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State-Dependent Mass Corrections to Hyperfine Structure in Hydrogenic Atoms'
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The n m/M corrections to the ratio of the hyper6ne structure of the 1s and 2s states of hydrogenic atoms
have been evaluated using a Foldy-Wouthuysen reduction of the Dirac Hamiltonian for the electron plus
additional nuclear motion terms. The covariant two-fermion Bethe-Salpeter equation gives the same result,
as does an approximately covariant calculation based on the Breit equation, a simple nuclear model, and
the correspondence principle. In units of 10 s, the a~m/M corrections to R= (8v2jv1) —1 total —0.115,
—0.029, and —0.101 for H, D, and T, respectively. The corresponding theoretical R values are 34.45+0.02,
34.53~0.02, and 34.46~0.02. These agree with the available experimental values which are 34.495&0.060
and 34.2+0.6 for H and D, respectively.

I. INTRODUCTION

E have calculated the n'm/M corrections to the
~

~

ratio of the hyperfine structure (hfs) of the 1s
and 2s states in hydrogenic atoms, where 0. is the fine
structure constant, and m/M is the electron to proton
mass ratio. The results are in agreement with the
experimental values'' for hydrogen and deuterium,
which are known to accuracies of several parts in 10
and 108, respectively.

It shouM be noted that the theoretical ground-state
hfs in hydrogen' is apparently not in agreement with the
measured frequency. This calculation depends upon the
structure of the proton and is very laborious for terms
smaller than a' (hfs) and n(m/M) (hfs). Recent calcu-
lations' of the n'(inn)' and n'(inn) parts of the a'
correction have increased this discrepancy.

The ratio is much simpler to evaluate, and is less
sensitive to nuclear structure effects. The hfs for an ns
state in a hydrogenic atom can be expressed in the form

E.=E„P0)T/(m+Olt)]'L1+ (n/2z. )+an'

+bn (m/Oit)+ c„(Zn)'+ d„n (Za)'
+e n'(m/M)+ ]. (1.1)

Here E„~is the Fermi energy'; in natural units h= c= 1,

E„~=2zng(n I)(3mM)-'~N„(0) ~s, (1.2)

where N„(0) is the Schrodinger wave function evaluated
at the nucleus, gI is the nuclear magnetic moment in
nuclear magnetons, and e is the electron spin operator.

*Based, in part, on work performed under the auspices of the
U. S. Atomic Energy Commission and in part on research per-
formed under a National Science Foundation Predoctoral Fellow-
ship and submitted in a Ph.D. dissertation to Columbia University
in May, 1961.

'L. W. Anderson, F. M. Pipkin, and J. C. Baird, Phys. Rev.
120, 1279 (1960).This paper gives v1 {D).F. M. Pipkin and R. H.
Lambert, Phys. Rev. 127, 787 (1962); this gives V1(H) and v1(T).

~ J.Gruenebaum and P. Kusch, Columbia Radiation Laboratory
Quarterly Report, September 15, 1960 (unpublished}; their result
is v~(H) =177 556.842&0.010 kc/sec. H. A. Reich, J. W. Heberle,
and P. Kusch, Phys. Rev. 104, 1585 (1956); this gives v&(D).IC. K. Iddings and P. M. Platzman, Phys. Rev. 113, 192
{1959);115, 919 (1959}.

s D. E. Zwanziger Buil. Am. Phys. Sac. 6, 514 (1961); A. J.
Layzer, ibid 6, 514 1961). .

s E. Fermi, Z. Physik 60, 320 (1930).

1+R=8rs(hfs)/vr(hfs).

Thus, since ~ur(0)~'= 8(us(0)~',

(1 3)

R= (8ps —pr)/vr
= L(cs—cr) (Zn)'+ (ds dr)n(—Zn)'

+ (es—er)ns(m/M)]L1+n/2rr+ .] '. (1.4)

Therefore, only the digerersces of the n' and of the
n'm/M coefiicients must be calculated to obtain R to
these orders. This greatly reduces the number of terms
which contribute, and simplifies those which do. The
o.' part has been evaluated"" and is in good agreement
with the experimental data. Also, a portion of the
n'm/M term has been computed by a nonrelativistic
method '4

The actual calculation of the n'm/M contributions
to R is discussed in Sec. II. It is based on a Foldy-
Wouthuysen" reduction of the usual Dirac Hamiltonian
for the electron plus additional terms which account
for the motion of the nucleus. A comparison with the
experimental values is also given here.

~ W. A. Newcomb and E. E. Salpeter, Phys. Rev. 97, 1146
(1955). Our notation in Sec. III will follow that of this paper as
closely as possible.

~ W. A. Newcomb, thesis, Cornell University, (unpublished).
8 N. M. Kroll and F. Pollock, Phys. Rev. S6, 876 (1952).' R. Arnowitt, Phys. Rev. 92, 1002 (1953).
'0 A. C. Zemach, Phys. Rev. 104, 1721 (1956);D. A. Greenberg

and H. M. Foley, i'. 120, 1684 {1960).See the latter paper for
earlier references.

» G. Breit, Phys. Rev. 35, 1447 (1930).
~ M. H. Mittleman, Phys. Rev. 107, 1170 {1957)."D.E. Zwanziger, Phys. Rev. 121, 1128 {1961).
'4 C. Schwartz, Ann. Phys. {N.Y.) 2, 156 (1959)."L.L. Foldy and S. A. Wouthuysen, Phys. Rev. 7S, 29 {1950).

The second factor in Eq. (1.1) is the nonrelativistic
reduced mass correction due to motion of the nucleus;
it is rigorously correct to lowest order in n. Including
it as a multiplicative rather than an additive factor
leads to the conventional defiatio of b."The o. and
n' radiative corrections' and the nm/Ãt mass"'
(nucleon motion) and structure' " corrections are
proportional to ~N„(0) ~' or "state independent. " The
Breit corrections" of order (Za)' arise from the use of
Dirac wave functions; cr ——3/2 and cs——17/8.

