
PH VSI CAL REV'IEW VOLUM E 130, N UM 8ER 5 1 JUNE 1963

Effects of the q Meson on Nucleon Form Factors*

J. S. BALL AND D. Y. WONG

Urunersity of California at Sam Diego, Ia Jolla, Cal fornia
(Received 31 January 1963)

The isovector charge and anomalous magnetic moment form factors of the nucleon are calculated assuming
that the low-energy part of the spectral function is determined by the two-pion intermediate state and the
high-energy part of the spectral function can be represented by a subtraction constant. The results are
compared with experimental analysis in the form of a pole plus a subtraction constant for each form factor.
The spectral function is given in terms of the pion form factor (2x ~ y) and the iVg ~ 2s. amplitudes.
The phase of 2~ —+ 7 as well as SN ~ 2'- are determined in terms of ~m- p-wave phase shift which is adjusted
to 6t the observed p-resonance with a mass of 760 MeV and a full width of ~130 MeV. In the calculation
of the $$~ 2s. amplitudes, the exchange of a nucleon and a (3-3) resonance are included as Regge poles.
Two parameters are introduced in the Regge pole description. These parameters are adjusted to Qt two
constants a1 and a2 obtained from the experimental analysis of the form factors. The effective mass of
the two-pion state which results from the present calculation is approximately 600 to 650 MeV (well below
the p mass), in good agreement with the experimental determination.

I. INTRODUCTION

~ XpFR&MENTS determining the isovector nucleon
~ electromagnetic form factors have stimulated

much theoretical work. ' In particular, the large value of
the electromagnetic radius determined in these experi-
ments led Frazer and Fulco' to conjecture that the
exchange of a pion-pion p-wave resonance was the most
important mechanism in producing the nucleon struc-
ture. They predicted that the pion-pion resonance would
have t, the total energy squared, in the range from 10
to 16. (We employ units in which f'r =c=p = 1 through-
out this paper. ) Subsequent work by Bowcock, Cotting-
ham, and t,uric shifted this value to the neighborhood
of 20.' Both of these calculations had some ambiguities,
particularly in their treatment of the amplitude
EX—+ mm which is needed to obtain the imaginary part
of the form factors.

The subsequent discovery of a pion-pion resonance
at 3= 29 seems to be a good con6rmation of the theoret-
ical prediction, 4 but it leaves one important question
unanswered; namely, does this resonance with a higher
mass produce a nucleon form factor consistent with
experiment as was originally conjectured by FFP It
is this question which this paper discusses. The fact
that the pion-pion scattering amplitude is fairly well-

known in the neighborhood of the resonance gives us an
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important advantage over FF; namely, that no arbi-
trary parameters need be introduced to describe the
pion form factor in this region. In the present work, we
introduce two parameters to account for the uncertainty
in the EX~ ~x amplitudes. It is shown that these two
parameters can be adjusted to 6t the experimental
isovector form factors.

The experimental situation at this time is that the
data can be represented by the following formulas:

G, v 183 1—gg

where G1" is the charge form factor and G2" is the
anomalous magnetic moment form factor. De Vries,
Hofstadter, and Herman have given the following
values to the parameters: a1—0.92, u2=1.15, 31——(2—18.'
The pole term in Eq. (1.1) is attributed as the contribu-
tion from the pion-pion resonance while the constant
term can be considered to be the contributions from
higher mass intermediate states. It is, then, the pole
terms in Eq. (1.1) with which the calculated pion-pion
contribution to the form factors should agree.

Our procedure is as follows: In the next section we
formulate the calculation of the EX—+ xm amplitude in
terms of the x-vr scattering amplitude and the most
important states in low-energy pion-nucleon scattering;
namely, the single nucleon pole and the "3-3"resonance.
A cutoff procedure is introduced which is consistent
with the "Regge" behavior of the particle and resonance
states. The "Regge" behavior for each of these states is
controlled by a single parameter. In the following
section we discuss several diferent approximations to
the pion-pion scattering amplitude al1. of which fit the
experimeritaHy observed resonance width and energy.

