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The nuclear properties of 2:Mn® and some other nuclei in the region of (1f7/2) shell are investigated in
detail by using a new model (called semiatomic model) which is essentially an extremely weak-coupling
formulation of the unified model in contrast to the semimolecular formulation of Bohr and Mottelson. By
restricting the variation range of the deformation variable v to the interval 0y <#/3, a “zero-point”
surface-particle interaction which does not exist in the usual weak-coupling theory is naturally introduced.
The theoretical basis for this interaction and the problem of the range of v are discussed. A theoretical
relation for the magnetic moment ratio of two odd-A nuclei with conjugate configurations is tested in the
region of the (1f7/2) shell. The theoretical predictions are in good agreement with the experimental results.
An explanation for the positive-negative asymmetry of the quadrupole moment distribution of odd-4 nuclei
is suggested. It seems that this asymmetry has been so far overlooked without explanation. It is shown that
the E2 reduced transition probability in the semiatomic model is given by the following expression:
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where Bs(E2; J; — J) is the value which one obtains in the usual shell theory. The calculated E2 reduced
transition probability for 23V5! in the transition Jo=5/2 — J=7/2 is in excellent agreement with the value
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from Coulomb excitation measurements.

I. INTRODUCTION

HE “many-particle” shell model of nuclei (the
usual shell model including more general residual
interaction of the extra-core nucleons) has been reason-
ably successful in recent years. The calculations with
this model, which are, in general, very tedious, become
much simpler for those nuclei in which the (1f7/2) shell
is being filled, because in such cases the single-particle
level of the extra-core nucleons is so well separated from
the neighboring single-particle levels available that the
configuration interaction may be neglected. In the fol-
lowing discussion, we shall confine ourselves to these
simple cases.

Furthermore, we should also be able to describe the
motion of the core and its interaction with the motion
of the extra-core nucleons. In view of the close spacing
of the single-particle levels of the core, a complete
description of its motion should be very difficult in the
language of the shell model. Fortunately, this difficulty
may be surmounted, at least in the low-energy region,
by ascribing to the core certain collective degrees of
freedom as originally suggested by Rainwater! and later
fully developed by Bohr and Mottelson.?® In the Bohr
and Mottelson theory, the motion of the core is de-
scribed as surface-phonon (or surfon) excitation of an
incompressible fluid droplet and, to a good approxima-
tion, each surfon carries an angular momentum 27%. The
interaction mentioned previously is, then, attributed to
the deformation of the average central potential (for
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the extra-core nucleons). The shape of the average
central potential may be associated with the mass dis-
tribution of the core.

The problem of a single nucleon moving in a strongly
deformed potential without considering the residual
interaction has been discussed in detail by Nilsson.®
However, it has been shown that the effect of the re-
sidual interaction is always to reduce the deformation
of the average central potential,® which is supposed to
exist for completely independent particle motion as
treated in Nilsson’s paper. Therefore, the deformation
of the average central potential also depends upon the
intrinsic structure of the extra-core nucleons. For
better approximation, we shall assume that the total
deformation of the average central potential consists
of two parts, namely, the intrinsic deformation and the
residual deformation. The former is due to the intrinsic
structure of the core and the latter is due to that of the
extra-core nucleons.

In separating the nucleus into two parts, namely, the
core and the extra-core nucleons, our problem becomes
rather similar to the so-called “polaron problem” which
deals with the motion of an electron in a polar crystal.
The electron tends to polarize the lattice in its vicinity
and the polarization energy can be described in terms
of phonon excitation in the vicinity of the electron. In
other words, the motion of the electron is coupled to the
optical branch of the lattice vibration. From quite
general arguments, Landau” has shown that the energy
spectrum of a Fermi fluid can have a “Bose branch” in
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the form of phonons. Therefore, if we consider the core
as a droplet of Fermi fluid, we may argue that the
extra-core nucleons tend to deform the core, and the
deformation energy can be described in terms of phonon
excitation in the vicinity of the extra-core nucleons.
Consequently, the motion of the extra-core nucleons
is coupled to the “Bose branch” of the core and the
residual deformation is simply the equilibrium deforma-
tion of the core, caused by the intrinsic structure of the
extra-core nucleons.

The concept of the residual deformation, which is
essentially the original idea of Rainwater,! may be
further explained by using the arguments given by
Mayer and Jensen.? Since the total angular momentum
operator has the same structure in momentum space
(plus spin space) as in ordinary space (plus spin space),
the extra-core nucleons in a state of nonvanishing total
angular momentum (>3%) always exert pressure on
the wall of the average central (in general not spherical)
potential, which follows the mass distribution of the
core. Therefore, whenever the core remains in the state
of zero-point oscillation, the anisotropy of the mass
distribution of the core always follows the anisotropy
of the mass distribution of the extra-core nucleons.
From these arguments, it becomes clear that the re-
sidual deformation is essentially a sort of self-energy
correction (or effective mass correction) for the extra-
core nucleons. However, the magnitude of this correc-
tion should depend upon the intrinsic structure of the
core. In the theory of Bohr and Mottelson, this de-
pendence is characterized by the mass parameter B and
the elastic parameter C of the core.

The formulation given by Bohr and Mottelson is
actually equivalent to the picture discussed above,
except for the residual deformation of the core. In the
so-called strong-coupling case, detail analysis of the
residual deformation is rather complicated, because the
intrinsic motion of the extra-core nucleons cannot be
separated from the surfon excitation in the zeroth
order. However, if the surfon excitation is much higher
than the intrinsic excitation, the simple perturbation
method can apply and the effect of the residual de-
formation is simply the relative shift of the well-defined
intrinsic states of the extra-core nucleons.

