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Exchange Energy of an Electron Gas in a Periodic Potential

LEQNARD EYGKs

Lincoln Laboratory, * Massachusetts Institlte of Technology, Lexington, N assachesetts

Ke have derived general formulas for the exchange energy of an electron gas in a periodic potential, and
for E, (k), the "exchange energy of a single electron as a function of k." We evaluate these, with some ap-
proximations, for S-like bands; for E,„(k) we get

e'kp E, k
E,„(h)=[E,„(k)]g,«,~«q ——~ N,R'(K, )g

Kg/0 0 0

where E, is the magnitude of a reciprocal lattice vector, n, is the number of vectors with that magni-
tude, R(K,) is a function which is derived from the wave functions of a single electron in the lattice, and
g(K /kp, k/kp) is calculated in the paper. The main conclusion of the paper is that even if R (K,) derives from
a wave function which is far from a plane wave, the function g(K,/ko, k/ka) drops off so quickly as a function
of IC, that for many practical cases, essentially the only contribution to the exchange energy comes from
the plane wave component corresponding to E,=0.Thus, the plane wave expression for the exchange energy
has a larger range of validity than might appear at first sight. A numerical evaluation of the total exchange
energy is carried out for sodium.

repulsion of the electrons: It neglects the periodic po-
tential in which the electrons are assumed to move. Is
it not possible then that we might improve agreement
with experiment if we made the model more realistic by
taking into account this periodic potentials This is one
of the questions that this paper treats. The answer we
And is: in principle, yes; in practice, no. That is, we
find that taking the periodic potential into account, we
do get an effect in the density of states which is such as
to weaken the effect of the free particle singularity of
dE. /dk in the neighborhood of the Fermi level. In
practice, however, this seems to be too small numeri-
cally to restore agreement with experiment for the
quantities mentioned above.

Aside from this question, it would clearly be useful
to have general expressions for the total exchange
energy in a periodic potential, and to investigate the
possibility of evaluating these practically. There have
been previous such evaluations, ' but usually they have
depended on special assumptions (e.g. , tight binding) or
on the assumption of special forms for the wave func-
tion. In this paper, we try to evaluate these expressions
as generally as possible, and try to make clear the ap-
proximations that must be used in reducing the general
expressions to practical ones that can be evaluated for
specific substances.

I. INTRODUCTION
' 'N the theory of metals, it is well known' that if one
~ - neglects electron interactions, and uses free-electron
wave functions to calculate metallic properties, one
often gets good qualitative agreement with experiment.
This agreement is frequently improved if one takes
electron interactions into account using first-order per-
turbation theory and unsymmetrized. (Hartree) wave
functions. If one goes a step further, however, and cal-
culates using antisymmetrized (Hartree-I'ock) wave
functions, then at least in one important respect, the
agreement is impaired. That is, upon evaluating 8, (k),
the "exchange energy as a function of k,

"one finds that
the derivative of this function at the Fermi level is in-

6nite. This implies that the level density goes to zero
at the Fermi level, and this worsens the agreement
with experiment for such properties as specific heat,
paramagnetic susceptibility, etc.

Wigner'' suggested that the above unhappy result
might be improved by taking into account "correlation
effects, " i.e., by using wave functions which took into
account the electron-electron repulsions more accu-
rately than do the free-particle wave functions. The
work of Bohm and Pines, Cell-Mann and Brueckner,
and many others4 on the free electron gas shows that
this is correct; the inclusion of correlation effects does
indeed improve the situation.

Nonetheless, one might well ask whether the same
desirable result might be found in another direction.
That is, the free electron model is unrealistic in at least
one other respect besides that of neglecting the mutual

II. INDEPENDENT ELECTRONS

In this section we shall write, for reference, some
well-known formulas for a gas of e independent (i.e.,
not mutually interacting) electrons. These results, and
the notation, are mainly taken from the book by Seitz. '

%e assume that the electrons move in some common
potential for which the one-electron Schrodinger equa-

~ Operated with support from the U. S. Army, Navy, and Air
Force.

' For a general review and an amplification of the remarks of
this Introduction, as well as for extensive references, see D. Pines,
in Advances in Sobd State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1955), Vol. 1.' E. P. Wigner, Phys. Rev. 46, 1002 (1934).

