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and for the configuration (ifr/s)', the magnitudes of Qq'/(r') in (A22) remain the same but all signs must be
changed.

As mentioned previously, the sign of Qs/s for the configuration (1f7/9) ' in Table VIII.3 of reference 4 is incor-
rect. This can be alternatively checked by using the shell-model wave function expressed in terms of Slater deter-
minants. For three particles (not for three holes), this wave function can be easily constructed:
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is the totally antisymmetric normalized Slater determinant.
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Some systematic features of the magnetic moment distribution of odd-A nuclei are established and
theoretical explanation for them is given. The explanation suggested here is based on the idea of quenching
of the intrinsic magnetic Inoments of nucleons in nuclei. This idea was created independently by several
investigators many years ago and has been re-examined in detail recently. Essentially all these investigations
predict that the magnetic moment of an odd-4 nucleus should be somewhere between the so-called Schmidt
and Dirac limits. However, if the exclusion principle is the only reason for the quenching, the magnitude
of the quenching turns out to be too small to explain the large magnetic moment deviations from the Schmidt
limit. Therefore, the question is whether this idea is valid or whether, even if it is valid, other factors such as
configuration mixing, core excitation, etc. , are more important. In this paper, these questions are attacked
empirically. Furthermore, it is shown that the parity rule may also be an important factor in quenching the
intrinsic magnetic moments of nucleons in nuclei.

I. INTRODUCTION

' 'T has been shown by Bow that the magnetic moment
~ - ratio of two odd-Z —even-1V (or odd-1V —even-Z)
nuclei with the configurations (rtl j)"and (rtl j)"' for the
incomplete-shell nucleons of the odd parts, respectively,
is given by the following relation (assuming j-j coupling
and pure configuration)':

ttzI (rtl j)"7/tt& [(rtlj)"'7= (J'+1)J'/(1+1)J",

where v and v' are positive or negative odd integers
(absolute value &&j+-',). When they are positive they
represent the number of protons (or neutrons), and
when negative the number of holes. The total angular
momentum of the ground states of these two nuclei
are J and J', respectively.

The result of Eq. (1) is derived on the basis of the
semiatomic model which is an extremely weak-coupling
case of the unified model given by Bohr and Mottelson.
The counterpart of Eq. (1) in the shell model (or

' Y. F. Bow, preceding paper, Phys. Rev. 130, 1931 (1963).

Schmidt model) is as follows (also assuming j-jcoupling
and pure configuration)':

/ ~L(nV) "7f/t ~ t.(nV) "'7=J/J'
no restriction on i, t ', rt, and rt'. (2)

Here "no restriction" means that n and e' can be either
diferent or equal for arbitrary t and v' (absolute value

~&j+s).
A test for the comparative validity of Eqs. (1) and

(2) has been made in the region of (1f&/s) shell. ' The
results show that Eq. (1) is better. It is the purpose
of this paper to extend this investigation to the whole
range of the nuclear chart and, furthermore, to see if
there is any regularity (in addition to the Schmidt and
Dirac limits) in the magnetic moment distribution of
odd-A nuclei. Theoretical explanation for the system-
atic features found in this investigation is also at-
tempted.

When J=J', Eqs. (1) and (2) become identical
except for the more strict restrictions on v and e in

2M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (John Wiley R Sons, Inc. , New York,
1955).
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TABLE I. Comparison of magnetic moments of odd-Z —even-1V' nuclei. The experimental data are taken from the compilation of
D. Strominger, J. M. Hollander, and G. T. Seaborg LRev. Mod. Phys. I, 585 (1958)g. All configuration assignments (except
those with a question mark) are given in reference 2. In each of the exceptional cases, the 6rst configuration is assigned by the
present author and the second one by Mayer and Jensen. In making our configuration assignments, the following rules (and/or
assumptions) are followed: (a) each assignment should be consistent with the spin and parity of the ground state; (b) the
single-particle levels between the major closed shells (magic numbers) can be shifted around, keeping the level order of j =i+-',
and j'=l—

~ (same l) unchanged, for example, the configuration of the 43 protons in 43Tc" is assigned as 28-closed-shell plus
(2p&/&) (2p&/2)'(ig»&) ' according to this rule; (c) the level j'=l ,'—ca-n never be filled before the level j=l+sx (same l) has
been completely filled. These rules (a)—(c) have also been implicitly followed by Mayer and Jensen. However, we have applied
them more strongly in some cases.