The residual R is defined by
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In Sec. 1II we show that the covariant two-fermion
equation of motion, the Bethe-Salpeter equation, ""
reduces to the modified Dirac equation of Sec. II. We
treat the proton as a point Fermi-Dirac particle with
an anomalous Pauli moment. Momentum integrals
enter which contain two Pauli interactions and con-
sequently diverge logarithmically, requiring either an
arbitrary cuto8 or a proton form factor for their
evaluation. However, since the high momentum
portions of these integrals are state independent, these
structure e6ects do not contribute to R to the order of
interest. [Structure effects yield R contributions of
order (r') .I"(0)/I (0)=d'/ao'= (10-"/10-')'= 10—"
for hydrogen. ]

The Coulomb gauge is a convenient choice in this
calculation. We use

~ a~ o/p o ~ a~ o(1/$2+~ 2. ~ o/p 2) (1 5)

where a& it=—0. Equation (1.5) is not a rigorous identity,
but it is correct for the relevant matrix elements. It
separates the instantaneous Coulomb interaction from
the transverse part, resulting in a tractable zeroth
order problem plus perturbations. '"

Finally, in Sec. IV we use an approximately co-
variant calculation principle based on the Breit equa-
tion, a simple nuclear model, and the correspondence
principle to obtain the modi6ed Dirac equation for an
arbitrary hydrogenic atom.

II. MODIFIED DIRAC EQUATION

In this section we will begin by reviewing the Foldy-
Wouthuysen" reduction of the Dirac equation. We will
then include additional terms needed to account for
the motion of the nucleus and proceed to calculate R,
reserving for the following sections the problem of
justifying the various assumptions made.

The motion of an electron in an external 6eld is
given by the Dirac Hamiltonian

a=Pm+a (y+eA) —eoo. (2.1)

The "odd" term 8, which here is e (y+eA), may be
eliminated to arbitrary order in m ' by successive
Foldy-Wouthuysen transformations. Each is of the
form

K-+ e'eKe 'e=3'.+o[S,K7
+ (o'/2')[5', [5',~77+

S= (—oP/2m)n,

and reduces the order of the remaining odd term by
m '. To order m ', X becomes

3.'=Pm —e&+(P/2m)[e. (y+eA)7'
—(oe/8m')[e E e (y+eA)7

—(P/8mo) [e (y+ eA)74. (2.2)
"E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951);

M. Gell-Mann and F. Low, ibid. 84, 350 (1951)."E.E. Salpeter, Phys. Rev. 87, 328 (1952}.

For an electron bound to a fLxed nucleus with charge
Ze, spin I, and magnetic moment p, the potentials are

where
o)o=Ze/r, Ao= —yXVr ',

y= g(e/2M)I.

(2.3a)

(2.3b)

For positive energy states, Eq. (2.2) now becomes

p' — e p'- -e
Xo = m+ ego + Q'Eo — + O''Ho

2m Sm' Sm' 2m

e e
+ ~ (EoXy—yXEo)+—y Ao

Sm' m

e p2
(p'y Ao+y Aop&) + —a — Ho

4m' 2m 4m'

p2 e2—Ho +—EoXAo + A'+ . +. - .
4m' 2m 2m

—=3C")+K")+ +Bc")+ . (2.4)

Here we have dropped terms involving [A;,A,7.'o
We will treat all terms but the Schrodinger approxi-

mation, X&", as perturbations. Thus X(') gives rela-
tivistic corrections smaller by o.', and X(2) gives the
lowest order hfs for s states:

(~"')=(/2 )('vx(-yxv. -))
= (e/2m)(e ~1I).~r '

(g y—q—&r—&)

1
=(/2 )((—2/&) s&-

= (4 e/3m)(~ ~) I ~(0) I'. (2.5)

X"' is the spin-orbit interaction plus the convection
current coupling to the magnetic held; it is proportional
to e.L and vanishes for s states.

Breit's n' corrections to E arise in this treatment
from X'4) in 6rst order perturbation theory, and from
X('& together with X(') in second order. This will be
shown explicitly below.

Corrections of order a'm/M to E arise from terms
quadratic in A, i.e., X('& in second-order perturbation
theory. [K'o) gives no s state hfs. 7 They also arise from
the e6ects of nuclear motion, which are omitted in Xo
and Xo'. For a nucleus of mass 5R, terms containing
both o and p must be included to order 0R—', and other
terms to order 5K—'. Thus this motion is adequately

'8 M. M. Sternheim, Phys. Rev. 128, 676 (1962); see also Sec.
IIIC of the present paper.
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described by the Hamiltonian

ep, Ze Ze
hE„")= n — e Ho 8'„+

2nls r 4' r'Ze rr
bA= — y+——y

25Kr r r
(2.6b)

r e -p Ze & y-
X pX—+ ~Xy; y — IX—

r' 4r)oo 5 29K 1 OK;Ze y 1
by= —p — I

25K 5K r
(2.6c)

1 Ze'ip, r 1-
X~~&— ~ yX pX —,— e

r 4@25K r' rIn (2.6), y and r are now the relative momentum and

position. bA is the vector potential of a moving charge
Ze. by is the scalar potential of a moving magnetic
dipole; it will be discussed later in more detail.

Applying the Foldy-%outhuysen procedure to Eq.
(2.6) with A= Ao+bA, &&&= o&o+by, we replace Eq. (2.2)
by

—gR (oo)+~ &o»+QE (oo)+QE (Bd) (2 IO)

Equa, tions (2.9) and (2.10) contain integrals which

diverge at r=0, e.g., (r ). Since

N)(r) =X) exp( —pr),

»(r) =Xo(1—Pr/2) exp( —Pr/2),
3Cgg' =X'+5K+

25K where
(2.11)V = (Po/&o'&r))&o, P=Zap,

ie
[ XA A X p] (2 7) it follows that

16m25K 8I» I'—I» I'-(«»t)rola)*lo fo««P.

With the Schr(idinger approximation, Po~oo)=2p(W„
+Ze'/r) ) I),

aC~=Se,+m+(p/2m)+ea bA —Z&r (2.6a)

With P=+1,

e 'Ee e
X'=Xo'+—p bA — [&r bE, (r y] ebo&+ —[&r bH],

m SeP 2'

Thus, if we cut o6 the integrals at ro, evaluate R, and
then let ro go to zero, 6nite results are obtained.

To illustrate the procedure, we will compute R(3~).

Averaging over angles gives

and, with p, '=vs '+5K '
Now

AE„&'»=[Ze'(o y)/6m'](&o~r '~n).

p2 p4
&sg'= ~+5K+—ego + V Eo-

2y Sm2 Sm'

(1s~r~~1s)= (Po/or) r 'exp( 2Pr)d—rdQ

=4P'(1 2Pro)/Pro+8P' l—nPro+8P' ln2y,
e — e 2

+—pbA+ &rHo+ &r. — Ho
2m 2' 4' where two partial integrations have been performed,

and

p2 1—H, + E XA + (bEXp—pXbE)
4re2 2' 4m

lny=— in@ exp( —x)dx.