In the present paper, we are particularly interested
in the extremely limiting case in which the off-diagonal
elements of the interaction between the core and the
extra-core nucleons can be entirely neglected. In other
words, the core can be considered as remaining in the
state of zero-point oscillation. In the usual Bohr-
Mottelson theory this zero-point state is taken as the
vacuum state of the whole nuclear system. This is
correct if the residual deformation is not included. How-
ever, since the residual deformation is a sort of self-
energy correction for the extra-core nucleons, the vac-
uum state of the whole nuclear system is not just the
zero-point oscillation of the core. Therefore, the in-
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trinsic motion of the extra-core nucleons should deviate
from the shell-model description even when no surfon
excitation occurs.

Now, taking into account the most important com-
ponent of the residual deformation, namely, the spheri-
cal harmonic of second order V', we can easily show by
a simple perturbation calculation that the energy shift
of a state with total angular momentum J (assuming
that there is no surfon excitation) is given by*
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where Q;° is the shell-model quadrupole moment in
the state J and the other symbols are the same as in
reference 4.

It should be noted that the derivation of Eq. (1) is
originally based on a static model; but the identical
result can be obtained also in a dynamical theory, if
one recalls that, in the body-fixed coordinate system of
the core with no surfon excitation, the quantum pro-
jection of J on the body-fixed 3-axis must be J (or —J)
and, therefore, only the diagonal matrix element of
V2 can survive in the perturbation calculation. It is
important to observe that the existence of the body-
fixed coordinate system, which is the most natural
system to define the symmetry of the average central
potential for the extra-core nucleons, is guaranteed by
the existence of the residual deformation.

It is emphasized that Eq. (1) is not a direct conse-
quence of the usual Bohr-Mottelson theory. It will be
shown in Sec. IT, however, that this minor shortcoming
can be easily removed by restricting the variation range
of the deformation variable v to the interval 0 <y <w/3.
The theoretical basis for this restriction will be dis-
cussed later.

Finally, some remarks about the role played by the
adiabatic principle in the ensuing discussion are in
order. In the strong-coupling case the surfon excitation
has always been assumed much lower than the intrinsic
excitation of the extra-core nucleons. Then, applying
the adiabatic principle, we can average the collective
dynamic variables, which describe the surfon excitation,
over an intrinsic state; and these averaged dynamic
variables can be treated as parameters. This situation
is similar to that of the molecular spectra and the strong-
coupling version of Bohr and Mottelson’s theory may
be called the semimolecular model. In the molecular
case, there is strong basis for assuming that the motion
of nuclei in a molecule is very slow compared with the
electronic motion. However, for a nucleus, there is no
apparent reason why the opposite case cannot occur.
The physical basis for the following discussion is the
assumption that this opposite case does exist. To dis-
tinguish it from the previous theories, our formulation
will be called the semiatomic model (not identical to
the shell model).
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To recapitulate, we may say that, when the surfon
excitation is much lower than the intrinsic excitation,
the nuclear system can be approximated by the semi-
molecular model; and in the opposite case, it will be
more closer to the semiatomic model.

A more rigorous formulation, which includes Eq. (1)
as its special case, will be presented in Sec. II. Then the
results of this formulation will be applied to the calcula-
tion of the nuclear properties of »sMn® and some other
nuclei in the region of (1f72) shell.

II. FORMULATION OF THE PROBLEM

For simplicity, let us consider a nucleus with »
extra-core nucleons of the same type in the shell with
total angular momentum j. Following the prescription
given in the introduction, the total Hamiltonian of this
nucleus may be written as follows?3:8
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where H , is the Hamiltonian of the extra-core nucleons
and H. is that of the core. The Hamiltonian A, is given
in reference 2 with the Racah tensors a;, playing the
role of the normal coordinates of the surface oscillation
of the core.

In Eq. (4), the total number of terms has not been
specified. In order to avoid the difficulty of redundancy
of coordinates, we shall assume that the total number
of terms in Eq. (4) should not exceed the total number
of degrees of freedom of the core (34" and A’ is the
number of nucleons in the core). However, practically,
only the terms with /=2 should be considered, so actu-
ally there is a deficiency of coordinates. In view of the
close packing of the core, this deficiency may be ex-
plained by assuming that most of the intrinsic degrees
of freedom of the core have been “frozen up,” so to
speak, by the exclusion principle, except for those near
the surface of the core. (Of course, these arguments can
apply to the low-energy region only.) It is noted that a
term which accounts for the binding energy of the core
should be added to H.; however, in the low-energy
region this term is of no relevance in the dynamical
sense.

8J. P. Davison and E. Feenberg, Phys. Rev. 89, 856 (1953);
C. Levinson and K. W. Ford, sbid. 99, 792 (1955).
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The Hamiltonian H, is the usual shell-model Hamil-
tonian except for the assumption that both the single-
particle central potential Vi(r;0;,) and the spin-orbit
interaction potential V(r;ai,) are nonspherical. It
should be pointed out that these two potentials should
in general also depend on the time derivative of aj,.
However, for two limiting cases, this dependence may
be neglected. One is the case in which the surfon ex-
citation is very low and consequently d;, is very small;
and the other is that in which the surfon excitation is
so high that, after time average, the intrinsic deforma-
tion drops out and only the residual deformation re-
mains. In the present paper, the latter case will be our
particular concern.

For simplicity, the residual interaction [last term of
Eq. (3)] has been assumed as of two-body type. It is
important to observe that the residual interaction so
assumed does not depend upon the deformation of the
central potential.

The origin of the coordinate system to which all
operators in Egs. (3) and (4) are referred coincides
with the center of mass of the core. The three axes of
this coordinate system are fixed in space; and this co-
ordinate system will be called the space-fixed system.

The shape of the central potential Vi(r,a1,) is as-
sumed to follow the mass distribution of the core,
which to a certain extent is also affected by the mass
distribution of the extra-core nucleons (because of the
residual deformation). We shall assume that the total
deformation of the core is given by the equation??

