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of the parabola depend on the values of a and b, which
in turn depend on m~, e, and x. A qualitative idea of
the dependence of R on p, ~ can be obtained from Fig. 2.
The first curve represents a choice of e and x in region
(i) and the second in region (ii).

A similar argument can explain the variation of E.
with m~ shown in Table III. For 6xed p,~, c, and x, the
ratio of the differential decay rates, R(e,x) =d'I'(ms)/
d'I'(~), is quadratic in the variable s'=co(K —1+to) ':

R(e,x) = 1—(2—ps )u's'+ (2—prr)'b's". (17)

R(e,x) has a minimum at s'; =a'[2(2 —ps)b'j '
Depending on the value of p, ~, s';, can lie inside or
outside the allowed range for s', i.e., 0&a'&1. As p, ~
becomes increasingly negative, s';„moves into the
interval L0,1]from the right, so that when late

———1 the
ratio E has a minimum near re~= 1.2m~.
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The motion of Regge poles as E~ 0 is examined in detail. It follows from the well-known threshold law
of the S matrix that infinitely many poles approach l= —

&~, from the first and the third quadrants as
E ~ 0+, and from the second and third as E —+ 0—.A possible way of including these poles in a representa-
tion of S is indicated.

"T is well known that for potentials that fall off sufIj.-

ciently rapidly at infinity the S matrix for an
angular momentum / has the behavior'

S=1+O(k"+') as k ~ 0.

If the S matrix is expressed in terms of a single Regge
pole, ' or a 6nite sum of Regge poles the threshold de-
pendence is clearly not satisfied. ' We want to point out
an intimate connection between this threshold behavior
and the infinitely many Regge trajectories that arrive at
f,= ——', as 8 —+ 0. As 2 ~ 0+, there are infinitely many
poles which approach /= ——,'from the upper right-half
and the lower left-half of the l plane, the approach being
essentially independent of the potential. As E—+ 0—,
the poles approach /= ——,

' in complex conjugate pairs
from the left-half / plane. The present authors had
indicated recently that l= —

~ is the low-energy end
point of infinitely many Regge trajectories. 4' In this

* Supported in part by the National Science Foundation.
$ National Science Foundation Senior Postdoctoral Fellow, on

leave of absence from Indiana University, Bloomington, Indiana.' Here k is the momentum, E=k' is the energy.'T. Regge, Nuvo Cimento 14, 951 (1959).
'For instance, the threshold behavior of a single right-hand

Regge pole is S—1=0(k'~&s&+'), where n(0) is the k=0 position of
the pole and —

& &o.(0) & 2.
4 B. R. Desai and R. G. Newton, Phys. Rev. 129, 1445 (1963).
'V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters

9, 238 (1962), had indicated that there are conjugate poles ap-
proaching l = —

~ as E —+ 0—in the relativistic case.

article, we give further details about the threshold
motion of the poles. We shall also indicate the possible
way in which an S matrix can be expressed so as to
correctly take into account its threshold properties. '
We consider only nonrelativistic potential scattering
but we believe these results, coming as they do from the
threshold dependence, should also hold in the rela-
tivistic case. Ke also find another class of infinitely
many Regge poles in the left-half l plane whose energy
dependence we have derived. The behavior of these
poles is found to be analogous to the right-hand Regge
poles associated with bound states and resonances.

An S matrix unitary for real X (=I+ rs) can be written
near L&=-0 as4 7

1—k'"e'~ "C(X)

where C(X) is a meromorphic function of X' ' and is real
for real X.' '

' Note that a Regge-pole representation of (S—1)/k"+I satisfies
threshold dependence of S but clearly does not get rid of the
infinite number of poles at l = —-', .

R. G. Newton, J. Math. Phys. 3, 867 (1962).' This follows from the relation given in reference 7,
g() k)e 2xgx+g —1P ke

—iw) —1+e—2zix

We have only written the first two dominant terms in k2 for
P«1. In general, one has, both in the numerator and the denomi-
nator, terms of the form aI(X)k'+a2(P)k + ~ -+bI(X)k'" + ~ .
For ),&1, the k'" term should be replaced by the k' term.
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In general, we have""

I'(1—X) s
c(x)=2—'"

r(1+}t)
2X+y

dr rk+&y, (z,r)t (r)

dr ri-"ys(X, r) V(r)

(2)

and y is the potential strength.
The poles of the 5-matrix are given by

1—k'"e—' "C(X)=0 as E~O+,
1—lkl'"CP)=0 as E—+0—.