[(pXAo —AoXp), p']
Sm5K

y is the Euler constant; its value is not needed, since
it cancels out in the 6nal results. Similarly,

8(2s
~
r '~ 2s) =4P'(1 2Pro)/Pro—+8P' lnPro+5P'+8»v.

(2.8) Thus,

ctly
R& =[8~Zo&» —~Z ']/[(4e/3~)(a. y)P']

= [(5/8) —1n2]Z'aors/r)o

rest = [(5/8) —ln2]Z'ao(1 —r&o/9R).

=m("+. +&m(".

Here we have omitted the terms which vanish exa
for s state, e.g., 3'.&o) and (e/2r&o)&r bH, as well as t
not contributing to the hfs to the order of inte
e.g. , BC(5) and —eby. Note that BC~(o) is the Schrodinger
approximation for a particle with reduced mass p, .

The state-dependent hfs terms are contained in

(2.12b)

In the same fashion we 6nd

~R.=&~ I
&saa)

I
I)+2'' &~12&~'"+&alt"'

I
o)

X&i~Ps&t'"~r))(W.—W;) '
—gg(3) +gg(1,2)+gg(2, 2)

R&'& = —(3/8) Z'ao (1—2r)o/OR),

R&"&=[—(7/32)+ (1/2) ln2]
X [1—Zilch'/gOR]Z'aor)o/5K, (2.12c)

(2.9) R&o+ = [(5/8) —ln2]Z'aor)o/5R. (2.12d)
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To evaluate the second-order perturbation theory
terms, we note that with F„dehned by' "

[F„,Ks&b"'][ n)=OCs&&"'[ n) —(n[3Csa'"[ n)[ n), (2.13)

it follows that

Q, ' [b)(i[OCs«&" [n)(W. W—,)-"
=F [n)—(n[F [n)[n). (2.14a)

This state is a mixture of s and d wave functions. The
s-state part is given by" '

F, ,= (2'/3m)(&r. p)[r
—'+2P lnPr+2P'r],

Fb, (2'/——3m)( &rp)[r '+2P lnPr+ (P2r/2) (2.14b)
+ (7P/2) (1—Pr/2)-'].

By Eqs. (2.8)

Hs«&" = (xZe'/2m') P (r)—(p'/8m')
—(Ze'/2 mOit) p r '(p+—r-'rr p)=—OCs«"'+OCsx""+OCsx"'. (2.»)

Using Eqs. (2.8) and (2.14), we 6nd

R""= [(3/2) —ln2]Z'&x'(1 —2m/5R), (2.16a)

R&""=[—(9/8)+2 ln2]Z'a'(1 —3m/OR), (2.16b)

R&"'&=[—(9/4)+4 ln2]Z'n' /mOK . (2.16c)

where the uncertainty is due to the error in the 0.' term
and to the uncalculated n4 term.

The experimental values are"

R(H, exp) = (34.495&0.060)X 10-',

R (D, exp) = (34.2&0.6)X 10 ',

which are in good agreement with (2.19).

IIL BETHE-SALPETER EQUATION

Ke will now demonstrate that a covariant treatment
of the two-body hydrogen atom problem leads to
exactly the results found for E with the modified Dirac
equation.

A. Instantaneous Interaction Terms

The Bethe-Salpeter equation for the hydrogen atom
is"

F(p.)4(p.)=(—2~b) ' G(pwp')f(p')d'p', (31)

where

F(p,) =F(p, e) = [n.R—H. (p)+e]
X[nbE—Hb(y) —e] (3 2)

and

H. (y) =n'p+p4m, Hb(y) = a'p+—p'M, (3.3a)

g, =m/(m+M), rlb=M/(m+M) (3.3b. )

The term AE(~' involves both the s and d parts of
Eq. (2.14a). Schwartz'4 has found

R"'&=[—(145/128)+ s ln2]gZo'm/M. (2.17)
&p(p„) is a 16-component spinor function of the

relative momentum p„, and E is the corresponding
eigenvalue. The interaction operator 6 is an expansion
in powers of e which may be split into a large instan-
taneous Coulomb interaction,

Adding Eqs. (2.12), (2.16), and (2.17), we obtain
the Breit correction (5/8)Z'n' plus

R (n'm/M) = —(9/8)Z'n'm/OK

+[—(7/32)+ (1/2) ln2]
X[1—(ZM/gOR)]Z' 'm/OR
—[(145/128) —s ln2]gZn'm/M. (2.18)

Gc(p —y') = —(e'/2~')
I y —y'I-', (3 4)

For the hydrogen isotopes, this gives"

R(n'm/M, H) = —0.115X10 ',
R(n'm/M, D)= —0.029X 10 ',
R(ibm/M T) = —0.101X10 '.

(2 19) Ã —H. (y)—Hb(y)]4 (y)

=[A (p)N'(p)-~'(p)~'(p)]

plus small perturbations.
If G is approximated by Go, Eq. (3.1) may be

integrated over e, giving'

The complete theoretical expression for E is"

R(th) = (5/8) '+[3.40&0.02—(5/16 )Q'
+R ( ' o/Mm)+R(a4)+ where

X Go(y —y')4 (y')d'p', (3.5)

where the uncertainty in the o.' term arises from a
numerical integration. Thus we have 6nally

4(y) = lf (p,)«, (3.6)

R(H, theory)= (34.45&0.02)X10 '
R(D, theory) = (34.53&0.02) X10 ',
R(T, theory) = (34.46&0.02) X10 '

'9 R. M. Sternheimer, Phys. Rev. 84, 244 (1951);H. M. Foley,
R. M. Sternheimer, and D. Tycko, ibid. 93, 734 (1954).~ J. W. DuMond and E. R. Cohen, Phys. Rev. Letters 1, 291
{1958);in Handbuch der I'hysik, edited by S. Fliigge {Springer-
Verlag, Berlin, 1957), Vol. 35.