3 E. P. signer, Trans. Faraday Soc. 34, 678 (1938).
4 For references, see: The Many Body Problem, edited b

D. Pines (W. A. Benjamin, Inc. , New York, 1961).

5 For a summary see: J. Reitz, in Advances in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. ,
New York, 1955), Vol. 1.

y ' F. Seitz, Modern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1940).
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1 — 9 jis(kpr)-
p(r) =—1——

V 2 (kpr)'
~=K(—) P[~ (1) ~-( )],

tion is soluble. Then for the assemblage, a general anti- For free electrons, we then have'
symmetric wave function 4' has the form

where P,(j) stands for a one-electron wave function
consisting of a space function 1(, (normalized to unity)
times a spin function g;:

e'(j)=u'(;)~;(f,).
The probability P(ri, r,) that one electron will be at r,
and the other at r2 is then

P(ri rp) = I:Z'ly'(ri) I'lit (rp) I'
n(n —1) '.f

——',p'f;*(r,)lf,*(r&)iif,(r,)4, (ri)]. (2)

A prime in a sum above means to omit the term i = j,
but we can also choose to include it, providing we in-
clude it in both sums, since the terms for i =j in the two
sums are identical, and hence, cancel. In the special and
well-known case of electrons in a box of volume V=I.'
with periodic boundary conditions (free electrons), the
wave functions are

e'"' k = 2prm/l.
V

where I is a vector with integral components. For this
case, the formal index s in Eq. (2) is replaced by k and
the sum is replaced by an integration,

The exchange energy can also be written as

~exchange =n(n —1) - V

2 (2ir)'
E. (k)dk,

where E, (k) is the "exchange energy of a single elec-
tron as a function of k", defined as

e2

E,„(k)=—
2 (2pr)'

ei(k—k') r

dk'dr.

Integration yields the well-known result

which differs trivially from (4), but in general the con-
ceptual difference between p(r) and P(ri, rp) is
important.

The second term in the pair distribution (2) is the
"exchange" term. The total exchange energy E, ,h,„g,
is then the expectation value of e'/rip for this exchange
pair distribution times n(n —1)/2=n'/2, the number of
pairs of electrons. That is,

9 jis(kpr) t e'q
z...&..„=—

I

—
I I

—I4~r'dr, (6)
&2)2V . (k,r) kri

whence,
+exchange/'~= (9&n~ /4kp )

Then
(2ir)'

dk. E, (k)=-
ask k P —ks Ikp+ kI

2+ ln
kpk Ikp —kl

P(r, ,rp)= (1——,'e"" "'& ')dkdk', (3)
n(n —1)(2pr)'

where the integrals are over the interior of the Fermi
sphere, ' Ikl (kp ——(3pr'n/V)"' and r=ri —rp. The result
of this last integration is well known; with n= n —1, it is

1- 9 j'(kr)
P(ri, r,)=—1—— (4)

V' 2 (kpr)'

We see that the correlation function P(ri, rp), for the
system of electrons in a box, depends only on r. For
other systems, this will not necessarily be so. For future
reference then, it is useful to imagine a center-of-mass
coordinate R= (r,+r,)/2 introduced into (2) in addition
to the coordinate r and to de6ne the relative distribution
function p(r)

If now we form dE, /dk we find that it has a logarithmic
singularity at k=ko, this implies that the density of
states goes to zero at the Fermi level, with attendant
difhculties which are discussed elsewhere. '

where

14(r) = e'a 'Is (r),
V

(10)

ua(r) =Q Cs(K )e'*".

III. ELECTRONS IN A PERIODIC POTENTIAL;
GENERAL FORMULAS

We take the one-electron wave functions iit &(r) for the
periodic potential as satisfying periodic boundary con-
ditions on the walls of a box of large volume V. That
is, we take

p(r) = P(ri, rp)dR—= P(R+-', r, R—pr)dR. (5)

r The factor of four on the right-hand side of (3), which factor
maintains the normalization of E(r1,r~), comes from the fact that
there are two spin states for each space state, and that these
states are included in defIning the Fermi level.

a Formally, there is a slight difFiculty here, in that jp(r)dr
should equal unity, but it is clear from the form of p(r) that this
integral is always slightly less than unity. The point is that over
practically all the volume, which is, of course, considered to be
much larger than the mean interparticle distance, the distribution
function is 1/t/' so that J'vp(r)dr=1, to within terms of order
(volume per particle/volume), that is, to within terms of order 1/n.
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k'. (18)1—-'(,""—"'i ']F(k,k', r)dkdk .—
2

'

E, (k)=- ((k—k ~ r «19)~i(k—k r&'F'(k, k', r)dk dr, (
2 (2~)

can be derivedh the total exch gan e energy canfrom whic
usi
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More generally, one would expect that for r small
(with respect to the dimensions of the unit cell),
E(k,k', r) resembles the atomic distribution x(r), but
that for larger r, it becomes a periodic function of r.