Two cases, »As" and 63Eu"', have been rejected in the calculation of the standard deviation 0-, on the ground that they may have
diiferent "configurations" from those in their groups. It is interesting to point out that the assignment of (1g7/2)' to 63Eu~/'3 is
not only consistent with parity and spin of the ground state but also in conformity with the magnetic moments of v1Eu"' and
r&Ta"'. However, in this case, the experimental data are still not accurate enough for concluding whether Eq. (1) or Eq. (2)
is better.

Ele-
Z ment A J(h) (sfj)v

1 H 1 1/2 sq/2

3 Li
5 B

17 Cl
17 Cl
19 K
19 K

3 1/2 (is(/r)+'

7 3/2 (1p, /, )'
11 3/2 (1ps/s)

19 1/2 (2s//s)+'
31 1/2 (2s&/~)+'

35 3/2 (1dg/s)'
37 3/2 (idg/2)'
39 3/2 (id3/s) '
41 3/2 (id, /, )-'

29 CU
29 CQ
31 Ga
31 Ga
33 As
35 By
35 By
37 Rb

63
65
69
71
75
79
81
87

3/2
3/2
3/2
3/2
3/2
3/2
3/2
3/2

(2p3/2)'
(2p3/ )'
(2P'")=,'
(2p )'
(if&/2) ? (2p///2)

(2P3/2) '
(2p3/2) '
{2P3/~) '

39 Y
45 Rh
47a Ag
47' Ag

89 1/2 (2pz/u) +
103 1/2 (2pi/2)+'
10/ 1/2 (2Pr/s)+'
109 1/2 (2P&/u)+'

@exp
(nuclear

magneton)

+2.793

+2 799 e s ~

Ele-
Z ment

43 Tc
49' In
49' In

+3.256
+2.689

+2.628
+1 131

+0.821
+0.683
+0.391
+0.215

+2.221
+2.238
+2.011
+2.555
+1.435
+2.099
+2.263
+2.741

—0.134—0.088—0.113—0.130

Si Sb
S3b I
55 Cs
59 Pr
63 Eu
63 Eu
75 Re
75 Re

0.401

1.058

0.303 51 Sb
53 I
55' Cs
55' Cs
55& Cs
57 La

0.279 71 Lu
73 Ta

77 Ir
77 Ir
79 Au

0.023 81 Tl
81~ Tl

95 Am
95 Am41 Nb 93 9/2 (ig9/2)s ? (1g///u) ? +6 144

J(/r/)

99 9/2
113 9/2
115 9/2

121 5/2
127 5/2

5/2
141 5/2
151 5/2
153 5/2
185 5/2
187 5/2

123 7/2
129 7/2
133 7/2
135 7/2
137 7/2
139 7/2

175 7/2
181 7/2

191 3/2
193 3/2
197 3/2

203 1/2
205 1/2

241 5/2
243 5/2

(2ds/s)'
(ig )''
(2d/;/s) i

(2~5&)'
(2~/) '
(ig )''
(2~5/2) '
(2d/n) '

(igv/2) '
(1gzn)' ~

(igv/~)' ~

(1gv/2)' ~

(igv/2)
(igz/2) '

(ig/) '
(igz/2) '

(2& )'
(2A/2) '
(2d3/2) '

(2d/n)' '

(2dg/2) ' ?

(igv/2)'
(igv/~) ' ~

(igv») ' '
(igvn) '?

(»I/2)+'
(3SI/2)+'

(g/) ' (g )''
(ig9/) '
(igs/2) '

+3.342
+2.794
+3.48
+3,8
+3 4
+1.5
+3.144
+3.176

+2.533
+2.603
+2.564
+2.713
+2.822
+2,761

0.121

+2.0
+2.1 0.071

+0.16
+0.17 0.019
+0.136

+1.596 0 011+1.612

+1.4
+1.4 0.000

@exp
(nuclear

magneton) a.