A+ (p) = [R.~H. (p)](2&.) ',

&.=E.(y) = (y'+m')"',
(3.7)

(3.8)

&p(p )=[—2 fF(y )] ' Gc(y —P')tt'(P')&Pp' (39)

with similar de6nitions for A.~ and Eg. The corre-
sponding solution for &p(p„) is obtained from &| (y) with
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Let
4++(fi) =i1+ (fi)~+'(u)4 (u)

1'.(fo) =n'u/(E. +m), 1'o(p) =n'p/(Eo+M) (3 11)

Then it follows from the properties of the Dirac
operators that"'

(3.10)

1
4++(u) = ~4++++(u), (3 12)

P (lp) —1' (p)&

[~+'(u)4++(u')]'
= [E ( )+M+ 'pl' (p')]4+++(lp')/2E (P) (3 13)

where the "large-large" wave function f++++(p) is a
four-component spinor. Also,

Fn. 2. One-Dirac-
photon diagrams G~,
Gcai, Gca~, Gccai,
Gccus. The wavy
lines represent Dirac
photons. (b)

(4)

k

Pt

Pt

pt
p"t
p t

(c)

fe)

tp
t P

t P

p'K

t -p1K

p

where the single + superscript refers to the large part
of the proton wave function.

Multiplying Eq. (3.5) by A+'A ' and by A A+'
shows that

0 (3.14)

X [E+M+" ff (p')&,:(n')
Xd'p'/2Eok', (3.15)

neglecting p on the right-hand side. Expanding in

[E M E. (p—/2M—)Q„—+=~ ( 8/2e)—
n'1 n'&~ 4+++(n')~'p'

X 1+

Let us compare this with the modiled Dirac equation
(2.6). For Ao=bA=O, Eq. (2.6) gives for the Dirac
wave function @ with this notation

(E H, p'/2M) 4= —e(go+—bop) 4. —(3.1I)

writing this in momentum space, multiplying by

pt

t P

i
P

/
Multiplying by A+ A+" gives, with k„=(,o&) =p„—p„,

—8)
(E—E.—Eo)4++'(1i)=W (li)

i1+ (y) and using (ge/2M)I= (1+ii') (e/2M)n', we find

[E E, (p'—/2M—)]@+——A+'( —e'/2m )

(1+2~~)n'un'& 4+(u)d'p'
X 1+ 3.

k2

neglecting qL and (e'/4Mo)p. Vr ' on the right-hand
side. Thus, if we neglect the proton's Pauli moment
pi& [which is omitted in Eq. (3.15)], we see that

4+++= 4+. (3.19)

Note, however, that p does not vanish; by Eq. (3.17),
a good approximation for @ is

4-(lp) = [E+E.—(p'/2M)] '~'(0) (—e'/2+)

&+(n')&'p'

Both instantaneous and time-dependent pertur-
bations are included in the full expansion for 6, the
interaction operator in Eq. (3.1). The instantaneous
perturbations include all irreducible Feynman diagrams
containing only Coulomb interactions. The largest of
these is Gcc, shorn in Fig. 1. It is easily proved that
these diagrams vanish unless there is a negative-energy
intermediate state. The leading energy terms are &e'es
and spin independent; the state-dependent hfs terms are
negligibly small.

The time-dependent perturbations will now be
considered.

Fro. 1. Instantaneous interaction diagrams Gc and Gcc.
~ ~ dG . The

soi ineon e el'd l' n the left denotes the electron which has corresponding
to p a momentum four-vector (p, «+g E), where q =m/(m
and E is the total energy of the atom. The solid line on the right
similarly denotes the proton. It has corresponding o —p a
momentum four-vector (—p, —«+g~), where q~=M/(m+M).
Dashed lines represent Coulomb interactions.

"'H. A. IBethe and E. E. Salpeter, in Hgndbuch der Physik,
edited by S. Flugge (Springer-Velag, Berlin, 1957), Vol. 35.

B. One-Dirac-Photon Terms

The one-Dirac-photon diagrams contribution to R
are shown in Fig. 2. ~a, AEca, and becca are of
order (hfs), n(hfs), and n'(hfs), respectively. Together
they give the hfs due to the proton's Dirac moment
along with the Breit and nonrelativistic reduced mass
corrections, as well as n(m/M) (hfs) and no(m/M) (hfs)
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terms. %'e note that

~&CDi= ~CD2= 2~~CD
and

~CCD j ~+CCD2 2~~CCD)

and that the several other diagrams containing two
Coulomb interactions and one Dirac photon do not
contribute to E.

The erst-order perturbation theory energy arising
from a small 6; is

4(p.)G'(p. ,p»")f(p')d'pd'p", (3 2o)

where P is expressed in terms of g by Eq. (2.9) and

|t(p,)= Gc(p —P')4*(p')d'p' L
—2ozE(p, e)3 ' (3 2&)

From Eqs. (3.5) and (3.9), we obtain a convenient
expression for f++.
4++(p.)=[ 2ozF++(—P,e)j '

X LE—E.(P)—E~(p) j4++(P) (3 22)

A similar expression for lt++ follows from Eqs. (3.5)
and (3.21).

To sufhcient accuracy, p may be replaced by p++ in
Eqs. (3.9) and (3.21). Using

4 =4+++4+ +4 ++4--
we may integrate Eq. (3.20) over the fourth components
of the momenta. Only terms conte, ining P++ or P++ or
both contribute to R to order zz'zzz/M;term's containing

are negligible.
Newcomb and Salpeter' have calculated explicitly

the cz(zzz/3f) (hfs) terms: AEn, AEcD, and various
terms treated in later sections give such contributions,
but not bEccD. They have found that all these terms
can be cast into the form

e' 2

4++'+*(p)I'(p, p', p")d++"(p")
2%

dzpdzp/dzpfl

X , (3.23)
%2k"

where k„'=p„"—p„'. Since p++++(P) diminishes rapidly
for p&)p„ to lowest order they take k=k'=p' for
p')&po. Thus to lowest order they find

+E,NS(k))p )
g2 2

4++++'(p)~'(O, k 0)4++++(p")
2x'

Xd'pd'kd'p"/k'

e' ' J;(O,k,O)d'k
(2zr)'d'++++*(0)

2% k'

X~-++(0), (3 24)

where Q++++(0) is the large-large wave function at
r=0. This result is state-independent and is &a(hfs)

in all cases of interest. The integrands of Eqs. (3.23)
and (3.24) differ in lowest order by terms of the form

(p korp" k)/k' times the integrand of Eq. (3.24).
These change sign under k —+ —h and therefore
integrate to zero for k)&po. Similarly, taking into
account p and/or p")&pa gives energy terms &a'(hfs)
which are also state-independent. Thus, the state-
dependent part of AE,Ns is negligible unless P, P', P"
are all po. Similarly, we can show that RecD is
negligible unless p, p', p", p'" are all po.