R'= Ro’[l—i—}l:, a*Y1,.(0,0)]
=R0,[1+lz ('— l)ﬂaluyl—ﬂ(0}¢)]7 (5)

where R’ is the radius of the core and Ry’ is the average
value of R’ (Ry/=1.5X10"184"% cm). Then, treating
the core as a Fermi fluid, the average central potential
may be written as follows®

Vi(riaw)=—Vof(Erri/R’)

-_——Vo/{l—l—exp[%(n—R'):H, (6)

where V, is the depth of the central potential and
f(Epr;/R’) is the Fermi distribution function. In writing
the central potential in this form, the parameters Er
and 7 (in energy) may be loosely interpreted as the
Fermi energy and the nuclear temperature, respectively.
From Egs. (5) and (6) we can easily show that

Vilrsou,)=— Vof(EFf’i/ Ry')
—VoRy's (’ri_RO’) Z alu*Ylu (0:§0)7 (7)
lp

9A. A. Rose, H. Mark, and R. D. Lawson, Phys. Rev. 102,
1613 (1956).
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where higher orders of a;, have been neglected. The
first term of Eq. (7) is isotropic and has the proper
form as required by the existence of the magic numbers,
and the second term is essentially the surface-particle
interaction operator proposed by Rainwater et al.l:10
Following Maris’ treatment™ of the spin-orbit cou-
pling in a nonspherical central potential, we may write

%{ Vzli' si+ li . SiVZ}
pV/

4m?2c?

{VViXpi—p:XVVi}es;, (8)

where A is a parameter. If the central potential V; is
spherical, the right-hand side of Eq. (8) reduces to the
familiar Thomas form. However, using Eqgs. (6) and
(8), it can easily be shown that the Thomas form is
still valid even to the first order of «y,. Therefore, the
spin-orbit interaction is not sensitive to the deformation
of the central potential. Neglecting the higher orders of
agu, we then have

HVoli-sitLi-s, Vo) =—
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The simple form of Eq. (9) may be useful in esti-
mating the strength of the spin-orbit interaction. For
example, by using the oscillator eigenfunction,* it is
found that the strength of the spin-orbit interaction is
proportional to

A7 (4 3) R[22/ (20 1) 1] exp — (1))

for n=1, where #» is the principal quantum number, I is
the orbital quantum number, and (2/4-1)!!=1X3X5
X+ ++ X (214-1). By using this expression and the shell-
model level scheme, we can estimate the relative
strength of the spin-orbit coupling in different regions
of the nuclear chart. For /=35 (in the region of g;Bi%?)
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In writing Eq. (12), only the terms with /=2 in Eq.
(4) have been considered.

It is noted that all operators in Eq. (11) are referred
to space-fixed coordinate system. However, each term
of this equation is invariant under space rotation, so all
operators can also be considered as referred to the body-
fixed coordinate system.

As mentioned previously, the interaction Hamil-
tonian H,, in Eq. (10) may be written in two different
forms, depending upon the intrinsic structure of the

10 E. Feenberg and K. C. Hammack, Phys. Rev, 81, 285 (1951).
1 Th, A, J. Maris, Nucl. Phys. 3, 213 (1957).
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and /=1 (in the region of ;yN'9), the ratio is approxi-
mately ten. This may explain the fact that j-j coupling
is more appropriate in the region of medium-weight and
heavy nuclei.

The angular variables § and ¢ in the second term of
Eq. (7) is interpreted as the angular dependence of the
deformation of the central potential in the space-fixed
coordinate system, so if the extra-core nucleons can be
treated as completely independent, we may need an
index ¢ for these angular variables to indicate that the
operator Y,(0;,¢:) is a single-particle operator acting
on the ith extra-core nucleon only. However, if the
correlation of the extra-core nucleons is not negligible,
ambiguity would arise. In view of the pairing effect, it
seems reasonable to assume that for even values of »
the correlation may be so strong that the extra-core
nucleons interact coherently with the core and, there-
fore, the mnet effect of this interaction may be con-
sidered as due to a single particle with a mass of all the
extra-core nucleons.® Then, the operator ¥;,(6,¢) will
be interpreted as acting on the center of mass of the
extra-core nucleons. As for odd values of », we shall
assume that the extra-core nucleons interact inde-
pendently with the core.

The total Hamiltonian can be much simplified by
transforming H, and the surface-particle interaction to
a coordinate system attached to the core (body-fixed
coordinate system). This transformation has already
been carried out by Bohr.? It is noted, however, that
the magnitude of the position vector r; is not affected
by this transformation, because only a rotation of the
space-fixed coordinate system about the center of mass
of the core is involved.

Now, following the notations of Bohr, the total
Hamiltonian may be written as follows:

ﬁ: (ﬁpo'i'ﬁp,)_'_ (ﬁvib+grot)+ﬁint, (10)
S ROLese| +5 Vallris), (11)
i<J
(12)
dy A=1

extra-core nucleons. We shall assume that, for even
values of »,312:13

. 175\12 1
H=(~—) -
4\dr/ TU+1)

X KB[ cosy (3.J52— J2)+3 siny (J,2— T,
(J=0), (13a)
=0, (J=0),
2 A. 8. Davydov and G. F. Fillippov, Zh. Eksperim. i Teor. Fiz.
%%59])4]97 (1959) [translation: Soviet Phys.—JETP 9, 1061
1 3
13 K. W. Ford, Phys. Rev. 90, 29 (1953).
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where J is the total angular momentum operator of
the extra-core nucleons and /)’ its projection on the
body-fixed A axis of the core; and for odd values of »,

Hin=—KB cosy T Vao(@)
s

1 v
"EKB siny 3- [V2(Q)+V22(2/)], (13b)

=1

where Q. can be equivalently considered as the angular
variables of the ith extra-core nucleon in the body-
fixed coordinate system. The parameter K in Egs.
(13a) and (13b) is defined by the following equation

K=/w¢nzj*(r)|:Vor6 (r—Ro") ] oni; (r)r*dr

=VoRo"| oni;(Ry) 2, (14)
where ¢.;;(r) is the radial eigenfunction of a single
extra-core nucleon.