+5.657
+5.496 0.092
+5.508

a The fact that almost exactly identical magnetic moments in pairs or
triplets of isotopes of equal spin happen in such cases has long been recog-
nized as an indication for the validity of the independent-particle model
/see J. M. Blatt and V. F. Weisskopf, Theoretical nuclear Physics (John
Wiley k. Sons, Inc. , New York, 1952), p. 773j.

b In this case, probably a mixture of the two possible configurations
(1g7/2)g and (ig7/2)2(2ds/2)' occurs. This is unlike the other cases in which
only one configuration seems dominating.

the former case. These restrictions originate from the
general idea that the gyromagnetic ratio of a nucleon
(in the nucleus) is in general a function of the conlgu-
ration (in the Schmidt model it is a function of J and

j only). Obviously the most eKcient way to compare
the relative validity of Kqs. (1) and (2) is to consider
all cases in which JWJ'. It is unfortunate, however,
that only limited experimental data for such cases are
available Lsee Table I of reference 1 and the captions
to Tables I and IIj. Nevertheless, a detailed investi-
gation of those cases in which J=J' may provide some
empirical verification for the general idea that the
gyromagnetic ratio of a nucleon in the nucleus is in
general a function of e, l, j, and z.

It is noted that Eqs. (1) and (2) do not depend on

the gyromagnetic ratio of the nucleon, but rather on
the coupling scheme. Therefore, our investigation also
provides some indication of the validity of the j-j
coupling scheme.

In considering the general trend of the magnetic
moment distribution, either the Schmidt model or the
semiatomic model can be chosen as the basis of our
discussion. The latter is a modification of the former
by including the residual deformation of the core. '
However, in this paper, we ignore all possible contri-
butions to the nuclear magnetic moment except the
intrinsic motion of the incomplete-shell nucleons of the
odd-part of the nucleus. For detailed calculation of
some specific case, this is, in general, too crude. How-
ever, the dominating factor which controls the general
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trend of the magnetic moment distribution can be more
easily discerned in this crude treatment. Therefore, the
simple Schmidt model will be chosen as the basis of
our discussion t including the restrictions on n and v

made in Eq. (1)j.

II. EXPERIMENTAL

The magnetic moments of odd 2 nuclei are collected
in Tables I and II. (See also Table I of reference 1.)
In these tables all nuclei with the same configuration
in the sense of Eq. (1) are grouped together. In accord-
ance with our arguments, all nuclei in each group should
have the same magnetic moment. However, except for
a few cases, they deviate from this "hypothetical
magnetic moment. "In order to measure this deviation,
a statistical point of view will be taken. Suppose that
the "hypothetical magnetic moment" exists in each
group and, in other words, our theory is perfect. Then
the usual standard deviation, which is approximately
the range (maximum value minus minimum value) of
the magnetic moments in the group divided by the
square root of the number of nuclei in the same group,
would be solely a measure of the experimental accuracy.
On the other hand, if the experimental magnetic
moments are accurate enough, then the same standard
deviation may be taken as an indication for the inaccu-
racy of our theory. Obviously, the more inaccurate
our theory, the bigger the standard deviation. The
standard deviations (o) are arranged in the last columns
of Tables I and II, and are interpreted as a measure
of the inadequacy of the theory.

From the trend of the magnitude of the standard
deviation, we may draw the following conclusions.
(1) In the region of medium weight and heavy nuclei,
j-j coupling is a good approximation. In the region
of light nuclei, however, it may not be adequate. This
confirms the conclusion of previous investigations. 3

(2) The magnetic moment variation in each group may
be explained by the local irregularities such as core
excitation, ' configuration mixing, ' deviation from j-j
coupling, ' etc. , but the sensitive dependence of the
magnetic moments on v (and zz) is hardly explainable
by these local irregularities. (3) It seems impossible,
by assigning one single-particle gyromagnetic ratio for
each shell, to explain the whole range of the experi-
mental data of the magnetic moments for odd-A nuclei.

The results of Tables I and II also show that the
experimental magnetic moment deviations from the
Schmidt limits are mainly due to the wrong value
assigned to the single-particle gyromagnetic ratio in
the theory. Now our question is whether the orbital
part or the intrinsic part of the single-particle gyro-

'A. M. Lane, Proc. Phys. Soc. (London) A66, 977 (1953);
A68, 189, 197 (1955).

4 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, No. 16 (1953),' A. Arima and H. Hovie, Progr. Theoret. Phys. (Kyoto) ll,
509 (1954); R. J. Blin-Stoyle, Proc. Phys. Soc. (London} A66,
1158 (1953).