When put into the form (3.22), all the integrals
contribute to R only for low momentum values and
can be correspondingly simplified without aGecting R
to the required order. For convenience we may write
formal expressions for hE; which diverge. They are not
correct for evaluation of ~, but do yield R; correctly.
Thus, terms like Lzz'(r)/r]„o will appear in AE; but
cancel later in E;. Alternatively we could work only
with expressions for R„but this would be more
cumbersome.

We first consider BEn, using Eq. (3.22) and

Gn ———(e'/2m') «' «'/k„',
k '=aP —k'+zh.

(3.25)

k' —(Eg—Eg')'

jv jv
+

(2k) (k+E,+Ey' —E)(k—Eg+Eg')
E—E,'—Eb'

+
(2k) (k+E,'+Eg E) (k Eg'+E—g)—

X4++(p')
++a+gE ++5+gE ++a (3.26)

These terms arise from poles at co=Eb—Eb', +k, —k,
respectively.

For p and p' po, hED++a gives the nonrelativistic
hfs; it is the only term which must be evaluated with
wave functions containing the relativistic corrections.
Since AE++ contributes to R only for p and p' po,
(Eq Ez')/k' n'm'—/3P may be neglected. With Eq.
(3.12), we find

g2

gEn++a . dzpdzpI k
—2y +4(p)o a

2x'

Lo'I'~(p')+I'~(p')o'34+++(p')
2

d'pd'p' 4+++'(p)o:
2lr2

. (p+p'+zoX k) (2Mk') 'zk +~(p'). (3.27)

Integrating over e and e', the term containing 1I++ and
f++ becomes

8
d pd p 4'++ (P)«'«

2''
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4'=4'++~ II'= 0++.
(3.28)san++. = 0,'(r)e'A j+(r)u'r,

Fourier-transforming this to coordinate space, with Eq. To suf5cient accuracy we may use here
(3.19) we find

(3.35)

where A=Ab+iiA is given by Eqs. (2.3) and (2.6a)
with Z= i, g=2.

AEz&++b and AEz&++' are equal and of order n(hfs).
Using Eq. (3.5)

e2 2

gg ++bc d'pd'p' 4++'(p)«
27'

«'A+ (p')&+'(p')e++(p")

~CD++=
(e Xk) (e'Xk)

4nzMk

] plllb pb pllb p/b

X 1+— 2W — —— — —,(336)
2m 2m 2M 2M

Labeling energy terms by the projection operators, we
And three terms contribute to E.: AEcD++, AEcD +,
BEc~+ . After integrating over the fourth components
of the momenta we 6nd

Xtk(k+E4+Eb @(k—Eb+Eb)j ' Jcn ++Jcn+ = —(e Xk) (ebXk')/8m'. (3.37)

For p, p', p" pb, this gives

—(e Xk). (ebXk)
JD++ b,c—

Thus, the leading term of Jc~++ cancels that of J~++",
and Jcn ++Jcn+ =Jn ++Jn+

The last one-Dirac-photon term to be considered is

—1 —e') '
~+ccD d'pd'p'd'p"d'p" '

2e' 2e')X 1+-(W + ), (3.24)

X[k'k"( 'b"ik'"+—46)j '

XZ 4(p.)ei'L~.E—If.(p')+4'1 '

XLn.E—&.(p")+"'] '

X[4lbZ B'b(p—)—4+ 4 4]—
X

(pbbs

&b (p—'v) 4' 4—" —45—

where J is defined by Eq. (3.23). Equation (3.29) is
correct for e'n;«k«m, the k range contributing to R.
Its leading contribution is of order o. but will be can-
celled by a similar term from Jc&++.

The other hED terms of the required order are those
containing p++ and 4I + or ip+, and the complex
conjugates of such terms. Integrating over the fourth
components of the momenta, we obtain the low-
momentum approximations

X 4&(p,"'), (3.3S)

where l is summed over directions perpendicular to
k„"=p„"'—p„". Again we use Eq. (3.35) and insert
suitable projection operators. Only the term corre-
sponding to positive energies in all intermediate states
is of the required order, and it contributes to R only if
p, p', p", p"' all pb. It reduces to

J- =-(X ') ('X )i ' ( )

Jn+-= —(e.Xk). (ebXk')/SmM& (3 31)

Since k and k' may be interchanged in Eq. (3.30)
without affecting AEn+, the sum of Eqs. (3.30) and
(3.31)

'
1s e' 3

AEccD++= —(1/4mM) d'pd'p'd'p"d'p'"
Jn ++Jn+ = —(e'Xk) (ebXk')/Sn. pM (3.32) 2''

which gives an o.' contribution to R.
We now treat EEcz similarly. With Eq. (3.20),

z —e' 2

AEcn= — d4pd4p'd4p" [k"(bib —k'+46)$ '
2%

XQ $(P„)c4,'$m. F- &.(p'")—+4" bi] '—
X [pbbs —Hb(p') —4—coj

—'a,g(P„"), (3.33)

where i is summed over directions perpendicular to k.
To remove the Dirac operators from the denominators
we insert into the integrand the factor

=Li~+ ( '")+ ( "')jE +'( ')+ -'( ')j (. )

Xy„++*(p)( Xk") ( 'Xk")y,+++(p"')

X (k'k "k"4) '. (3.39)

Averaging over angles and using the Schrodinger
approximation for p++, we 6nd

Jccn++= —(e Xk) (e'Xk)(4mMk') '
X (I4'—p'"/2~) (3 4o)

Note that Jccn++ cancels the n'(hfs) terms from
JD++bc+JCD++

Defining Jn as the sum of the J's in Eq. (3.29),
(3.32), (3.36), (3.37), and (3.40), discarding terms
leading to vanishing integrals, and averaging over



M ORTON M. STERNHEI M

pt

pt

pat

et~'t, t-'
Pt tP

(a)

t-~

t p

p

(b) (c)

+ ~ ~ 4

Fzc. 3. The irre-
ducible two-Dirac-
photon diagram
G~Dx and the 6rst
two terms of GD~o,
which gives the sec-
ond-order pertur-
bation theory con-
tribution for G~.

the low-momentum expressions

J»x +=e' (e'Xk)o' (o'Xk')/16mM',
J»x+ =(o4xk) e'(e Xk') o'/16m'M, (3.45)
J»x = o .o4'o4" o4'kk'/8 (k+k')mM.