So much for the tight-binding limit. Now we consider
the general evaluation of F(k,k', r), with an eye to
evaluating Eqs. (17), (18), and then E, (k) and the
total exchange energy. To calculate any of these, we
must be able to do the integrals over k in Eqs. (7) and

(8), and this means that the k dependence of D(k, K,)
must be somehow made explicit. One possibility, which
enables at least partial progress, is to expand D(k, K,)
and D(k', K,) in Eq. (7) in spherical harmonics of the
solid angles QI, and QA,

' and then do the integrations over
these solid angles. But this still leaves an integral over
the mageitudes of k and k' and this cannot be done
without knowing the complete k dependence of D(k, K,).
A more drastic approach, but one which leads to an
analytic answer is to neglect the k dependence of
D(k, K,) completely, i.e. essentially expand it about
k=0. This is an approximation which is certainly good
for narrow bands, for example, for the alkalies for which
the effective mass is close to one, and it does lead to
interesting qualitative results, so we shall discuss it in
some detail. Also with an eye on the alkali metals, we
shall calculate for 5 bands of cubic lattices, although a
similar calculation is feasible for bands of other type and
for other lattices.

We shall have to make various approximations in
this calculation and to keep them clearly in evidence,
we shall label them explicitly as we go along. We begin
by recalling that we have found previously" that for
5 bands, an excellent approximation for the wave
function C~(K,) often is

Ci(K,)=A (l K, l)+)tel(l K, l) cosy+, (23)

with y the angle between k and K;. This already in-
volves A pProximation I: In it we have taken the angu-
lar dependence of the zeroth-order (k-independent)
part of the wave function, as that of a spherical har-
monic with /=0, whereas, in principle (according to
group theory), spherical harmonics of orders /=4, 6
are permitted as well.

We have already mentioned APproximation II: In
the expression (23), we neglect the k dependence of the
wave function. We get then for the central function
D(k,K,)

D(k, K.)=2 A(1K+K. l)A(IK I). (24)

Even with this approximation, the dependence of
D(k, K,) on K, is too complicated for the integrations
we shall have to do. Therefore, we expand A ( l K,+K,

l )
in the following way":

A(lK,+K, l)=4m P Q At(K;,K,)
X I'i *(0;)Vt (0,). (25)

"L.Eyges, Phys. Rev. 126, 93 (1962).

Thus, D(k, K,) is in this approximation, despite the
notation, independent of k and a function only of the
magnitude E„and it is then convenient to redefine it
as R(K,), as we have done.

There is, incidentally, an interesting result we can
derive immediately from this last equation. Consider

p(r), the relative distribution function defined by (5).
With the above k-independent approximation, we can
do the integrations over k and k', to get

P(r) =P(r)free electron f(r)y

where pf««i«&ro„ is the relative distribution function
(Sa) for free electrons, and where"

f(r) P e'x. .rR'(K~)

is a periodic function of r, which in the tight-binding
limit simply becomes the z(r) defined by (21).

With the simplified D(k, K,) of Eq. (26), we now
consider the calculation of E,„(k), the "exchange energy
of an electron of wave number k."This is then

E. (k)=—
2(2s.)'

e'(~—i ~).r

&&+ R'(K,)e'" 'dk'dr. (27)

Now we consider the sum over K, in (27) to be broken
up into one over the absolute magnitudes of E, and one
over the solid angles. We expand e'K" in Bessel func-
tions of the magnitude E,r; this expansion, when
summed over the reciprocal lattice' solid angles, leaves
only Kubic harmonics of type n, corresponding to
1=0,4,6 . As an approximation (A pproximation IV)
we keep only the l=o term to get

L~'.„(k)=—
2(2tr)'

&(P t4R'(K, )js(K,r)dk'dr.

~ It is important in what follows to keep straight the difference
in meanings of the subscript s in K, and E,. This is explained in
reference 9, but we recapitulate here for convenience. In K„ the
subscript stands for a triad of integers sI,sq,s3 which deanes the
reciprocal lattice vector K,. If now we arrange these vectors in
order of increasing magnitude, then E, stands for the magnitude
of the sth vector in this sequence. Correspondingly, e, is the
number of vectors of this magnitude. Also, we recall that Z,
stands for a summation over all reciprocal lattice vectors, i.e., for
a sum over all s1,s2,s3, whereas Z~, stands for a sum over the
different magnitudes X,. These points have to be kept in mind
mainly in formulas like that preceding Kq. (27} in the text, in
which both K, and E, appear simultaneously. In this case, it may
be easiest to kee in mind that, e.g. , R'(E;) can be considered to
stand for R'()K. ).

