limit of the
integral with infinity at low temperatures.

We observe that

where f is Riemann's function. As is known, f'(3/2)
= 2.612. In this way, we obtain finally

Mg =Ms/1 —2.6127r'"y'"/ (ger'S) j
0.117

(43)
25

which is exactly the result known for a ferromagnetic
cubic solid body. "We can introduce the quantity To
defined from the condition

0.117X (k Te) '"/(2J'"S'~') = 1.

In this manner, (45) becomes

M, =Ms[1 (T/Te) sl']—. (46)

For T= To, M, vanishes and, thus, in this theory, To
can be considered the Curie temperature of the bulk
material.

The transition from the linear decrease with T of
the magnetization for small e to the T'~' decrease for
large values of n can be seen in Figs, 1 and 2. Figure 1
shows the dependence of the magnetization on T for
small values of e and for S= ~ and g=0.001. Figure 2
shows the same family of curves, but for q=0.01. This
value of q is larger than the experimental values of g
for the solid body. In Figs. 1 and 2 we have also shown
Prom Eq. (46)) the dependence of the magnetization
on T for the bulk material (e of the order of magnitude
of 1V) and for r)=0. We observe that the temperature

'f'See, for example, R. E. Peierls, Quuntum Theory of Solids
(Clarendon Press, Oxford, 1955), p. 172, formula (42). For com-
parison with Peierls we observe that in (45), JS is the exchange
energy and 2S is the number of —,

' spins of any atom. ,We note
that the correct numerical constant has been obtained.

o2 cN ac oh 04 a7 08 OB & T/T.

FIG. 3. Magnetization vs temperature for n= 1, and for
diferent values of the coe%cient g.

where the magnetization vanishes is the Curie tem-
perature, which increases with increasing n and g.
However, as is known, in the H-P method, the results
are only qualitative in this range of temperatures. In
Fig. 3, the dependence of the magnetization on T for
e= 1 and g=0.1, 0.01, and 0.001, respectively, is given.

It is very interesting to note the dependence on p of
the family of curves given in Figs. 1—3. For a given
temperature and a given n, the magnetization increases
with increasing g. It is very possible that g depends on
e, i.e., that it increases when n decreases. "On the other
hand, it is well known that for e smaller than 10, the
experimental results are very unsatisfactory, di6erent
authors giving different results for the same material. "
In particular, Neugebauer" obtains larger values for the
magnetization than other authors. In this manner, the
results of Neugebauer seem to indicate a greater q for
very thin films than for the solid body. For example,
it can be seen in Fig. 2 that for q=0.01 for e greater
than 10, the dependence and the values of the magneti-
zation become practically the same as for the solid
body.

It is, of course, evident that accurate experimental
results will permit the calculation of the corresponding

q and, thus, the magnetic anisotropy for various n, and
will also clarify other problems which arise in the study
of very thin ferromagnetic film.

~ It is not the purpose of this paper to explain such a
dependence.

~' See, for example, C. P. Bean, in Proceedings of un Internutionul
Conference on Structures und Properties on Thin Films, J3olton
Lunding, Nem York, 1959 (John Wiley 8r Sons, Inc. , New York„
1959), p. 331.

~ C. A. Neugebauer, Phys. Rev. 116, 1441 (1959).