The contributions RD +, If'.DD +—,and ADD are
of order n'm/M, n2, and n, respectively; R»x++ is

negligible.
The second-order perturbation theory energy due to

GD is"

angles, we obtain

Jn ———(e e') k k'/6m'M

Transforming to coordinate space, this gives

(3.41)

~E»'= 2o4(—ki BD(F Be)—'PBnA
+2'(ip, Bn(F Be) —'PAEAN

x (E H, Hy—) 'Bo—ip)

~~DD +~~DD (3.46)

AED = 4++++*(r)o'o'(Vr ')'
6m'M

Xd++++'(r)d"

where

BA(PP) = —(2') ' G'(P.,P')P(pu')d'P' (34&)

= H,*.'Ai-+& *:Ai, ld'. , (3.42)

using Eq. (3.19a); A is defined as in Eq. (3.28). Com-
bining Eqs. (3.28) and (3.42),

BEAD= AED++ +AED

@e.A@d3r) (3.43)

neglecting the small term involving P
Thus, we see that the low-momentum parts of the

various Bethe-Salpeter one-Dirac-photon diagrams sum
to the simple expression (3.43), i.e., to the result ob-
tained with the modified Dirac equation for Z=1, 8= 2,
to first order in A.

C. Two-Dirac-Photon Diagrams

The two-Dirac-photon diagrams shown in Fig. 3
include the irreducible diagram GDDx and the second-
order perturbation theory term GDDO arising from GD.
We shall show that together they contribute to R the
nonrelativistic second-order perturbation theory term.

We 6rst consider

where i and j are summed over directions perpendicular
to k and k', respectively. Inserting projection operators
and using the approximation (3.35), upon integrating
oveg the fourth components of the mo~epta we obtain

i e')'
AE»x = —

~

d4Pd'P'd'P" (4e2 k4/ig) 4— —
2o 2e)

x( "—k"+' ') V(p, ) Z', -

X[g.E—H. (p"')+4"—~]-'

X[rlsE—H~(p') —e—~7'o o, 4lk(p, "), (3.44)

JDDal—+ JDDX—+

J al+ — J X+-

JDD" = -~DD
(3.49)

Since the ++ term here has an energy denominator
smaller by n than in AEDDx, we must also include

J»"++= (o'Xk) ~ (o~xk)P(o'Xk') (o4xk')
X [16m'M'(W —p'/2p)] ' (3 50)

We now examine the remaining terms of hEDD . A
typical one is

2n.i (Q,BnF 'B—eF 'BeF—'PBn—ip).
—

If we insert projection operators, we And that only
positive-energy states contribute to R to the required
order. Integrating over the fourth components of the
momenta is simple since Be is instantaneous, and the
first and last integrations are the same as in hED++.
Thus, this term becomes

([@++*a'AA+'3++ (E—E,—Eb) '

X ( eo) (E—F. Et,) ' (—e—o) (E—E E—,4)—
XP[A+ o' Ay~+]).

"This fo)lows from Eqs. {22) and (39) of reference j.7.

and I' is a projection operator which vanishes when
operating on the unperturbed state and is one otherw ise;
it arises from the normalization requirement. W'e use
the expansion

(F Be) '=F—'+F 'BoF '+ . . (3.48)

Replacing (F—Be) ~ by F ' in AE»' gives, except for
the projection operator, the same result as is found by
treating the diagram in Fig. 3(b) as an irreducible
Feynman graph. For negative energy terms E=i;
since the order of the n,' and o.,' factors is reversed, the
negative energy terms cancel those of 5EDD
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Thus with Eq. (3.50) we obtain

AEnn++'= ([4+ad*a' Ai1+~]++, (E E—, E—b V—,) i

XP$~ e Ay ]++). (3.51)

A similar treatment of bEDD++b shows that only
positive-energy states contribute, and

Terms with negative-energy states contain

4+*(p)e ~-'(p')[1+(~~/2M)p'e'k']4+(p")
= (b/2M)@++*(p)(e'Xk')'(I+~. )e++(p"). (3»)

Thus, we find

Ron+ =w~Rcn, Ron =Ii~Rcn (3 60)AEnn++b= —([@~~*a'AA+ ]++, (E E. —Eb —V.)-—'

X~En'++++) (3 52) To evaluate the RzP terms we replace n;b by A, b in
the integrals of Sec. III. For proton positive-energy
states, the first term in Eq. (3.55c) gives pg times the
Dirac photon result. The second term gives contri-
butions smaller by &u/M, where bi must be replaced by
its value at the pole. Since AED++ hfs arises from
&u=Eb —Eb' e'm'/M as mentioned below Eq. (3.26),
ibi/M)AEn++ is negligible. The poles in ~n++b and
hED++' are at +k and —k, respectively, so that here
the second terms are of order e2(hfs) but cancel.
Exactly the same cancellation is obtained from the
diagrams contributing to AE~P++. Finally, all other
terms have poles at ~b~/M~ &k, so that (~/M)AEz&
&e(m/M)e'(hfs) and is negligible. Hence, we neglect
the second term and conclude

Thus, for low momentum values, AEDD++=AED++

+AEDD++ is identical to the result obtained by
treating eat A in second-order perturbation theory with
the modified Dirac equation, provided only positive-
energy states are included in the sum. This is equivalent
to dropping the terms in 3'. arising from [A „A;]NO.

D. ESects of the Pauli Moment

The eGects of the Pauli moment are found by re-
placing y„b in the Dirac terms by

p.'= (~~ /4M)(v. 'v. ' v. 'v. '—)k. (3 53)

where k„ is the momentum absorbed by the proton. "
In place of Eq. (1.5) we have the identity

RcI++=u~Rcn++, Rci +=p~Rcn + (3.61.)
y op '/k„'= —yg'y4'[Ab'/k'+e, o A, '/k„'] (3.54)

where
b~bpb

ol

For proton negative-energy states, the I' matrix
element is &em/M times the L) matrix element, so

(3 55a) that EE&a (m/M)e'(hfs), and

A4b= (Ii~/2M) p'a'k, (3.55b)
~t.-P+ =~eP (3.62)

A,'=i (p~/2M)P b(ob Xk);+ (p ~/2M)P brute;. (3.55c)

Effectively the Coulomb (C) interaction is sup-
plemented by an instantaneous "Q interaction" pro-
portional to Abb/k2, leading directly to a contribution
Ro. Replacing C by C+Q in Rcn also gives contributions
of the required order. Similarly, the Pauli (P) photons
replace Dirac (L)) photons to give Ror, Rrn, and. Ri p
terms. The result is equal to that found by an extension
of the simple arguments used. in the preceding sections.

