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In Fig. 5 for low fields v; —v; 0 ~ E holds up to about
100 V/cm, where i; e is the zero-field intervalley scatter-
ing frequency. At intermediate fields the p; ~ E'".For
a Maxwellian electron distribution v; ~ E is expected
for electron energies large compared to the phonon
involved in intervalley scattering. The tendency toward
saturation at high 6elds is probably associated with
the breakdown of the assumption that the eftect of

intervalley scattering on the distribution function in a
single valley can be neglected.

ACKNOWLEDGMENTS

It is a pleasure to thank Dr. P. J. Price and Dr. S.
H. Koenig for helpful discussions, Dr. G. Brock for
providing the crystals, and James Reinhold for tech-
nical assistance.

PH YSI CAL REVIEW VOLUME 130, NUM B ER 6 15 JUNE 1963
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Expressions for the absorption coe%cient in the presence of a uniform field, of semiconductors and insu-
lators for both allowed and forbidden transitions are derived. The results are expressed in terms of Airy
functions, and the limiting cases examined indicate the tunneling mechanism as a possible explanation
for the experimentally observed long-wavelength tails.

1. INTRODUCTION

"'NSUI.ATING and semiconducting crystals, in the
~ - absence of any perturbations, are transparent below
a certain photon energy above which the absorption
rises rapidly. In practice, however, this edge exhibits a
complicated structure often giving an exponential
type tail in the long-wavelength region. ' It has been
suggested unsuccessfully that (a) the absence of perfect
periodicity, and (b) the presence of impurity states in
the forbidden band leads to absorption tails in the
long-wavelength region. ' '

An alternative explanation of the above effect rests
on the tunneling of electron states into the forbidden
band due to band bending; such band bending in
practice can occur at the surface of the crystal, due to
the termination of periodicity, or in the bulk of the
crystal. 4 Franz' considered the effect of a uniform field,
on the absorption coefficient, by using the Houston'
wave functions to calculate the matrix elements and
his results were expressed partly in terms of an infinite
series.

We have, in this paper, treated the states as station-
ary and thus adopted the standard procedure to
calculate the matrix elements. The results, expressed in
terms of the well-known Airy functions in Sec. 3, are,
in fact, identical to those obtained by Franz for the
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case of allowed transitions. Our results, however, can
be extended to the case of forbidden transitions giving
the expected exponential type tail in the long-wave-
length region. A brief discussion of the results, including
the eGect of binding between electron-hole pairs, is in
Sec. 4, and the de6nition of absorption coeKcient in
Sec. 2.

2. THE ABSORPTION COEFFICIENT

The absorption coeKcient 0, is defined by~

(2.1)

where E;, Ey are the initial and final energies of the
system interacting with photons of energy A~. e is the
refractive index; A is the Planck's constant; c is the
velocity of light; and e, m are charge and mass of an
electron, respectively. The matrix element P;f for
electrons going from the initial state i to the final state
f can be written as' (a) for allowed transitions

P;f C(0)Cebi., y„——

and (b) for forbidden transitions

(2.2)

(2.3)

7 J. Bardeen, F. J. Blatt, and L. H. Hall, in Photoconductivity
Conference (John Wiley R Sons, Inc. , New York, 1956), p. 146.

R. J. Elliott, Phys. Rev. 108, 1384 (1957).

In (2.2) and (2.3),Ce, Ci involving the matrix elements
between the periodic parts of the Bloch states at the
band edges, are independent of the electron wave vector
k with Co having the dimensions of momentum and Ci
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being a nondimensional constant. The 8 function
ensures momentum conservation, and q is the polariza-
tion vector of the photons with negligible momentum.
C(r) is the solution of the two-particle Schrodinger
equation with r as the relative coordinate of the
electron-hole pair. For a pair in the presence of a
uniform field F (in the Z direction) C (r) is obtained from

L (A'/2p) P+
I
e

I
FZ+ F]C (r) =0, (2.4)

with mo and m~ as the "effective masses" of the electrons
and holes in the conduction and valence bands, respec-
tively. We remark here that the inclusion of Coulomb
binding, between the electron-hole pairs, in (2.4) would,
in fact, describe the Stark effect of hydrogen-like
atoms and a discussion of this is given in Sec. 4. We shall
now consider the interband transitions in the absence of
any such binding between the pairs.

3. INTERBAND TRANSITIONS

where E is the sum of the electron and hole energies
measured from their respective band edges, and p the
reduced mass is defined by

1 1 1

From (2.1), (2.2), and (3.6), replacing the sum by an
integral in (2.1) and including a factor 2 for spin, we
finally have the absorption coefFicient in the presence
of a uniform field, for allowed transitions given by

where

~=re.~~2

(&1—&)/~E

IAi(t) I'dt, (3 8)

2e~C(P (2//, )3/2
R=

Aa)elm'I A j (3 9)

IAi(t)I'dt= —PIAi(P)I'+IAi'(P)I', (3.11)

where prime denotes differentiation with respect to the
argument. We remark here that n can also be expressed
in terms of Bessel functions of order 1/3.

