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Spontaneous Breakdown of Octet Symmetry*
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A model of strong interactions with the octet symmetry of Gell-Mann and Ne'eman is considered, and a
spontaneous breakdown of this symmetry leading to nondegenerate baryon masses is sought. The Gell-Mann
mass formula is deduced for the physically relevant symmetry-breaking solutions.

INTRODUCTION

~CONSIDER the possibility that octet symmetry'~ exactly characterizes strong interactions —that
there are no medium-strong symmetry-breaking inter-
actions. Observed departures from octet symmetry are
attributed to the dynamic instability of fully symmetric
solutions of the quantum™ field theory. Baker and
Glashow' showed the possibility for such a spontaneous
symmetry breakdown in the symmetric Sakata model. '
They showed that solutions could exist which retain
only the reduced symmetries of isospin and hyper-
charge conservation. Applying related considerations
to a model with octet symmetry, we find that there may
be solutions with only these reduced symmetries, but
that a mass sum rule must be satisfied in the approxi-
mation where the mass splittings are small compared
to the cutoff. If the solutions are required to violate E.
symmetry (thus, to break the X— degeneracy), this
sum rule is the Gell-Mann mass formula.

I. MEANING OF THE MASS FORMULA

Gell-Mann's formula relates the masses of the eight
baryons,

g W+™Pg Sl ~w —pe+~ gSSg)

and the squared masses of the eight pseudoscalar
meso ns,

(1.2)

Both formulas are well satisfied —to 0.5% for the
baryons, and to 2/o in mass for the mesons. Okubo'
generalized Gell-Mann's formula for any irreducible
unitary multiplet, obtaining

m =cl+ bI'+c[T (T+1) ~F'j for fermio—ns, (1.3)

IJ,
' =n+P/T(T+1) 'Y'] for bosons.—- (1 4)

These relations are equivalent to the physical mass
Lagrangian (or, the inverse noninteracting renormalized
Green's function) having transformation properties
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under SU3 of the superposition of a unitary singlet and
a T=O, I'=0 member of a unitary octet. Because the
reduction of a direct product of an irreducible repre-
sentation of SU3 with its adjoint always contains a
singlet just once and an octet at most twice, it follows
that the masses within such a multiplet may be ex-
pressed )as in (1.3)7 in terms of no more than three
parameters. For some multiplets like the 10, the
decomposition yields but one octet and the mass
formula simplifies to5

Gell-Mann got his mass formula by introducing
simple symmetry-breaking interactions, e.g. ,

where g is a scalar unitary singlet meson, and 0 trans-
forms like the T=O, F'=0 member of a unitary octet
(i.e., like the x meson) and e is a small parameter.
Departures from baryon degeneracy to order e satisfy
(1.3), but the mass formula does not persist to order e'.

Here, we try to obtain split masses satisfying the
mass formula without breaking the symmetry of the
dynamics.

II. THE MODEL

%e discuss eight baryons with four-fermion inter-
actions invariant under SU3, the baryons behaving like
a unitary octet. Our considerations are otherwise
independent of the form of the interaction. We regard
mass as entirely dynamical in origin; therefore, we take
the bare baryon masses as zero. Solutions to the
quantum 6eld theory depend parametrically only upon
the square of the cutoff momentum A', and upon the
dimensionless couplings gA' (g standing for the various
symmetric four-fermion coupling strengths). In the
approximations of reference 2, the mass operator is a
constant, the masses being determined by coupled
algebraic equations

(2.1)

which results from putting the expression for the bare
mass equal to zero. The g,; are linear combinations of
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the various gA2 and the function h(2:) depends on how
the cutoff is introduced. We do not con6ne ourselves to
this approximate expression, for the exact solution to
the model is expected to yield an analogous result,

in which F;; depends upon all the baryon masses and is
not a linear function of gh.'. Invariance of the dynamics
under SU3 is bound up in the allowed structure of the
functions 5;;.

Only in a special basis of SU3 are the masses diagonal
(i.e., does the choice of fields correspond to particles of
definite mass). What is required in order to study the
group-theoretic properties of (2.2) is to re-express these
equations in a general basis, where they take the form
of 8&&8 matrix equations,

M47=+(, i $,7, 21(F2, (M/A)2)M01, (2.3)

in terms of a Hermitian mass matrix whose eigenvalues
are ns;. Let the 8)&8 matrix U;; represent an element
of SU3. Under this transformation,

M;; —+ M;7' ——+.0 V;pe, 0Vb;, (2.4)

and symmetry of the dynamics under SU3 requires that
M' also satisfy (2.3).