Now let us consider the solution of Eq. (10). Obvi-
ously ﬁ »/ and H,, should be very small in comparison
with H,%. What is not obvious here is the relative mag-
nitudes of A » and A s with respect to H.,i and Ao
Since no theoretical determination can be made on
these relative magnitudes, the only thing we can do is
to investigate all possible cases empirically. In the
present paper, we shall consider the simplest case in
which both H,’ and Hin are much smaller than H.q
and H, Under this specification, we then have a
simple perturbation problem with the zero-order Hamil-
tonian given by

0=0 40+ H or. (15)

Let X,,(x) be the orthonormal eigenfunction of H,?,
with definite angular momentum J and projection u on
the space-fixed z axis (x represents the configuration in
the space-fixed coordinate system); and following the
procedure of Bohr,? the orthonormal eigenfunction of
Hop~+H .o, will be expanded in terms of the rotation
matrices D2 (&),

Pau™(B,7,E:) =2k eai”(B,7)Dur(£:), (16)
where Q is the total angular momentum of the core and
w its projection on space-fixed z-axis, and &; (i=1, 2, 3)
are the Euler angles specifying the body-fixed co-
ordinates. Then from Egs. (15) and (16) the zeroth-
order wave function for a state with total angular
momentum 7 and projection M can be written

¢[M(T)Q1J) :kz <QJ,"’ M—#l IM>¢QICT(B}’Y)
XDl (E)Xra—u(x), (17)

where the bracket is the Clebsch-Gordan coefficient.

a5 Mnbs 1935

For the time being, the detailed structure of the
eigenfunction X;,(x) is not necessary. The only property
which concerns us here is that the 2J4-1 eigenfunc-
tions Xj,(x) with definite J and different projections
(different u) form a (2J41)-dimensional representation
of the rotation group. With this property, Xs a—u(X)
in Eq. (17) can be transformed to the body-fixed coor-
dinate system by using the well-known relation!#14s

X7 m—u(X)= EA: Dy a7 (E)Xga(X'), (18)

where A is the eigenvalue of J5' and x’ represents the
configuration in the body-fixed coordinate system. The
orthonormality of the rotation matrices Dy, 27 (£;) re-
quires that Xs,(x") be also orthonormal in x’ space.

More precisely, the Euler angles &; in Eq. (18) have
different meaning from those in Eq. (17). It is obvious
that the normalization volume elements for both sides
of Eq. (18) are in x space and x’ space, respectively;
therefore, the Euler angles are regarded as fixed. On the
other hand, in Eq. (17), the three Euler angles, together
with B8 and v, are considered as dynamic variables for
specifying the shape of the core and the directions of
the body-fixed axes, so the normalization volume ele-
ment for Eq. (17) does include the Euler angles. In
order to remove this discrepancy, we shall renormalize
the whole expression on the right-hand side of Eq. (18)
by including the Euler angles in the normalization
volume element. After doing this, we have

Xy a—p(X)=N'"3 Dary a7 E)Xoa(x'),  (18)

where NV is the normalization constant.

It is clear that the step from Eq. (18) to (18’) has
been taken in order to identify the Euler angles which
specify the transformation of the intrinsic wave func-
tion with the Euler angles which play the role of
dynamic variables. This identification is always per-
missible if the residual deformation exists (because the
body-fixed coordinate system can be defined). Further-
more, the Euler angles as the arguments of the rotation
matrices in both Egs. (18) and (18’) cannot be in-
terpreted as additional degrees of freedom for the extra-
core nucleons. Therefore, there is no question of re-
dundancy of coordinates (as usually raised in arguing
the theory of Bohr and Mottelson).

After imposing Bohr’s symmetry requirements, the
expansion coefficients ¢qx7(8,y) must satisfy the fol-

14 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

s Tt is interesting to note that this equation has exactly the
same form as Eq. (16). However, conventionally, it should be
written as xum—u(X) =2A Dy—pa’*(&)xsa(x), where the star
indicates complex conjugate. The reason for dropping the complex
conjugate here is that we can replace D,x9(&) by D,%*(&) in
Eq. (16) without any loss of generality, and then all derivations
following Eq. (18) would not be changed except for replacing all
rotation matrices by their complex conjugates.
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lowing conditions?:

(kaT(ﬁ,y): (—1)Q¢Q—k7(ﬁ,7)’ (19)
= (— l)kﬂ‘PQkT(ﬁ: _'Y)) (20)
=21 Diw®(w/2,w/2,0) qi"(8, y—3m). (21)

(Note that £ must be even.) By using Eq. (19) and some
other formulas involving the Clebach-Gordan coeffi-
cients and the rotation matrices, we can easily show
that Egs. (17) and (18’) can be combined in a rather
compact form. (See the derivation in the Appendix.)

Yru(r,Q,J)= (V') % (QTRA|Ik+A)

X ear” B YD s (£)Xsa(x")
F+ (=D DyrernyT (£)Xsa (%)},

where N’ is another normalization constant.

The wave function given by Eq. (22) is in general
very complicated, because the expansion coefficients
oor™(Byy) should satisfy a very complicated set of
coupled differential equations. However, there is one
simple case (actually two simple cases as will be seen
later) in which only one expansion coefficient is neces-
sary. Suppose that, in the low-energy region, the ex-
cited states of the core can be entirely neglected. In
other words, the core remains in the state of zero-point
oscillation. Then, for the reason mentioned earlier,
A can only take on the value J (or —J) in Eq. (22).
Therefore, after setting Q=%=0 in Eq. (22), we have

<ZJ+1 "
You= 16”2) o(Byy
X{Dus"Xs5(X")+Dyr—s7Xs_s(x)}.