The inclusion of the Q interaction replaces 1/k' by

~PD +DP PARDD)

~PP PA ~DD

(3 63)

(3.64)

Collecting results, we see that all the Q and P
interactions are accounted for in the modified Dirac
equation with g=2(1+y~).

Finally, we consider the two-photon diagrams. Re-
placing a Dirac photon by a Pauli photon gives a factor
pz(zero) for a positive (negative) proton energy term,
so that

[1+(pg/2M)P'e'k]/k' (3.65) IV. BREIT EQUATION

in Eq. (3.5). For positive-energy states this adds to
(3.5) the term involving pg in Eq. (3.18).

We now evaluate the one-Dirac-photon diagrams
with C replaced by C+Q. Terms with proton positive-
energy states are proportional to the proton matrix
element

&+'(p)e"W'(p') Ll+ (~~/2M) p'a'k]0+(p")
= (f/2M)y, +*(p)( 'Xk),

X (1+Oe'm'/M')P++(p") (3.57).

To compute the hfs of an arbitrary one-electron atom,
we ideally should start from a Bethe-Salpeter equation
for one electron and A nucleons. Even for deuterium
this does not yet appear tractable, " since we do not
have a covariant description of nuclear forces. Never-
theless, it may be possible to derive the modified Dirac
equation (for the calculation of R) from such a Bethe-
Salpeter equation by omitting nuclear excited states
and utilizing the transformation properties of the
electromagnetic vertex functions. "

Thus, the change in hE is &e'(m'/M') (hfs), and
~D. A. Greenberg and H. M. Foley, Phys. Rev. 120, 1684

(1960).
~ L. Durand, III, P. C. DeCelles, and R. S. Marr, Phys. Rev,

(3.58) 126, 1882 (1962)
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Alternatively, one may work with an approximately
covariant equation of motion, the Breit equation. '4 For
the hydrogen atom it leads to the modified Dirac
equation if we treat the Breit and Pauli interactions as
perturbations and in second order keep only positive-
energy intermediate states as in the usual treatment of
the Breit equation; this is equivalent to the requirement
of neglecting [A,,A;] in Sec. II."We will show that
with this prescription and the correspondence principle
it also leads to the modiied Dirac equation for A &1
for a simple nuclear model which neglects velocity-
dependent and exchange forces.

The Breit equation for A nucleons and one electron is

[E—P H „(p")—H. (p )]4 = (P V,+V//')4. (4.1)

Here v is summed over all nucleons, and

H, (p )=a p +p m, H. (p")=a" y"+p"M. (4.2)

Vp„ is found by replacing (1—a, a,") with (A4"
—a, A, "), where A4 and A; are given by Eqs. (3.55)
with or=0 and pg~ p,g".

Multiplying Eq. (4.1) by gA+"(p"), we obtain an
approximate equation for x= (/1+'A+' h+"4)++",
a 4)&2~-component spinor in the approximation
/1 "Q((/l+ "41:

[&—Z E.(y")—&.(y )]x
= V x+Ul&'2 V (t -)++", (4.4)

~here VN is deined by

V/1'X = [/L»'/L»' /1+" V//'lfl+p. ..]++'". (4.5)

In general, V~ will contain spin operators even if V~'
does not.

In the frame where the total momentum of the atom
vanishes, we de6ne new variables by

V~' is the nuclear interaction. V, is the interaction of
the electron and the vth electron. It is composed of
Coulomb, Breit, and Pauli interactions (Vc„, V//„, and
V/ „, respectively) for protons, and Pauli interaction for
neutrons. In momentum space,

p= p')

r= r' —R

N"= p"+p/ A,
p"=r"—R

p 22"=0, g y"=0.

y=-2 p" R=Z r"

(4.6)

(4 7)

(4 g)—8
(Vo.+V22.)4(y p" )= [1 al al ]

2x'

d'k
X4 (y +I p"—I( . )— (4.3)

The constraints (2.8) imply that y" and 22" are not
canonically related, but

[//, ",2(,»]=ih;;(//»" 1/A)— (4.9)

Introducing these variables into Eq. (4.1), we obtain

x(p ")=[K ( "—p/ )+ ~(y" "—p/ ")+ (y)]x(y ")

—(e2/22(2) (Pk (p„[i++"(22"—p/A, 22" p/A lr—) al'—al++—"(22" p/A 22"——p/A —I()]

+Q (/tip "/2M)[1( (p"a")++(22"—y/A, 2("—p/A I() i—'a~—a~"( "2—2y/A, 22"—p/A —I()XI(])
Xk 2y(p+I(, 221, , 22„—k, ), (4.ma)

where P» means sum over all protons, and

(0"a")++(p,p') = ee p —e pe//

2E„E„'+M
(p2+M2)l/2 g & —(p&2+M2)1/2

a" ya" (p' —y)+(& —M)(~ —E ')
I++"(p p') =1+

2E„(E„'+M)
j. E„+M

a++"(y,p )= y —2pXa"+ (p +ip X(2")21":„E„'+M
E,—M e" p e" p'

(2++"(y,p') = o"— a"+ a
2E, 2E„E„'+M

1 E+M

(4.10b)

(4.10c)

(4.10d)

(4.10e)

This can be written in the form

hex= (K...+K.(. +K; )X=Ex. (4.10f)"G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 616
(193').

Ã„„,contains only internal nuclear variables ~", y"„and
e'; 3C,t contains only p, r, and e;K; contains both
sets of variables. Explicitly, we expand in p/M, 2r"/M,
and p"/r, keeping terms proportional to X—= (p/M) and
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X' which contribute to E in first order, and terms linear
in X which contribute only in second order. Ke may also
drop all terms with more than one power of p "/r to the
accuracy required. Thus,

3C =+(2r")2/2M —Q(2r")4/8M2+.