TABLE II. Comparison of magnetic moments of odd-N-even-Z
nuclei. See the caption to Table I for a detailed explanation. The
assignments of (1h9/z)s to 6//Dyzs' and (2 f&/z)' to z//Os"z are based
on the sign of their magnetic moments, besides the requirements
of parity and spin of their ground states. It is important to
observe that the signs of the nuclear magnetic moments are in
general correctly predicted by the Schmidt model. Here we have
another example which seems to favor Eq. (1); the magnetic
moments of 64Dy'" 60Nd'4', &2Sm' 62Sm'9, and Er' 7 are more
accurately related by Eq. (1) than by Eq. (2).

Ele-
ment A J(h) (zzlj )"

+exp
(nuclear

magneton) o.

1 n 1 1/2 sUs

1 He 3 1/2 (1sz/s) +z

9 0 1/ 5/2 (1ds/z) '
13 Mg 25 5/2 (1ds/s) z

—1.913

—2.127

—1.893—0.855

51 Zr
53 Mo
55 Mo

91 5/2 (2ds/s)'
95 5/2 (2dz/z) '
97 5/2 (2dz/s)

—1.298—0.929 0.213—0.949

55 Ru 99 5/2 (2dz/z)+'? (2dz/z) '? —0.6
57 Ru 101 5/2 (2ds/2)+' P (2d5/2) '? —0.7
59 Pd 105 5/2 (2ds/s)+'? (2dz/ ) '? —0 57
63 Cd* 111 5/2 (2dz/s)+' (2ds/2) '?
63 Cd
65 Cd
65 Sn
67 Sn
69 Sn
71 Te
73 Te
75 Xe

111 1/2
113 1/2
115 1/2
117 1/2
119 1/2
123 1/2
125 1/2
129 1/2

(3sl/z)
(3si/2)+'
(3sz/s)+'
(»I/2)+'
(3sI/2)+'
(3sl/s)
(3sz/z)+'
(3sz/s)+'

—0.592—0.620—0.913
Oi995

p 59—1.041—0.732—0.882—0.773

77 Xe 131 3/2 (2d///s)'
99 Ba 135 3/2 (2d///z)'
81 Ba 137 3/2 (2d///z) z

+0.687
+0.832 0.141
+0.931

101 Yb
109 W
111 Os
117 Pt
119 Hg
125 Pb

171 1/2 (3PI(g)+'
183 1/2 (3Pz/z)+z
18'7 1/2 (3Pz/z)+z
195 1/2 (3pz/z)+'
199 1/2 (3Pz/z)+z
207 1/2 (3pz/s)+'

+0.45
+0.115
+0.12
+0'600 0 198

+0.499
+0.584

113' Os 189 3/2 (2fs/s)+'

121 Hg 201 3/2 (3ps/z) '
+0.651 ~ ~ ~

—0.607

a The configuration for this nucleus was incorrectly assigned as (3pl/2)+'
in reference 2, probably due to the fact that the experimental value of the
spin of the ground state was uncertain at that time.

magnetic ratio is incorrect. To answer this question,
the following regularities of the magnetic moment
distribution are helpful:

(A) In the usual Schmidt plot, the experimental
magnetic moments are bound between the Dirac and
Schmidt limits. The magnetic moment deviation for
each experimental value from the Schmidt limit can

85 Nd 145 7/2 (2fz/z)' —0.62
85 Sm 147 7/2 (2fz/z)' 0 8187 Sm 149 7/2 (2fz/z) ' —0.64
99 Er 167 7/2 (2fz/ ) ' (+0.5)

95 Dy 163 5/2 (1h///&)'? (2fz/&) '? +0.51

79 Dy 161 5/2 (2fz/, )-' —0.37 0103 Yb 173 5/2 (2fz/s) s? (2fj/z)z? —0.67
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TABLE III. Average value of the percentage reduction (v) of
the intrinsic magnetic moments of nucleons in nuclei. In making
this table, Table VI of reference 2 is used.

odd-Z-even-X
g=l+~ g=l—

odd-X—even-Z

2 =l+-', 2 =l—-',

Average value of g (%): 77 40 66 25

be conveniently measured by a parameter p which is
the percentage reduction of the intrinsic magnetic
moment of the nucleon. These parameters have been
calculated in reference 2 and are used in Table III, in
which the average values of q are tabulated for different
types of nuclei. From Table III, it is clear that the
magnetic moment deviations of odd-E —even-Z nuclei
are, in general, smaller than those of odd-Z —even-S
nuclei. It is also true that nuclei with their incomplete-
shell protons (or neutrons) in the shell with j=l——'„
in general, have less magnetic moment deviations than
those nuclei with their incomplete-shell protons (or
neutrons) in the shell with j=l+~~.