(22)

(23)

[The symbol 7 in Eq. (22) represents additional quan-
tum numbers necessary to specify the state of the core;
so long as we restrict ourselves to zero-point oscillation,
this symbol can be dropped without loss of generality. ]

It is important to point out that the function given
by Eq. (23) should not be misinterpreted as a strong-
coupling wave function in the sense of Bohr and
Mottelson. On the contrary, it represents the extreme
opposite situation. The strong-coupling is a different
representation in which 24-A and A are good quantum
numbers. Therefore, so far as the angular part is con-
cerned, the terms under the summation signs of Eq.
(22) form the proper basis of this representation. It is
noted that the expression in the curly bracket of Eq.
(22) is identical to the angular part of the strong-
coupling wave function given by Bohr and Mottelson
if k4+A and A are good quantum numbers. [In this case
too, there is only one expansion coefficient in each wave
function; but these expansion coefficients are different
from those in Eq. (22).] Furthermore, it is noted that
the function ¥ is not identical to the shell-model
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wave function which is a complete analog of the atomic
case. Therefore, this function may be called the semi-
atomic-model wave function.

The differential equation for the expansion coefficient
©0(B,v) has been solved by Bohr, and the solution is?

BC 5/41/2 1
e =[ 4 () | ool ——morw). @

The normalization volume element of ¢o(8,y) is dv
=p%sin3y dB dv. In writing Eq. (24), a misprint which
appeared in reference 2 has been corrected; and a
factor of (3/2)'2, which results from the choice of the
variation range of v, has been introduced. We shall now
discuss the question of the variation range of v, which
is an essential point in our theory.

In the semimolecular case, v is usually treated as a
parameter representing average value over one intrinsic
state. However, strictly speaking, v should be con-
sidered as a dynamical variable, especially in the semi-
atomic case in which the parametric approach is totally
unjustified. Therefore, the variation range of v should
be chosen in such a way that any y-dependent operator,
particularly contained in the total Hamiltonian of the
nuclear system, is single-valued.! By using this condi-
tion of single-valuedness and the fact that the three
body-fixed axes are physically equivalent, an appro-
priate definition of the range of v can be obtained.

It is noted that in the theory of Bohr and Mottelson,
the range of v has not been clearly defined although it
has been pointed out by Bohr? that Egs. (20) and (21)
“effectively” limit the range of v to the interval
0<y<mw/3. Furthermore, there is no theoretical basis
for making the conventional assumption that the range
of v is the interval 0<y<2w. On the contrary, it is
easy to see from the Hamiltonian of the core [Eq.
(12)7] that, in order to satisfy the condition of single-
valuedness, this interval should be excluded in the first
place. (The operator sin3y is obviously not single-
valued in the interval 0 <y<2r.)

In order to go further, we have to consider different
specific cases. Let us first consider an even-even nucleus
in the so-called deformed region and restrict ourselves
to the consideration of the lowest rotational band. Since
the total angular momentum of the extra-core nucleons
vanishes in this case, the surface-particle interaction
can be entirely ignored. Therefore, we are effectively
considering the motion of the core only. In the Hamil-
tonian of the core [Eq. (12)7, there are three more
v-dependent operators which need careful considera-
tion, namely, the three principal moments of inertia of
the core,

M=8Bg? sin?(y—Z\rr), (25)
A simple calculation will show that for fixed 8 all

A=1,2,3.

15 P, A. M. Dirac, The Principle of Quantum Mechanics (Oxford
University Press, London, 1947), 3rd ed., p. 43.
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possible values of My can be exhausted by varying v
in any one of the intervals nr/3<vy<(n+1)7/3 (n
= Ztinteger or zero) although relabeling the index A is
necessary when vy changes from one interval to another.
Obviously, relabeling the index X is equivalent to inter-
changing the body-fixed axes, which leaves Eq. (12)
invariant. Therefore, all the intervals mentioned above
are physically equivalent in the sense that all these
intervals describe the same physical situation. However,
in order to satisfy the condition of single-valuedness for
the operators M, the range of ¥ must be limited to
one (but any one) of these intervals, say, the interval
0<y<w/3.Itis noted that this conclusion is consistent
with the “nonsymmetric-top” theory of Davydov and
Fillippov.'6

For later arguments, let us consider the case dis-
cussed above a step further. It is easy to show that
Eq. (12) is invariant under the transformations:
y— —v and y — y+nn/3 (n=integer). Then, fol-
lowing the same procedure of proving the usual parity
rule, we can show that ¢g;"(8,y) as a function of vy
must satisfy the following conditions:

ear”(B,Y)=F 0™ (8, —7), (26)
= oq1"(8, v+nmr/3). (27)

It is noted that Eq. (26) is identical to Eq. (20) if we
recall that £ must take on even integers.

From the above discussion, we can only conclude
that the range of v must be limited to one (but any one)
of the intervals nw/3 <y <(n+1)w/3 when the inter-
action Hamiltonian H i, can be entirely ignored. Now
let us consider the case of odd-even nuclei and suppose
that the surface-particle interaction is weak and Hin
can be treated as perturbation. Such a case may be
represented by the wave function given by Eq. (22).
Then, by using Eq. (26) and Eq. (27), we can easily
show that the expectation value of Hi,, has the follow-
ing dependence on the range of +:

<Hint->[0,7r/3]::ly <I?int>[1r/3,21r/3]=0, (Hint>[27r/3,1r] = —I’
(Hint>[n1rl3, (n+1)7/3]1 = <ﬁint)[(n+3) /3, (n44) /3],
<I?int>[—(n+1) /3, —nmf3] = — <ﬁint>[mr/3, (n4-1)7/3],

where I represents the expectation value of Hin, when
the interval 0 <y <w/3 is chosen as the range of v and
n is a positive integer or zero. From these relations, we
can easily see that the expectation value of Hiny can
be made arbitrary by changing the range of v. For
instance, (Hin:) vanishes identically when the interval
0<v<2r is taken as the range of v. This undesirable
situation is obviously a serious contradiction to the
assumption of surface-particle interaction. On the
other hand, in order to avoid this contradiction, there
are effectively only two choices for the range of «,
namely, 0<y<#/3 and 27/3 <y<w. As for the final

16 A, S. Davydov and G. F. Fillippov, Nucl. Phys. 8, 237 (1958).
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decision between these two, we consider the extremely
weak coupling case (or the semiatomic case) in which
the expectation value of H i can be calculated explicitly.
(It is noted that the “zero-point” surface-particle inter-
action does not vanish when the range of + is limited to
either one of the intervals mentioned above.) Then, by
comparing the result with Eq. (1), we found that it is
proper to choose the interval 0 <y<w/3 as the range
of .