SC. de Vries, R. Hofstadter, and R. Herman, Phys. Rev
Letters 8, 381 (1962}.
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In Sec. IV, the form factors are calculated and the
parameters of the cutoff are adjusted to fit a& and a2. The
resulting form factors are then shown to have an effec-
tive mass (tr and ts) substantially smaller than the mass
of the p-resonance, consistent with the fit to experi-
mental data of the type given in Eq. (1.1).These results
are insensitive to the details of different m-x amplitudes
employed.

FIG. 1. D lagl RIllS
representing the ex-
change of a nucleon
and an excited nu-
cleon (3-3 resonance).

1 "dt' gr'(t') 1 "dt' gs'(t')
Gr)'=—,Gsp =— . (2 1)

7l 4 X' 4

The spectral functions g, t' are given by'

g,'= eq't '"F—*(t)i', (t) i=1, 2, (2.2)

where the I', 's are the two 1+1 odd-parity scattering
amplitudes for ÃE —& ~x defined by FF, F is the pion
form factor, and q= (t/4 1)')' is th—e pion momentum.
The fact that F is peaked in the neighborhood of the
pion-pion resonance means that any attempt to calcu-
late the nucleon form factors must include an approxi-
mation for the XX~~~ amplitudes which is reliable
in the region of the pion-pion resonance.

The unitarity condition on the EX—+ xw amplitudes
requires F; to have the phase of ~-m scattering in the
region 4(t(16; we will assume that the effects of
inelastic scattering are small so that this phase condition
will continue to be approximately valid at higher
energies. In addition to the right-hand singularities
given by the unitary conditions, the functions F, will

have left-hand cuts which are related to the physical
singularities of pion-nucleon scattering. If we define F,~
to be the result obtained by carrying out the integration
over the left-hand cuts of F;, we can write the following
solutions for the F's which will satisfy the appropriate
phase condition for t&4:

dr N(r)r; (r)(t' —4)'"
, (2.3)

where E/D is the following function of the vr-s. p-wave
phase shift 8:

1/2

sinb e'~ . (2.4)

The function 1/D has the phase of pion-pion scattering
while E is regular for t)4. For t(4, 1/D is regular.
Using these facts and expressing the integral in Eq. (2.3)
as a principal value integral plus an imaginary part it

II. THE NN ~ em AMPLITUDE

The relation between the XX—& xw amplitude and
the nucleon electromagnetic structure can be seen from
the following spectral representations which give the
two-pion contribution to the isovector nucleon form
factors:

is easily seen that the F's have the phase 6 for t&4.
The left-hand singularities are obviously correct as D
is regular for t(4 and the singularities of the F~'s are
identical to those of the F's by definition.

In principle, the discontinuities across the left-hand
singularities can be calculated from the pion-nucleon
scattering amplitudes by using the crossing relations.
In practice, the difficulty in the calculation of these
discontinuities is that, while the energy variable s is in
the physical region for m

—S scattering, t is outside of
its physical region; hence, experimental information on
m —X scattering cannot be used directly. However, as
long as the polynomial expansion for the x—X scatter-
ing amplitudes converges, this expansion may be used
to continue the x —E amplitudes to the desired values
of t. FF have shown that this procedure allows the
calculation of the discontinuities for 3& —26 provided
the complete partial wave expansion were known. The
fact that low-energy pion-nucleon scattering is domi-
nated by the 3-3 resonance means that the nearby
portion of the left-hand cut has discontinuities approxi-
mately given in terms of the 3-3 amplitude in addition
to the nucleon pole contribution. It is the uncertainty
about the rest of the left-hand singularities that makes
the calculation of F~ ambiguous in the region t&4.
However, we still expect the nucleon pole and the 3-3
amplitude to be the dominant terms in the low-t region.
For large values of t, the nucleon and the 3-3 resonance
contributions may still dominate the F~ amplitude
provided they are treated as Regge poles rather than
the usual poles in fixed angular momentum amplitudes
for mX scattering. ' Due to the lack of detailed knowl-
edge of the behavior of Regge poles in mÃ scattering,
we introduce two parameters in modifying the nucleon
pole and the 3-3 resonance term to fit the asymptotic
behavior given by the Regge pole hypothesis. First, we
calculate the two pole terms shown in Fig. 1, treating
the i7* as a single particle with mass ass and spin 3/2
(If the I"s are calculated from these terms, the same
result is obtained as would be obtained by first calcu-
lating the left-hand discontinuity including only the
nucleon pole and the 3-3 state but assuming that the
polynomial expansion is valid for all t and then inte-
grating over the left-hand cut). Then we multiply the
nucleon term which is a pole at s=m' by the factor
exp[C~(s —nz') ln(t/4)j and the 3-3 term, a pole at