(B) Except for MsW'ss and 77Xe's' the range of the
parameter g for those nuclei with their incomplete-shell
protons (or neutrons) in the shells (mpr~s) and (rods/Q)

(ts) 1) is approximately 3—25%, which is much smaller
than other cases ()50%%uo).

(C) For an odd-Z —even-X nucleus, the magnitude of
the magnetic moment tends to increase with increasing
number of protons (or proton holes) in the incomplete
shell for the case j=l+—,', and decrease for the case
j=l—2. However, for an odd-S —even-Z nucleus, the
magnitude of the magnetic moment tends to decrease
with increasing number of neutrons (or neutron holes)
in the incomplete shell for the case j=l+—',, but no
experimental information is available for making
similar statement for the case j=l——,'.

The peculiar regularities discussed above would not
be expected, if the magnetic moment deviations were
entirely due to core excitation, configuration mixing,
and deviation from j-j coupling, because these factors
are more or less local in nature. Furthermore, in view
of the large intrinsic magnetic moments of proton and
neutron, an error in the orbital part of the gyromagnetic
ratio would not be very decisive in accounting for
these peculiar regularities. Therefore, there would seem
to remain only one possibility, namely, that the
intrinsic magnetic moment of a bound nucleon can be
rather different from its free-particle value. A more
detailed investigation of this possibility is presented in
the next section.

III. THEORETICAL EXPLANATION

The intrinsic magnetic moment of a nucleon, say, a
proton, consists of two parts, namely, the normal part
and the anomalous part. The Dirac equation of the
proton automatically gives the normal part (one
nuclear magneton) but fails to account for the anoma-

ious part (+1.793 nm). This has been explained in the
following well-known fashion: The interaction between
the proton field and the positive pion field leads the
proton to the virtual emission and re-absorption of
positive pions; the anomalous part of the intrinsic
magnetic moment of proton is then due to such an
interplay of these two fields. Similar arguments also
hold for neutrons.

Since virtual process is a second-order effect, inter-
mediate states are necessary. For a free nucleon, say, a
proton, the exclusion principle does not affect the inter-
mediate states (because no other neutron is present), so
the virtual emission and reabsorption of positive pions
gives the full amount of the anomalous magnetic mo-
ment of the proton. However, for a proton bound in
the nucleus, many intermediate states are blocked by
the exclusion principle, so the full amount of the anoma-
lous moment cannot be reached. In other words, the
ariomalous part of the magnetic moment of a nucleon is,
in general, quenched in the nucleus. These arguments
have been used earlier' —"to explain the magnetic
moment deviations. Now let us see if they are consistent
with the empirical observations made in Sec. II.

Roughly speaking, the reduction of the anomalous

magnetic moment of a nucleon in the nucleus is de-
termined by the level density of the intermediate states
permitted by the exclusion principle (and by the parity
rule as we shall see later). It seems reasonable to assume
that the level density of these possible intermediate
states is proportional to the "total" single-particle level
density of the nucleus. Taking the cold gas model as
first approximation, the "total" single-particle level
density is given by exp(nE'~'), where n is a parameter
and 8 is the excitation energy. "Since the single-particle
levels with j=l—~ are always comparatively higher in
energy than those with j'= /+ s (because of strong spin-
orbit interaction) and since the topmost neutron levels
in a nucleus are, in general, higher in energy than the
topmost proton levels in neighboring nuclei (because
of Coulomb interaction), the general feature of the
empirical observation (A) is completely explained.