Finally, we come to the case of odd-even nuclei with
strong surface-particle interaction. In this case, we can
no longer treat Hiy as a perturbation. Furthermore,
since the total Hamiltonian including the diagonal part
of Hins is not invariant under the transformation vy
+nw/3 (n7%6m and m= sinteger), similar condition to
Eq. (27) is not valid. Therefore, there is some ambiguity
about the range of v in this case. However, with a con-
sideration of the condition of single-valuedness and the
general principle of physical continuation, we may
assume that in this case the range of v is also limited
to the interval 0 <y <w/3.

In the semimolecular model of Bohr and Mottelson,
the equilibrium shape of the core is supposed to be a
prolate or oblate spheroid (or symmetric top) depend-
ing upon the intrinsic structure of the extra-core
nucleons. For the case of oblate spheroid the average
value of ¥ (denoted by ¥) is usually taken as =. It is
noted that this assignment of 7 to ¥ is in some sense not
a contradiction to the above discussion of restricting
the range of v to the interval 0 <vy<=/3. However,
this consistency is rather incidental. We know that the
assignment of w to ¥ comes from the classical relation
(B cosy)av=—B which actually tells nothing about the
average value of . The only thing which we can derive
from this relation is that we may set {cosy)ay=—1.
Therefore, in so far as this classical relation is concerned,
we may effectively change {cosy).v into cosy and con-
sider = as the average value of v. However, the actual
average value of ¥ may be rather different from .
Furthermore, the average value of a function of 8 and
v should not just be a physically meaningless number
such as zero or = but a function of the more funda-
mental parameters B and C which specify the dynamical
properties of the core. However, this rigorous point of
view is usually not taken (the average value of 3 cosy
has not been rigorously carried out except for the
simple case considered in this paper), because the
Schrédinger equation is, in general, too difficult to
solve. As a final remark about the range of vy, we notice
the fact that the average value of a function of 8 and v
is in general not equal to the function of the average
values of 8 and v and that we fail to recognize this fact
leads to the doubtful belief that the equilibrium shape
of the core should be limited to a prolate or oblate
symmetric top.

By using the semiatomic-model wave function [Eq.
(23)7], the expectation value of the total Hamiltonian in-
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cluding first-order perturbation can be easily calculated
Ey=Eo+5/2hwet+Es'+Hine)y. (28)

The first two terms of Eq. (28) are “constants” which
come from A ,° and the zero-point energy, wo= (C/B)!2.
The contribution from the residual interaction, given
by the third term, will be discussed for a specific case
later. As for the last term, it can be written in two dif-
ferent forms, depending on whether Eq. (13a) or Eq.
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(13b) is used in the calculation. The derivations are
given in the Appendix, and the final results are: For
even values of v,

(ﬁm>,=51/2(22)(;1%)1/4(2]—1)/(J+1), (J#0),
(J=0);

and for odd values of v,

=0, (29a)

Bure==5(>)(2 ) <—15{ I ) ey B At e i Ll

2J+1

JG+HDT+1)(2T+3)

X; QI A D | (P [ 2 (D) T ) 12W (3T T 2]1)}. (29b)

Here (f27#*J,{f271>(J)jJ1) is the parentage co-
efficient and W (jjJJ; 2J;) is the Racah coeflicient. It
is noted that the expression in the curly bracket of
Eq. (29b) is just the shell-model quadrupole moment
Qs and, therefore, Eq. (29b) has the exact form of
Eq. (1) after setting the parameter e=S5Y2(27/16m)
X (#2/BC)V* in that equation. However, the intrinsic
quadrupole moment in the semiatomic model is not
identical to the shell-model quadrupole moment as will
be seen later.

III. NUCLEAR PROPERTIES OF ;;Mn%
A. Energy Level Structure

According to the shell model, the last five protons are
in (1f72) shell and the last two neutrons are in (2p32)
shell. Since these two shells are well separated, we shall
assume that the last two neutrons also couple to zero-
angular momentum and consider only the last five
protons as the extra-core nucleons. Then the configura-
tion of this nucleus can be simply written as (1f72)73.
The possible intrinsic states of this configuration are
J=3/2,5/2,7/2,9/2,11/2, and 15/2.4 All these states
are degenerate, if both A, and Hy, are neglected. In
general, the residual interaction is difficult to obtain
from the experimental energy levels, because the con-
tribution from Hy is also included in the experimental
values. In addition, the configuration interaction may
complicate the situation further. However, for the
special case in which we are interested, more reliable
estimation seems possible.

Assuming two-body force for the residual inter-
action and following the treatment of Goldstein and
Talmi,'” we can write the energy difference Ez,(f72%)
—Ez,(f757%) as a linear combination of the differences
E1/(f157%)— E1,’ (fys72) for appropriate values of I; and
I,. Here Ef(fys?) is the residual interaction for a
nucleus with configuration (f72)72, the possible states
of which are 7=0, 2, 4, and 6.# After some rather

17 8. Goldstein and I. Talmi, Phys. Rev. 102, 589 (1956).

straightforward manipulation of Racah coefficients and
parentage coefficients, we have the results

E3/2—E7/2= (19/84) (Egl“‘Eo’)‘i‘ (45/28) (E4I—E0’)
— (13/12)(E¢'—Ey), (30a)

E5/2~'E7/2= (17/12) (EZI*E(),)-— (25/44) (E4,—E0,)
—(13/132)(Ed'— E¢'), (30Db)

Eg/z—E7/2= - (3/28) (EZI—EO,)+ (369/308) (E4/'_'EO,)

— (45/132)(Ed'— E'), (30c)
Enpy=Eapp= (5/12) (Ey — Eo)— (1/44) (Ed — EY)
+(65/132)(Es'— E4'), (30d)