Expand (2.3) in powers of A. ' about M=O,

M;)=+01F;7., 01 (gA2)M01+0 (MMMM. —'). (2.5)

Invariance of (2.5) under (2.4) requires that Ii;;,07,

and higher matrices in the expansion, are imariaet
tensorial operators, i.e.,

III. THE MASS FORMULA

In the basis where M;; is diagonal, (2.5) becomes

777,=P; f;;(gh.2)772;+0(7722K '). (3.1)

Defi7M the generators both of hypercharge I', and of
electrical charge 2'2+227', so that they are diagonal in
this basis. It is only a matter of convention that no
breakdown of these conservation laws results from the
asymmetry of the masses. This is not so for the total
isospin, but we may look for solutions to (3.1) which
are at least approximately invariant under the isospin
subgroup, thus ignoring the possible existence of other
solutions in which isospin is grossly violated. There are
just four diagonal 8)&8 matrices giving masses com-
patible with isospin and hyper charge conservation
(accommodating the four isotopic submultiplets within
the unitary octet): the unit matrix, two matrices with
octet transformation properties, and one member of
the 27-piet. We denote these diagonal 8X8 matrices by
four-dimensional vectors

u= (Si)S2&S2)S4), (3.2)

whose entries refer, respectively, to E, A, Z, and, and
the isotopic multiplicities are implicit so that the norm
is dined by

~
u

~

'= 2si'+s2'+3s2'+2s4' (3.3)

degenerate eigenmatrices of F. By group theory alone,
we cannot further determine these eigenmatrices, for
the result depends upon the detailed dynamics.

P47;01= Z V;.Vie~.0;.eV0 V.0'
abed

(2.6) To the unitary singlet corresponds the normalized
vector

for any transformation U of SV2. It may be shown
that F has the general form,

F—g (1)P (1)+),(10)P (10)+y (10)P (10)+y (27)P (27)

+X( )P(D)+X( )P(0')+7)N+7&'Nt, (2.7)

where the eight parameters X and g are real functions
of gA2, and the P( & are projection operators for the
various irreducible families of 8)(8 matrices. P'D&

projects onto the completely symmetric 8&, while P&~)

projects onto the completely antisymmetric 8p. Because
the two eights are equivalent, the operator N mapping
Sn onto corresponding members of 80 (and also its
adjoint Nt, mapping Sz onto 8)&) also appears.

All members of the 27 are, thus, degenerate eigen-
matrices of F with eigenvalue ) "'&, and analogously for
the members of the 10, the 10, and the singlet. Only if
E symmetry, as well as unitary symmetry, characterizes
the dynamics is the situation for the eights so simple.
Then, 77=7)'=0, and the Sn (80) are eigenmatrices of F
belonging to X( )P.(")). In general, the supermatrix
referring to the two eights may be triangularized, and
the existence is assured of at least one family of eight
matrices, irreducible under SUB, whose members are

u "&=8—'"(1,1,1,1), (3.4)

and to the T=O, I'=0 member of the 27-piet corre-
sponds

u("&= (3/40)'"(1) —3) —1/3, 1). (3.5)

The remaining two-dimensional subspace normal to
u&') and u(2') has octet transformation properties.

From (3.1), with the neglect of nonlinear terms in
masses, it follows that m; must be an eigenvector of

f,; belonging to eigenvalue one. This requirement de-
termines the coupling strength g. Barring an accidental
degeneracy between X(" and either A(') or ) &'", the only
physically admissible solution in this approximation is
m u&'), corresponding to complete degeneracy, for the
other eigenvectors of f,; have negative entries. Only
when nonlinearities are included do we obtain an
equation determining the value of the degenerate mass.
We conclude that to order (772/A)2 the only meaningful
solutions to (3.1) are completely degenerage.

A more satisfactory result is obtained from the expan-
sion of (2.2) about the mean baryon mass m. We find

m+8, =h(gh. 2, (m/A)2)m+g; f,,(gcV, (m/A) 2)f');

+0(mba. ') (3,6)
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where tn=m; —S,=s.(2m~+ms+3ms+2m4), and 5 is
normal to u&'& with the norm (3.3). The discussion of
Sec. II applies equally well to f;;, so that we conclude
from the linearized approximation to (3.6) that

I (g~', (m/X)') =1, (3.7)

and that 5 must be an eigenvector of f;& normal to u&'&

belonging to eigenvalue one. These two requirements
determine the mean mass m and the coupling strength g.
There are three possibilities:

(i) 8=0 This gives the fully symmetric and sup-
posedly unstable solution to (2.2).

(ii) 5 u&sr& For this type of solution, E and remain
degenerate.

(iii) 5 u&'r&=0 In this case, chas octet transformation
properties. Comparison with (3.3) and (3.5) gives the
Gell-Mann mass rule.

This approximation Lto all orders in (m/A)', and
linear in Sj does not determine the magnitude of 5, but
from our earlier discussion we know that

in the model we have considered, possibly along the
lines discussed by. Bjorken. '

We also remark on the derivation of the mass rule for
the masses of mesons p, or for the masses of multiplets
of resonances m*. Such derivative phenomena should
satisfy inhomogeeeols equations of the form

m;*=Q; F;;*m;*+ps P;&,'ms, (3.9)

pp=A'X++; 3e@p&s+Q; &&,;mfs, (3.10)

and an analysis similar to that of (2.2) shows that m;*
and p satisfy analogous mass formulas. ~

It must be emphasized that our approach depends
hardly at all upon the use of a field-theoretic model.
The starting point, Eq. (2.2), could equally well have
arisen from reasoning akin to that of Zachariasen and
Zemach, s wherein the eight nucleon masses (through
their symmetric interactions) are required to support
themselves self-consistently. In this case, no cuto6
appears in the bootstrap equations analogous to
Eq. (2.2).

o/in= O(rn/A. )'. (3.8)
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