The properties of C(}) are important in determining the
motion of the poles. From (2) we note that C(0)=1."
Expanding C '(X) near X=O, we obtain, as E—+ 0+,

exp'( —
l
lnE

l
is.)—= 1+AX, (3)

where A= —C'(0) and is y ' for small y. Conse-

quently, the zeros X=X„+iX; are determined by the
equations

tan P.;l lnE l+X„~)= —)~,A/(1+), A)
and

exp2( —X,
l
lnEl+Xvr) = 1+2K,A+ (X„s+XP)A' (4)

which, as E~0+, have solutions of the form

}~.=2«/1»E
I

&=~}'/1»E I

=2«'/l »E I'

where Ps is the zero-energy wave function for angular
momentum /= X——,

' which at r =0 satisfies the boundary
condition

lim sr i-"ps(X,r)=1

E=O. The approach of the poles is independent of the
potential. "As E~~ they will end up either at negative
half-integral values P, or at infinity, or in the region of
nonanalyticity of S(X,k).' We now take E—+ 0—.In that
case the Regge poles near X=O are the solutions of

«nL);
l »(—E) l ]= —&;A/(&+X,A)

exp[ —2X,
l
ln( —E) l

]=1+2)„A+(X '+X')A' (6)

that is,

X, 2«/l ln( —E) l, X„~—A9, ,s/2
l
ln( —E) l

= —2A'g'x'/
I ln( —E) I

'
or

&'"'= L2«/[»( —E)
l

]e'4'",
tang„= —I»(—E) I'/«A', (7)

where is= +1, +2, , with
l
m [« l

ln( —E) [/2s."
Therefore, as E~ 0—these poles of SP.,k) in the left-
half-plane are complex and, as they must, occur in
complex conjugate pairs. Their phases depend on the
potential. The existence of an infinity of E=O poles at
l = —

2 and the complexity for 8—+ 0—were both indi-
cated in reference 4.

In any reliable low-energy representation of an 5
matrix (or a scattering amplitude) in terms of Regge
poles the above threshold-poles should be taken into
account. "It was shown by the authors that it is possible
to write the product representation4

(
f() k) —f(0 k)e islx Q l

1 lex/x (sl

X„(k)J

or where f= f/I'(-,'+X) is an entire function, '4 and X„(k)
are the zeros of f. Any convenient point can be chosen
for normalization instead of X=O chosen here. We find
that for E~ 0+ the product involving the zeros near
X=O can be written compactly in the form

&'"'= (2«/l»EI)e"" «n4. = l»El/~, (~)

where I=&1, &2, . . . , with le[« llnEl/2s. . As E
decreases we have more and more solutions of the form
(5). For a fixed small energy E the poles of S(X,k) lie
evenly spaced on a ray from the point X=0 which makes
an angle w/llnEl with the imaginary axis. The poles
lie both in the upper right-half as well as the lower
left-half of the X plane. As E —+0+ the ray turns
counterclockwise while the poles move along the ray
toward 'A=0; infinitely many poles arrive at X=0 when

sin(s X/p(k)]/LmX/p(k)],

"In (5) the first iteration actually gives

X, = (2av/(InE() (I—A/(lnE(),
and depends very weakly on A. For small 7, A is very large and,
therefore, smaller energies are required to bring the poles closer
to ) =0.This is understandable since for weak potentials the poles
would like to remain in their Born approximation positions which
are farther away from ) =0."If we add a BX' term in the expansion of C '(X), then in (7) A'
should be replaced by A' —2B, i,e., we obtain X„~—X (A' —2B)/2
X ~ln( —E)

~
(we are grateful to Dr. A. Bincer for pointing this

out to us). As there cannot be any complex conjugate poles in
the right-half-plane (see references 2 and 7); therefore, A' must
be &~2B."It is worthwhile to remark, however, that because of the
(lnE) ' dependence, the threshold-poles move very rapidly
near X=O. For weak Yukawa potentials, it is found that as 8 is
increased, the threshold-poles in the right-half-plane quickly turn
around and move into the left-half-plane for extremely small
values of E LW. Carnahan (private communication) g.