Ersjo— Enjp=— (5/12) (Eo/ — E)— (3/44) (E{ — EY)
+(163/132) (E/— E).  (30¢)

For simplicity, the indication of configuration has been
dropped in Egs. (30a—e). If the experimental values of
the excited states of s6Fe™ (or 24Cr®), which is supposed
to have a core of double-closed shells and six extra-core
protons in (1f75)-shell, are substituted in Eqgs. (30a-e)
the results are in agreement with the values calculated
by Lawson and Uretsky.!®* However, it is important to
observe that the energy differences on the right-hand
side of Egs. (30a—~e) cannot be taken directly from the
experimental values, because they represent the con-
tributions from the residual interaction only. Further-
more, the structure of the core of 2Fe® is different from
that of »sMn%5. Therefore, in order to take into account
these factors, the experimental values of the excited
states of ,Fe® must be corrected for the contributions
from Iz int’ before they are substituted in Egs. (30a—e).
Here Hi,/ means Eq. (13a) or Eq. (29a) except for
replacing the parameter K, B, and C by K’, B/, and (',
which corresponds to ssFe®.

Let us define S=5Y2(9K/32x)(#2/BC)!* and S’
= S5Y2(9K’/32x) (h*/ B'C")/*. Then, using Egs. (28), (29)

18 R. D. Lawson and J. L. Uretsky, Phys. Rev. 106, 1369 (1957).
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and (30), we have

Esjp— Erp=0.987-0.7745'+1.244S,  (31a)
Esjp— Erjs=0.243+0.4675"+0.794S,  (31b)
Egjs— Erjp=1.8184-1.0345'+1.110S,  (31c)
Eyyjo— Erjp=1.744+1.0545'40.3025,  (31d)
Ersja— Erjp=3.14141.2125"—0.552S.  (31e)

As pointed out before, the expression in the curly
bracket of Eq. (29b) is just the shell-model quadrupole
moment Qs°. For j=7/2 and »=35, the numerical values
agree with the results given by Mayer and Jensen* ex-
cept for a negative sign for Qs°. This correction has
been included in Eq. (31a). (The values of Qs° have
been tabulated in the Appendix.) The ground state of
2sMn% is J=5/2 and the first excited state is J=7/2
(0.126 MeV). Assuming that the second excited state is
J=3/2 (0.983 MeV), then, using Egs. (31a, 31b), we
can determine S=0.147 MeV and S’'=—0.487 MeV.
With these two parameters and Eqgs. (31c-e), the other
excited states of 5sMn?% can be calculated. The results,
presented in Fig. 1, are in reasonable agreement with
the experimental values. Moreover, the experimental
energy separation between the fourth and fifth levels
and their symmetric position between the third and
sixth levels are exactly produced in our calculation.

It is noted that Egs. (31a—e) can also be used to
calculate the level structure of 53V°.'® However, in this
case, both S and S” should be vanishingly small. This
is probably due to the fact that the core of 53V has the
same double-closed-shells structure as that of 2Fe and,
therefore, their intrinsic motions can be compared on
equal footing.

From the above discussion, it is clear that each
nucleus as an unique entity by its own, in general,
shares no exact common ground with other nuclei. Only
until this exact common ground is built up, it is im-
possible to predict the exact relation among nuclei just
by looking at the shell-model level scheme (as looking
at the periodic table in atomic physics). From this
point of view, the unified model may be considered as
a semiempirical method for building up such a common
ground.

B. Magnetic Moment

In the semiatomic model, the core makes no contribu-
tion to the nuclear magnetic moment. By transforming
the total angular momentum operator J of the extra-
core nucleons to the body-fixed coordinate system, the
magnetic moment operator can be written as follows:

1 (1—1)

+
p=g/J=g/ ¥ IDoxlfx’——

A=—1

DTy

(1419) R
D_n'J\' ¢,
V2

(32)
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2.194 152
(1.884) 15/2_
1.666 -
2 9/2 -
1.434 /2" (1.527) 9/2
(1.289) 11/2
0.983 3/2" (0.983) 3/2”
0.126 7/2_ {0.126) (7/20)
5/2 (5/2)

F1c. 1. Level structure of :;Mn?%., On the left are shown the
predicted energy levels (in MeV), parity, and spins. The exper-
imental values which are taken from reference 24 are listed in
brackets.

where Jo'=J,
j+1'= - (j]l—’ijzl)/\/j, and j_1,= (.71"‘*“1:.72,)/\/2.

(Note that J,," should not be mistaken for J,".) The
operators J.,’ are connected with J., (in the space-
fixed coordinate system) by the relation (J .,/)*= (J 1),
where the star indicates complex conjugate. The gyro-
magnetic ratio of a single extra-core nucleon is repre-
sented by g;/. Since the intrinsic gyromagnetic ratio of
a bound nucleon may not be identical to that of a free
nucleon, we have deliberately added a prime on the
symbol g; to indicate that the gyromagnetic ratio of a
nucleon bound in the nucleus may be rather different
from the Schmidt value.

In calculating the expectation value of the operator
@ with the semiatomic-model wave function, the last
two terms of Eq. (32) drop out and, using the well-
known integral formula for the product of three rota-
tion matrices, we obtain the simple result

pr=@ys=[72/(J+1) g/ (33)

It should be noted that Eq. (33) is not valid for J=1,
because in that case the residual deformation vanishes
and the shell-model wave function should apply. This
may partially explain the fact that small deviation from
the Schmidt limits, in general, happens in such cases.*
(A detailed discussion about this point will be presented
in a separate paper.)