Now let us consider the single-particle level scheme
proposed by Mayer and Jensen' more literally. We
notice that all levels between the major closed shells
(ma, gic numbers except 2, 8, 20, and 28) have the same
parity except for the last (highest) one whose parity is
always opposite to the others. For simplicity, let us
neglect all those (nucleon) states which are not between
the two major closed shells in which the original proton,
say, is situated. Consider a proton in the state (tslj)
and the virtual neutron in the state (ts'P j'). If these

' F. Bloch, Phys. Rev. 83, 839 (1951).
r H. Miyazawa, Progr. Theoret. Phys. (Kyoto) 5, 801 (1951).

A. de-Shalit, Helv. Phys. Acta 24, 296 (1951).' C. Candler, Proc. Phys. Soc. (London) A64, 999 (1951)."S. D. Drell and J. D. %alecka, Phys. Rev. 120, 1069 (1960)."E. Fermi, Nuclear Physics {University of Chicago Press,
Chicago, 1950).
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two (nucleon) states have the same parity, then all
virtual states in which the positive pion emitted or
reabsorbed has even orbital angular momentum are
forbidden, because the intrinsic parity of a pion is odd.
On the other hand, if these two (nucleon) states have
the opposite parity, then all virtual states in which the
positive pion has odd orbital angular momentum are
forbidden.

Now taking into account the exclusion principle, we
note that all states below the state (elj) usually have
less chance to be considered as intermediate (virtual
neutron) states, because all these states may be already
completely filled up by neutrons. However, it may
happen that in the vicinity of the state (nlj), states
with both parities exist and are not completely filled
with neutrons. Then the level density of the inter-
mediate states would be greatly enhanced and conse-
quently the anomalous magnetic moment of the proton
would approximate its free-particle value. Such a
situation is likely to happen near the end of a major
closed shell, because only there do (nucleon) states
with both parities exist. A glance at the level scheme
will show that when the proton is in the state (ep„,)
or (edal2) (m) 1)," the chance for the reduction of its
anomalous magnetic moment would be greatly de-
creased. This is exactly what we have observed. Of
course, similar arguments can be carried through for a
neutron, and good agreement is found in this case also.
This completes the detailed explanation of the em-
pirical observation (8).

Now let us consider the explanation for the empirical
observation (C). First of all, it is noted that increasing
the number of nucleons in the single-particle levels
with either j=l+-', or j =/ ——,', increases the level
density in the vicinity of this level and therefore
decreases the reduction of the anomalous magnetic
moments of the nucleons. Since a virtual neutron
(presumably a Dirac neutron with vanishing intrinsic
magnetic moment) has no orbital magnetic moment
contribution, the Schmidt formulas for odd-Z —even-E
nuclei' {pong z~ en~= j+5j/(j+1)](—',—p~'), where
j=l—

2& and @odd-z~ven-N j 2+ii„', where j=l+—',}
can be expected more valid as the magnetic moment of
proton (in the nucleus) approaches li~' (the free-
particle magnetic moment of proton). However, since
the magnetic moment of proton (in the nucleus) can
vary from one nuclear magnetron to p~', the experi-
mental magnetic moment distribution spreads out
widely between the Dirac and Schmidt limits. Finally,
the sign diGerence of p„' in these two formulas gives

~ The orbital angular momentum L of the pion is determined
by the conservation of angular momentum: (1) j=l&-,', j'=l'&-',
and l, l'WO then ~l' —l~ &L& ~l'+l&1~ (2) if j=l+im j'=1'W$
and l, 1'WO, then/1' 1&1

~

&L& ~—l'+l; (3) if l=0, 1'00, then
l'&L&l'+1 or l' —1&L&l'; (4) if l=O, then L=O or 1. From
this simple calculation, are see that although the single-particle
level 3sIg2 is also situated near the end of the magic number 82,
the intermediate states for a nucleon in this level is still quite
limited.

the complete explanation for the case of odd-Z —even-37
nuclei.