'For a discussion of Regge poles see, for example, G. F. Chew
and S. C. Frautschi, Phys. Rev. Letters 7, 394 {1961).
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FrG. 2. The effect of the "Regge" cutoff for the nucleon pole
term F~ &+&. The solid curve is lP& ) for C~——0.001, while the
dashed curve is for C~=O.

s=mq32, by expr C~~(s —maP) ln(t/4)$. Here, s is the
energy variable for m —S scattering. The two param-
eters C~ and C» are positive as implied by the conver-
gent behavior of Regge poles. These exponential factors
become unity when evaluated at the appropriate pole
in the xE channel as well as at t =4 where the ordinary
pole terms are expected to give a good approximation
for F~. Having obtained the modified pole terms, we
carry out the partial-wave projection in the channel
XX-+mrs. . The resulting expressions for the F~'s are
as follows:

The quantities p and q are the center-of-mass momen-
tum for the nucleon and pion, respectively, in the
SN~ xm channel. The nucleon energy and center-of-
mass momentum at the 3-3 resonance are denoted by
833 and k33. Here, g„is the rationalized pion-nucleon
coupling constant

g,'/4n. = 14,

and y33 is the effective coupling constant for the 3-3
resonance, with a value of y33=0.06 which is obtained
from the width of the 3-3 resonance assuming the width
to be narrow.

It should be pointed out that the "Regge"-type
modification we have introduced has no effect on the
left-hand cut for t&0. For t&0, the discontinuity begins
to deviate slowly from that given by crossing and has
an oscillatory nature. For the present calculation, we
need not concern ourselves with the left-hand region
since we can evaluate F~ explicitly for t+4.

In Fig. 2 we show the eGect of this cutoff procedure
by comparing I'~ & ', the contribution to F& from the
nucleon pole, with C~=O and C~=0.001, a typical
value obtained by fitting the form factors. The cutoff
has very little eGect on F2~&~' until t becomes much
larger than the resonance value. In Figs. 3 and 4,
I'~ 2 &33', the g* contribution to F~,2, is shown for
C» ——0 and C»=0.01, a typical value for this parameter.

III. THE PION-PION SCATTERING AMPLITUDEg„+ IS
I' ~(t) =

12' p' (m' —s)
O~ (8—SL2)

X C
(p'+3m')P2(z) —p')—

2+33 + dS
+ {mpH(t)Pg(z) ',q--

Bp'q g (m38' —s)

t~ Csqc.a—mm )

XL(p'+3m')P (z)—p'jp (t)) —
~

4i

g 'eS +' dS
t)

t.' (—
1'2 (t) = — P2(z)—

S~p' g (m' —s) 4

.14

32—

dS

In our treatment of the pion-pion scattering ampli-
tude, we assume that the resonance is an elastic p-wave
resonance. The possibility that small inelastic effects
are present in this angular momentum state will not
alter our results substantially. Since two parameters are
determined experimentally (the position and width of
the resonance), ' we use a two-parameter phenomen-
ological x-~ solution, which is consistent with the
unitary and analyticity requirements. This solution is
obtained by solving the p-wave pion-pion N/D equa-(2.5