If we put this into (24), we find that the sum involves
only' As, A4, As and we approximate it (Approxs
matiort III) by keeping only the term in As,

D(k K ) —P rt&Ap(K&, K )A(K&)=R(K ). (26)
X2'
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4.0

3,5—

3.0—

termined by g(p, y). On evaluating the indeterminate
form (29), this turns out to be, as it must, essentially
the Eq. (9) for the exchange energy as a function of k
for a free-electron gas,

2,5—
I1+yl

g(o,y)=l —y I» +2 (3o)

g(x,y) 2.0—

I.5—

2.0

I.5

Moreover for E,=0, it is easy to see from the normali-
zation condition that R(0)= 1, so we can write

Eex(k) = (Eex(k))free electrons
I,O—

0.5—

—I.O

—0.5

e'&o )E, kgP n, R'(E,)gI, —I. (31)
iran 5 kp kp)

We can now carry out the integrations over the solid
angles of k' and r. For the k' integration, we assume
spherical energy bands and an effective mass of unity,
which is a su%ciently good approximation for our
later application to Na. We find

E, (k)= ——P m,R'(E,)
7t &e

kp

jp(kr)j p(k'r) jp(E,r)k"rdk'dr.

The integral is straightforward but tedious. One gets

es (E, k)E.*(k)=——kp P e.R'(E.)gl
i kp kp)

where, with x=E,/kp, y=k/kp,

1 I1+x+yl I1—x—yl (x+y)
g(x,y) =——', ln

xy I1+x—
yl I1—x+y

I

(*+y)' ll+ +yl ( —y)xl1—
I1-x-yl

(x—y) ~ I1+x—yl 4
+—xy . (29)

I1—x+yl

We have, thus, represented E,„(k) as a sum of con-
tributions, one from each different magnitude of a re-
ciprocal lattice vector. The function g(x,y) which de-
termines the relative contribution of the different E,
is plotted in Fig. 1. The contribution for E,=O is de-

I I I I I I I I

2 3 4 5 6 l 8 9 I,O

Y=-k

kO

Fio. 1. The function g(x,y), needed in the evaluation of E, (k)
according to Eq. (28). The numbers attached to the curves are
values of x=E,/ks. The curve for x=0 is essentially the familiar
one for the exchange energy as a function of k d'or a free electron
gas.

This is the central formula of this paper.

V. NUMERICAL RESULTS AND DISCUSSION

To evaluate (31) for a specific substance, we must
first calculate R(E,) We ha.ve done this numerically
for Na, using the cellular wave function given by
Wigner and Seitz. 13 Fourier transforming this, we find
A(E;) and Ap(E, ,E,) deffned by Eqs. (23) and (25),
and thence, R(E,). We omit the details; the values of
R(E,) for s running from one through eight are: 1.00,
0.015, —0.10, —0.020, +0.040, +0.049, +0.029, +0.007.
Thus, R(E,) is a function which drops off' very quickly
with E,. This simply reflects the fact that the wave
function for Na is to a good approximation a single
plane wave.

Now let us look at the effect of the periodic lattice
on the level density near k=kp. Qualitatively, we can
read off this effect from Fig. 1. According to Eq. (28),
the quantity of interest, dE, /dk I „&, is given, except
for factors, by a sum over x of the slope Bg/By I „ i. For
x equal to zero, which is the free electron case, Bg/By

I „ i
has the (negative) logarithmic singularity which makes
for the difficulties touched on in Sec. I. However, there
is no such singularity for other values of x. In fact, this
slope becomes positive for the larger values of x that
actually pertain to" Na. Peur y=1 then, the effect of
this in the sum for dE, /dk I &=&p is to partially counter-
act the large e6ect which arises from the point @=0.0.
Unfortunately, although this partial cancellation exists
in principle, in practice it is at least for Na, almost
negligible. For as one can see from the curves of Fig. 1,
Bg/Byl „ i although indeed positive for x large enough

» Reference 6, p. 340.' E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934)."For Na, x =E,/ks takes on the values 2.283(s—1)&, s = 1,2.
'6 The n, in this formula, as in reference 9, stands for the number

of (j—1)st nearest neighbors in the reciprocal lattice. In refer-
ence 9, we gave a table, computed by hand, for e; as a function of
j. This calculation has been redone on a digital computer by
Craig C. Work of this Laboratory, and he has found some errors
in that table. The corrected version follows:

j 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18
n~ 1 12 6 24 12 24 8 48 6 36 24 24 24 72 0 48 12 48
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is also small numerically, and since it enters the ex-
pression of Eq. (28) along with the small weighting
factor R(K,), the net effect on dE.„/dk~s s, of the
terms in (28) for E,&0 is negligible.