'4 If we assume all derivatives of rV(r) to exist at r =0, then
according to reference 7,f is an entire function.

I For an amplitude satisfying a double dispersion relation, plus
unitarity, in the sense of S. Mandelstam, Ann. Phys. 21, 302
(1963), we obtain

C(X) = dk g(X,r',k)k~ "f(X, sk}—
4

is. sinn%+ dk g(X,sk) f(X, sk)—
where f is the Jost function (i.e., the denominator function), g is
essentially the partial wave projection of the absorptive part in
the momentum transfer variable, and a the reciprocal of the range
of interaction. Note that C(0) =1.

"In the expression (5.1) of reference 4, C(0,y) should be re-
placed by a function D(X,y) where D(O,p) =C(O,y). We will then
have C(X}=C(X,Y)/LDP. ,y) —Xj.
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where
X(k) =As+Be' "sk—'"',

B=C'(Xe)-i.

(8)

Since 8 can have either sign, ) may approach Xp from
above or below from left or right. As 8 —+ 0—we have
similarly

X(k)=) s+Bik) "0. (9)

This means that a real ) p may be approached from either
side, but always along the real axis. Furthermore, for
real Xs the two equations (8) and (9) imply a universal
relation (depending only on Xs) between the direction
of approach as E +0—and E +—0+. If Xs—is complex,
then the pole spirals in towards it, both as E—+0+
and as E~ 0—.

The Regge poles mentioned above are the analog of
the poles in the right-half-plane associated with bound
states and resonances. These right-hand poles are ob-

where p(k) =) i"&(k)/n, X&"&(k) being defined in (5). A
procedure which approximately takes into account the
poles near X=O and a few right-hand Regge poles will
be presented later.

We now turn to the E=O poles in the left-half )
plane. Clearly these will come from the zeros of C()i).
A necessary condition for their existence is, therefore,
C(X)=0. In general, this will have an infinitely many
solutions real as well as complex. If ),s((0) is a zero of
CP,), we expand

C() ) = (),—X,)C'(X,)+
The position Xp will, obviously, depend on the potential.
As E ~ 0+ the corresponding Regge poles are

tained directly from the poles Xs(& 0) of C(X), and are
given for )p(i by'"

X(k) =As —be 'v"'k'"0 as E —+ 0+,
as E 0-. (10)

while the imaginary part is still given by (10).
Notice that if As&1, the slope X'(0)(=dX/dk' at

k'=0) is infinite. '" It was remarked earlier that a
single Regge pole does not give the correct threshold
behavior. This also means that it does not necessarily
give a finite value to X'(0), the "effective range. " To
overcome these di%culties, therefore, one should include
in any Regge-pole representation of the 8 matrix the in-
finitely many poles near X=O mentioned earlier.

'~This formula has also been derived by A. Q. Barut and
D. E. Zwanziger, Phys. Rev. 12?, 974 (1962).

8 In determining high-energy cross sections it is usually as-
serted that P

' is Qnite and furthermore that it is of the order of the
radius of interaction Lsee G. F. Chew and S. C. Frautschi, Phys.
Rev. Letters 8, 41 (1962)j.This is clearly incorrect if at E=0, X
happens to be &1 (or a=A —s& ~s). In other words, it may very
well happen that some of the conjectured Regge poles arrive at
8=0 (through positive values of E) at a point below' e= $ and be-
cause of the ininite slope there, enter the physical region of the
crossed channel with a considerably reduced value.

Here it is known that ) p is real and that b is positive. ' '
Xp of course, depends on the potential and there is at
least one pole if the potential is attractive. ~ For ) p& i,
the above formula contains a term proportional to k', '
i.e., for all Xp) i, the real part of P is given for real b by

X(k) =Xs+bk' as E -+ 0+,
=Le—5~k~' as E-+0—,