3pq g (mg32 —s)
—H(t)Pg(z)

.08

where

mq t |-88(—
F(t)P, (z) —,(2.6)

t
8(3,3)

)

.06

04-

H(t) = (m33 )(m&s +—m3)'+$( g+ma)(2mkga'+t),

p(t) = —(E33+m)'+~3 (2ks32+t),

and s is the following function of s

t
s=m'+1 —-+2pqz.
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Fxo. 3. The effect of the "Regge cutoB" for the 3-3 resonance
term F1 (~). The solid curve is F~ (~) for C33 —0.0I, while the
dashed curve is for C88=0.
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TABLE I. Values of aramparameters for three acceptable fits
to experimental form factors.

-02-

Parameters

A1
A2
81
V2

&ss

0.051
0
50000

~ ~ ~

0.00085
0.008

Solutions
II

0.072
0.032
5000
44
0.0012
0.011

0.204
0.175
200
25
0.00i.8
0.02
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Fro. 7'. The charge form factor. The dashed curve is our result

for solution I.The solid curve is the Qt to experiment (reference 5)
given by Eq. (1.1) with a& =0.92, I&= 18.

from the integrals in Eqs. (2.1) and (2.3) are substan-
tially different in each case. However, as we will see
below, the result for the form factor calculation has
little dependence on which x-x solution we use. In
Figs. 5 and 6 we show the eBect of f-channel unitarity
by comparing F, with DI';;i = 1, 2, which are obtained
from Eqs. (2.3) and (2.5).
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Fro. 8. The anomalous magnetic moment form factor. The solid
curve is our result for solution I.The dashed curves are two of the
solutions given by De Vries, Hofstadter, and Herman, (reference
5) the lower one being the solution with a2=1.15, tg ——18 while the
upper is the solution with @2=0.96, t2 ——15.

IV. THE CALCULATION OF THE FORM FACTORS

The calculation of I';~, F,, and form factors described
in Sec. II were performed with the aid of the CDC i604
computer of the University of California at San Diego.
For each pion-pion solution used the values of the
parameters C~ and Css were adjusted to fit Gr'(0) =-', are
and Gs&(0) =1.83as(e/2') as given in Eq. (1.1). The
resulting values of C~ and C33 for diGerent m-x solutions
are given in Table I. It was found that in each case it
was possible to find reasonable values of C~ and C33
(small and positive) which produced the required values
for Gt&(0) and Gsp(0). Furthermore, the form factors
produced by each of the x-x solutions had a slope corre-
sponding to t» and t2 in the neighborhood of 20, a
substantial shift from the resonance position of 29 used
in the calculation. In Fig. 7 and Fig. 8, the calculated
form factors are plotted together with the analytic 6ts
to the form factors given in Eq. (1.1). To make this
comparison, we use the one-subtraction formulas for
the total isovector form factors:

G "(I)= I:le—G '(o)+G '(t)7,
Gs'(I) =

I
1 g3(el2~) —Gs~(o)+Gs~(t)3

V. CONCLUSION

In the present work, there are two factors which
contribute to the shifting of the effective p mass in the
form factor calculation. First, the pion form factor has
a peak at 25 while the x-x cross section is peaked
at 29. This is due to the broad width of the p resonance.
Second, the smooth functions Dl', give a much heavier
weight to the low4 part of the spectral function than
that of the high-t spectral function. This gives an addi-
tional shift from 25 to 20. We believe that these are
general features of the two pion contribution to the
form factors. The shifting of the effective p mass will
not be altered substantially in a more sophisticated
treatment of the x-x amplitude and the EX~m-
amplitudes.

At the level of our present calculation, we have em-

ployed two phenomenological parameters in the treat-
ment of the EX—+ xw amplitudes and determined these
parameters to 6t the form factors. We believe that the
EX—+am amplitudes so obtained can be used in
connection with other problems provided they are used
only in the t&4 region; for example, in the calculation
of left-hand discontinuities for m-E and EX scattering. '
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