We have also calculated the total exchange energy,
by numerical integration. The result for free electrons
as given by Wigner and Seitz is —72.0 kg cal/mole. The
effect of the periodic lattice has also been calculated by

Wigner and Seitz, and they find that to three decimal
places, there is no difference between the free electron
and periodic value. Our result is essentially the same,
although we get a slightly different numerical value for
the difference between the free electron and periodic
case, viz. , about 0.005 kg cal/mole. The smallness of this
correction is of course a consequence of the rapid de-
crease of g(x,y) and R(E,) with E,.
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Spin-Wave Theory of Ferromagnetic Thin Films
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The spin-wave theory in the Holstein-Primakoft formulation is applied to thin ferromagnetic films. A
magnetic anisotropy term is included in the Hamiltonian. A discussion is given of the dependence of the
magnetic properties on the temperature and on the number n of monatomic layers of the thin film. The
influence of possible parallel and perpendicular anisotropy is also discussed.

I. INTRODUCTION

HE first approach in the theory of ferromagnetic
thin films is due to Kittel. ' He showed that when

the thickness of the thin film is smaller than approxi-
mately 10 ' cm, the film becomes a single domain,
magnetized in a direction parallel to its surface.

By applying Bloch's theory of spin waves, Klein
et a/. ' ' have studied such a single domain for various
lattices. It should be mentioned that they have not
taken into account the effect of magnetic anisotropy.
This fact gives rise to a divergence in the final results
for the magnetization if the state of the zero spin-wave
vector is included in the sums which appear. With a
view to avoiding this difhculty, Klein et a/. have
omitted this state in the corresponding sums, but they
have not given a complete justification of this
procedure.

Recently, Doring4 tried to give a complete discussion
of the questions which arise in Klein's calculation. He
justified the omission of the zero spin-wave vector
state, but showed that even in this case the correct
calculations lead to a strange dependence of the
magnetization on the dimensions of the surface of the
thin film. Doring showed also that by introducing a
magnetic anisotropy term in the Hamiltonian, this
situation will no longer appear, i.e., the magnetization
will no longer depend on the dimensions of the surface

' C. Kittel, Phys. Rev. 70, 965 (1946).' M. J. Klein and R. S. Smith, Phys. Rev. 81, 378 (1951).
3 S. J. Glass and M. J. Klein, Phys. Rev. 109, 288 (1958).' W. D6ring, Z. Naturforsch. 16a, 1008, 1146 (1961).

of the thin film. However, as is known, ' when the
anisotropy term is taken into account, it is no longer
necessary to omit the zero spin-wave vector state and
the divergences in the calculation of the magnetization
will no longer appear. Doring has also discussed the
cyclic condition for the perpendicular axis of the film,
and has recalculated the magnetization, going further
than Klein et ul. to higher order terms. ' It should be
mentioned that Doring has not considered the case in
which the magnetic anisotropy is perpendicular to the
surface of the thin film.

In this paper, the spin-wave theory in the Holstein-
Primakoff (H-P) formulationr will be developed for
thin ferromagnetic films. We shall not take into account
the spin-wave interactions, which, as Dyson and
Oguchi' have shown, do not inQuence the first approxi-
mation of the H-P method. Oguchi has concluded in
his discussion, "which applies entirely to our case, that
the first approximation in the H-P method gives the
essential features of the problem, and that all the
correction terms are quite small at low temperatures.
In this manner, we restrict ourselves to the first
approximation of the H-P method in this paper.

5 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951). The
authors showed that the magnetic anisotropy eliminates the
divergences in the magnetization of a monatomic layer.

6In order to calculate these terms, Doring performed some
approximations, some of which were not entirely justified.' T. Holstein and H. PrimakoB, Phys. Rev. 58, 1098 (1940).

s F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).' T. Oguchi, Phys. Rev. 117, 117 (1960).See also, F. KeGer and
T. Oguchi, iMd. 117, 718 (1960)."See reference 9, especially p. 122.