It is instructive to study the limiting cases of n,
namely, (i) When &a) cv& and near the edge,

and Ace& is the energy of the gap. Since the Airy function
satisfies the differential equation

d' Ai(t)
=t Ai(t),

dt2

the last integral can be evaluated to give

C(r)=A Ai( —(),

The exact solution of (2.4) can be written as'

~i(A:~x+kyy)

(3 1)

~ ii/2
g8ri/2

I I
+(8r j I

Ai(t) I'dt

where

with

( e ) 2/FIeI '/'

(=
I
z+

I.IFj A'

Ai(p) = cos (-',u'+ pp) de.

(a) Allowed Transitions

e=F (A'-/2p) (A '+—A ').

The normalization factor A is given by

(2~)1/3

A=
m'/'(I eI F)'«A'/'

and the Airy function Ai(p) is defined by'

—+ R(/e —/ei) i/' as F —+ 0. (3.12)

(3.4)

8 / 4t&i —Gl)
n=R exp

8 ((al —/d 1) 3 5 8r j (3.13)

thus giving us an exponential-type tail in the long-
wavelength region. The trivial solution 0. —+ 0 as F~ 0
is satisfied by (3.13) and we remark here that (3.13) is
identical to that obtained by Franz; in fact, his integral
expression for n can, with change of variables, be
reduced to (3.8).

(b) Forbidden Transitions

Hence, in the absence of field, and /d)~i, we get the
familiar expression for n with the square root depend-
ence7 on the frequency (measured relative to the edge).

(3.3) (ii) When a&&«oi, again using the known properties of
Airy function, we obtain"

From the above expressions we find that

1 eF"' / e)AiI-
A8,

'

where
8r'= e'F'/2//, A. (3 7)

9 L D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon Press Inc. , New York, 1959), p. 170.

I
V',,C (0) I

can again be obtained from (3.1) and we
now need to consider two separate cases:

(i) The polarization vector qII F, in which case

V,C (0)= Ai'I —;(3.14)
2~A ~'/2(A8, )2 k A8,

' H. JeRreys and B. S. Jeffreys, Methods of Mathematical
Physics (Cambridge University Press, Cambridge, 1946), p. 508.
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and (ii) q J F (say q~~x), in which case

V,C (0)= ik C (0) . (3.15)

An identical calculation to that for the case of allowed
transitions yields from (2.1), (2.3), (3.14), and (3.15).

nfl
——SOP'~'

~

Ai'(t)
j
'Ct, (3.16)

where

woo

(MI—td)/8~

t+
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Ai(t) I'dt, (3.17)
sp )

2e'Ci2ti (2p)»'

~cnni' k t'i )
(3.18)

Again using the known properties of the Airy function
it can be easily verified that

the crystal. This and other more specific application of
the present results, will be considered by Dr. Redfield in
a forthcoming paper.

In the absence of the field the effect of Coulomb
binding (namely, exciton absorption), on the absorption
coeKcient, has been considered by Elliot. ' In the
presence of the field no exact expression, for the
absorption coeKcient of bound pairs, is available.
Approximate expressions for n in the two limiting cases
of large- and small-orbit excitons can, however, be
written.

(a) In the (near) continuum corresponding to ionized
pair states where the Coulomb interaction still affects
the motion, and is treated as a perturbation, we expect
the absorption coeKcient (when ~)a&i) to be modi-
fied by the appropriate Sommerfeld factor F, i.e.,
n. .;~, (ar,8p) =I'a(co,6). (For example, for allowed tran-
sitions'I' = irXe "/sinhirX, where X= LEr/A(~ —~i)j'"and
Ei= tie'/2A'»', » being the dielectric constant. )

(i) when o)(((oi,

4(
n&&, &

—+ Sez"' exp
3E 0, )

(3.19)

(b) For the case of tight binding, the field term may
be treated as a perturbation and the predominant effect
of the field on the discrete hydrogenic spectrum is to
give us the Stark shift.

and (ii) when id) ~i and F~ 0,

chill.

i ~ ~(~ ~1) (3.20)

thus giving us the familiar three-halves power law for
forbidden transitions. ~ In the gap, however, we again
have an exponential-type tail, given by (3.19), in the
presence of a uniform field. %e now proceed to consider
the effect of Coulomb binding on the absorption coeK-
cient, and a brief discussion of results.

4. DISCUSSION

It is interesting to note that both the allowed and
forbidden transitions give an exponential-type tail in
the long-wavelength region, this being an essential
feature of the tunneling mechanism. Another striking
observation is the dependence of the absorption
coe%cient on the field term 8p having the dimension
of frequency; in particular, at the edge (&u=coi) the
absorption coefIicient varies as Op'" for allowed transi-
tions and as Op'~' for forbidden transitions. The results
of Sec. 3 can be extended to the case of slowly varying
(in space) one-dimensional fields by integrating a over

The above approximation is evidently crude and a
more detailed study is necessary, especially near the
edge and in the long-wavelength region. Closely related
to this problem is the absorption into empty impurity
levels (in the gap) and was considered by Eagles' for
the field free case. In the presence of a uniform field, a
similar calculation indicates that Eagles' result is
modulated by a factor

P "' ~Ai(t) ~'dt,

with P=L(fur —hei+Er)/A8~j, where for absorption
into donor states, the reduced mass p becomes mo.
This modulation factor leads to the presence of an
exponential-type tail, for photon energies less than
(Aevi —Ei), again reflecting the features of tunneling.
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