+VN(0', (4.11a)

3C,(,~=AM+ p2/2AM+ H, (p) ep0—+e(2 bA, (4.11b)

3C;„=42,' [(1/4) p g "(r"XV++, 22"]
X(—02/M)(1 —p" V)r-'

—P()4g"/2AM )e'pXV( —02//r)

+p~ ([1—(1/4AM2)42" pXV]
X[1—p" V1—1}(—"/r)

+[/ 22" p()r")2/2AM2+ V2(&'&j+ . (4.11c)

Here 020 is defined as in Eq. (2.3a), 8A as in Eq. (2.6b)
with OR ~ AM, g"= (1+)4~")(e/2AM) for protons and
)4g"(e/2M) for neutrons,

)4 '=m '+(AM) ',

~(0) —02 Q 1/2py~+. . . (4.16b)

V)22ro& = (e /24AM )2+~ ) 22)' p, —'p"

—(r" pXV"—. (4.16c)

Note that the Pauli moments do not appear in VEM&');

the Pauli-Coulomb (Pauli-Breit) terms contribute
+(—) Q p~"&"", C""—= (r" pXV" (e2/2AM2p "). The
Breit interactions contribute the spin-independent part
of VEM('& and —P C"", and the Coulomb inters. ctions
contribute 2 p C"".

Ke may eliminate VEM&" and the kinetic energy term
from the last part of 3C;„by the transformation

The nucleon-nucleon electromagnetic interaction is, like
the nucleon-electron interaction, composed of Coulomb,
Breit, and Pauli terms. Thus we find

3(.'—+ e'03Ce—'0 =3('.+[iC 3('.j+ (4.17)
and V~, which, in general, depends upon p but not R,
is expanded in powers of (p/M):

v~= v~«)+ v~&)+" ..
Note that the I++" (Coulomb) terms in Eq. (4.10a)
contribute —ego in K,t plus the third term of Ã
The (2 .(2++" (Breit) terms contribute ee bA and part
of the terms containing e in K;„. The e 6++"
(Pauli) terms yield the remaining terms linear in 42~,

and the k. e++" (Pauli) terms give the second term in
mix

Treating X', ; and ee bA as perturbations, in the
lowest approximation x is a product of an internal
nuclear wave function and of an atomic wave function;
the latter is the same as in Sec. II with 5R —+ AM. Kith
[)2;",3(!„„,]= (i/M)2r, ", i.e., assuming a velocity-inde-
pendent, nonexchange force, and neglecting corrections
to the nonrelativistic kinetic energy, we have

The commutator of iC and X„„,cancels VEM&') and
the kinetic-energy term in 3C;;i [4,3('.,&, j is negligible
and [iC,3('. ;„]contains one term of interest:

i[4, —Z. P" V](—~/r)

= (0'/2AM') Zn Z. [(I4
"~'"+~*")~")P)V'

+-'2(r pX V](5'"—1/A)r '+ (4 18)

where the quadrupole term proportional to Q, ,V;02.7
has been omitted since it does not contribute to R.
The expectation value of (4.18) for the nuclear ground
state iso=([) '") )",30-.l&

=(/M)( '" "+" ") (e2/2A M')(P, (p"X 22"+-'(r")
—(Z/A)g(p"X20"+x ")) pXVr '. (4.19)

(4.13)
and

p=(Z~(0/2M)) 'X~"+2 2 g"~"& (4 14)
Adding (4.19) to (4.15) gives

Thus the first term in BC; reduces to eo. Ao, where Ao
is given by (2.3a), when its expectation value is evalu-
ated for the nuclear ground state. Taking the expec-
tation value of the second and third terms gives

(/AM)((/2M)(Z. "X "+-.'Zg" ")
—(Ze/2AM)Q(p"X20"+'2e")) pXVr —'

= (e/AM)[p (Ze/2AM)—Ij pXVr '
= —e8(p (4.20)(0/2AM )(P )4p"(r"+P 2(r') pXVr ) (4.]5)

p=p [p 2r;"p"2r;"/2AM2 p((r"X22—')/4AM2
(4.12)

+.2P p/2AM)p~ —
p ) j. (4.17a)

which is part of —ebq.
I.et us now consider the fourth term of K;, which

is linear in p and independent of r. Since V~ is the sum
of a charge-independent nuclear potential U plus an
electromagnetic interaction VEM, we may write

V' (0) —f/(0)+ V (0) V 0)—Po)+ V o) . . . (4 160)

by Eqs. (4.14) and (2.6b), with OR replaced by AM.
Equation (4.20) gives the interaction of the electric

fieM due to the electron with the electric dipole moment
arising from the motion of the nucleus. If we study a
nucleus moving in a weak external potential, we obtain
(4.20) again, with (—e/r) replaced by that potential.
As we expect from the correspondence principle, this
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result is identical to that obtained by Thomas" for a
classical system using purely kinematic arguments.

Note, however, that the transformation (4.16) was
constructed to cancel only the explicitly known part
of V~&". If a term due to the nuclear force remains, in
second-order perturbation theory together with the
P„p" V (e'/r) term it can contribute another term of
the type (constant) I p&&Vr ', spoiling the agreement
with the Thomas expression. Since we expect the
classical limit to hold for a weak external potential, we
conclude that the constant must vanish.

It may appear a bit odd that we can use VEM(" to
limit the form of U&". Consider a system of interacting
particles described by a Hamiltonian, BC. Thomas and
Bakamjian' and Foldy'7 have proved that the com-
mutation relations for the generators of the infinitesimal
Lorentz group require the existence of a function C,
such that

gie~g ie ——(p2+h2)1/2

h=AM+P ~.'i'2M+ V'o'+ . (4.21)
'~ L. H. Thomas, Nature lj.7, 514 (1926};Phil. Mag. 3, 1 (1927).
'6 B.Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1053).' L. Foldy, Phys. Rev. 122, 275 (1961).

Here, C is a rotationally invariant function of p and the
internal variables, and h is a function of the internal
variables only. The "reduced" Hamiltonian de6ned by
(4.23) is the natural generalization of the single-particle
Hamiltonian. However, in this reduced representation
the coordinates and momenta do not have their usual
physical interpretation.

Since V~& & is linear in p and the right-hand side of
(4.23) is a function of p', V&'" arises entirely from the
transformation from the reduced to the usual or
"physical" representation, i.e. , Vii &'& = —[iC, P (w")'-(
2''+ Vzio'j. Requiring a specific form for the electro-
magnetic part of V~&" in the physical representation
therefore restricts 4 and U"' substantially.

Thus, Eqs. (4.11) are equivalent to the modified
Dirac equation (2.6a) if we replace AM by OK. Since
8=—AM' —5K& 10 '5R, it can be neglected. In principle,
one can look at the terms quadratic in p' in Eq. (4.11c)
and obtain the binding energy efI'ects explicitly.
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