However, for odd-E —even-Z nuclei, the orbital mag-
netic moment contribution of the virtual proton
complicates the situation. For simplicity, let us consider
one intermediate (virtual proton) state only, say
j'=l'+-t2. (The virtual proton is presumed to be a
Dirac proton with magnetic moment of one nuclear
magneton. ) Now suppose that for a certain fraction
of time r the neutron (in the state j= /+2) is a virtual
proton and negative pion. As v increases the magni-
tude of the anomalous magnetic moment of the neutron
increases, and at the same time the orbital magnetic
moment contribution due to the virtual proton also
increases. Since the increments of both are not neces-
sarily linear in r, we shall assume that liz'fi(r) is the
intrinsic magnetic moment of the neutron in the statej =3+~, and gi(r) (j'+~) is the orbital contribution of
the virtual proton in the state j '=0+ ', , whe—re fi(r)
and gi(r) are functions of r. (li~' is the free-particle
magnetic moment of neutron. ) Combining these two
contributions to the magnetic moment, we have

ijodd N even ZAN f-l(—r)+-gl(T) (J + g)& (J 1+2) (3)

The fine structures of the two functions in Eq. (3)
are still unknown, except for the fact that these two
functions should be non-negative. t Also, obviously,
fi(0)=gi(0)=0.) However, with this single piece of
information, it is possible to explain the general features
of the magnetic moment distribution of odd-E —even-Z
nuclei. Since fi(7) and gi(r) are non-negative, the two
terms in Eq. (3) are always opposite in sign. Therefore,
if these functions are reasonably well-behaved, then it
can be expected that the magnetic moment will decrease
as r increases (that is to say, as the number of neutrons
in the state j=l+—,

' increases). Furthermore, even if
fi(r) = 1, the second term always leads to a deviation.
Actually, fi(r) can vary from one to zero, so the
distribution spreads out widely with more weight given
to the Dirac limit. This completes the explanation for
the case j=l+-', .

Now consider the case j=3——', . By similar arguments,
we may define two more non-negative functions, f2(r)
and g2(r), and have

@odd-N-even-Z = ~1'f ( 2)+r(g2)r(i '+2),
j+1

) (4)

It is noted that the two terms in Eq. (4) always have
the same sign. Therefore, even when the first term
cannot attain the Schmidt value Lthat is, f2(r)=1j,
the second term always makes a compensation for this
reduction. Consequently, the range of the magnetic
moment distribution is narrower in this case. From
Eq. (4) we can also conclude that the magnetic moment
tends to increase with increasing number of neutrons
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in the state j=l—s (that is, as r increases). However,
no empirical example for this statement has been found.

In Eqs. (3) and (4), the second terms are assumed
to vary more slowly and to be smaller in magnitude
than the first terms. Otherwise the magnetic moment
distribution would extend beyond the Schmidt limits.
However, if the first term in Eq. (4) nearly attains the
Schmidt value, then the contribution from the second
term would move the magnetic moment upward (in the
Schmidt plot) and eventually beyond the Schmidt
limit (rl is negative). As pointed out before, such a
situation is likely to happen near the end of a major
closed shell. A glance at the Schmidt plot will show
that this prediction is indeed fulfilled. In passing, it is
noted that for J= -'„semiatomic model and shell model
coincide, because the residual deformation of the core
vanishes in this case. ' This may partially explain the
fact that negative value of p only happens in such cases.

IV. GENERAL DISCUSSION

From the above discussion, it becomes clear that the
reduction of the anomalous magnetic moment of a
nucleon in a nucleus can be separated into two parts,
one of which results from the exclusion principle and the
other from the parity rule. The exclusion principle limits
the virtual nucleon states, and the parity rule restricts
the virtual emission and absorption of pions.

The regularities of the magnetic moment distribution
discussed in this paper originate from a single source
(except for the Coulomb perturbation), namely, the
strong spin-orbit interaction. In our treatment, the
spin-orbit interaction has been considered phenomeno-
logically, that is to say, we first assume the single-
particle energy level scheme of the j-j coupling shell
model, and then consider the virtual emission (and
absorption) of a pion in this scheme. Here the parallel
analog between the photon emission (and absorption)
in the atomic case and our present situation is obvious.
The main diAerences between them are that, firstly, the
former process is real but the latter is virtual, and
secondly there is only one type of photon but there are
three types of pions. Consequently, the rigorous way
to attack our problem may be considering the three
type~ of pions together in the so-called symmetrical
theory. However, our simple phenornenological treat-
ment may give some clue to the more rigorous formula-
tion. In conclusion, we may note that it is possible that
the spin-orbit interaction itself may be accounted for
by the so-called three-pion resonance (in the T=O,
7=1 state). " If this is indeed the case, then the regu-
larities discussed here would ultimately be the mani-
festation of the interplay of the three pion fields.

'3 J. J. Sakurai, Phys. Rev. 119, 1784 (1960).