At this point, it should be noted that the ‘“single-
particle” Schmidt model does not require the assump-
tion of j-j coupling and, furthermore, the “many-
particle” Schmidt formula is actually identical to the
“single-particle” formula when J=j. Only when J5j
does the assumption of j-j coupling make a difference.
Therefore, in order to test the comparative validity of
Eq. (33), in which j-7 coupling is also assumed, and the
Schmidt formula uy=Jgj, it is more proper to consider
such cases in which J#j. In addition, such a compari-
son may provide a good test for the idea of residual
deformation.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Eng-

lish translation (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1958), p. 373.
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TasLE I. Experimental verification of Eq. (23) in the region of
(1/7/2) shell. The experimental data are taken from the compila-
tion of D. Strominger et al. [Rev. Mod. Phys. 30, 585 (1958) ] and
the configuration assignments are given by Mayer and Jensen
(reference 4). The last three columns are the experimental and
theoretical magnetic moment ratios, with Ripeor® representing the
Schmidt values [Eq. (35)]. It is noted that according to Eq. (35)
the magnetic moments of the first three rows should be the same.
This prediction is obviously not fulfilled. It is remarkable that the
average value of the second row and third row of Rexp differs from
Rineor only by 3%,

Ele- Hexp
Z N ment 4 J(H) (nh) (nm)  Rexp Rineor Rineor®
nooe B s WL TS o2 1000 1000
B 3m 8V W I3 ras 154 1400
R R U W i e s 1400

However, we cannot compare Eq. (33) and the
Schmidt formula directly, because g; is still unknown
and g; is not correct. Therefore, we shall consider the
magnetic moment ratio of a pair of nuclei (the con-
figurations of which are conjugate to each other). The
advantage of approaching the problem this way is that
the formula of the magnetic moment ratio does not
depend upon the gyromagnetic ratio g; or g/ and,
therefore, a real test for the assumption of j-j coupling
can be made. Furthermore, we can also have some idea
about the degree to which the configuration mixing is
important in the determination of the nuclear magnetic
moments.

To start with, we have to make some conjecture
about how g/ depends on the configuration. It seems
reasonable to assume that g;/ is a function not only of
the total angular momentum j and the orbital angular
momemtum / (as in the Schmidt model), but also on
the total quantum number # and the number of nu-
cleons (or holes) ».2 Then, according to Eq. (33), the
magnetic moments of two odd-4 nuclei with configura-
tions (nl7)” and (nl7)* and with total angular momenta
J and J’, respectively, must be connected by the
following relation:

wslL(wdg) ]/ ur L(nlf)” 1=LT"+1)/(T+DIJ/T'),

lv|=1vl,

(34)

where » and »' can be positive or negative (odd) in-
tegers; when they are positive they represent the num-
ber of nucleons and when negative the number of holes.
The counterpart of Eq. (34) in the Schmidt model is

2 Here we shall follow the notations of reference 4. Strictly
speaking, the number written before the orbital quantum number
there is not the total quantum number, because it does not satisfy
the relation which gives the number of radial nodes (the number
of radial nodes is equal to the total quantum number minus the
orbital quantum number and minus one). However, this is not
our main concern, For a different system of terminology, one is
referred to C. D, Coryell, Ann. Rev. Nucl. Sci, 2, 305 (1953).
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given by

psl (nlg) Y us L'lg) =T/ T,

no restriction on %, #/, v and »'.  (35)
Here “no restriction” means that » and #’ can be
different, and the same for » and »’.

A comparison of Eq. (34) and Eq. (35) with the ex-
perimental data in the region of the (1f7s) shell has
been made in Table I. The results show that the rela-
tion given by Eq. (34) is better. From these results, we
can also draw the following conclusions: (a) The as-
sumption of residual deformation is wvalid; (b) 7-7
coupling is a good approximation; (c) The contribu-
tion of configuration mixing is small; (d) The Schmidt
formulas are also approximately valid (provided the
assumption made for g/ also holds for g;); this implies
that the experimental magnetic moment deviation from
the theoretical predictions are mainly due to the wrong
value assigned to the single-particle gyromagnetic ratios.

For J=J', Eq. (23) and Eq. (24) are identical except
for the assumption made about g;/. Therefore, a con-
sideration of such cases will form a test for this assump-
tion. However, this will be discussed in detail in a
separate paper along with some systematic features of
the magnetic moment distribution of odd-4 nuclei.

Now let us calculate the magnetic moment of »;Mn?,
using different relations. Needless to say, a comparison
of these results with the experimental value will also
provide a test of the validity of the above conclusions.
Taking the experimental value of pz/2(23V®)=5.139 nm,
we have, from Eq. (34), us/2(2sMn?%)=3.372 nm which
is in good agreement with the experimental value 3.461
nm. However, if we take the Schmidt value 1.655 for
g/, then from Eq. (33), us/2(2sMn?%)=2.955 nm. When
compared with the experimental value, the error is
approximately the same as the value 4.13 nm from the
Schmidt formula (in one case the prediction is lower
and in the other it is higher). From Eq. (35), using the
experimental value of 53V, we have us/2(5sMn®?)=3.671
nm, which is 0.210 nm higher than the experimental
value. However, the prediction of Eq. (34) is only
0.089 nm lower than the experimental value.

From the above discussion, it is clear that in the
usual Schmidt plots all nuclei with same j and I are
in general in different categories and, therefore, cannot
be compared on equal footing. Although the small
magnetic moment variation in each of these categories
may be explained by the local irregularities such as
core excitation, configuration mixing, etc., it is very
unlikely that the clear distinction among these cate-
gories themselves as shown in Table I can be solely
due to these local irregularities. Therefore, there must
exist some dominating factor which persists over large
region of the nuclear chart. This central idea derived
from the present investigation will be discussed in
detail in a separate paper.
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C. Electric Quadrupole Moment

Written in the body-fixed coordinate system, the
quadrupole moment operator is given by*3:2

o 167\ 1/2
0-0+0~(") EriDutae)
ni
3Z'Ryyr 1 \ \
J— 1 2
(512 [\/Z—B siny(Dog+Do ) +8 cosy Dud ]

(36)

Here Z’ is the total charge of the core divided by the
proton charge, Ry/=1.54"/3%X10"1% cm and A’ is the
total number of nucleons in the core. By a simple,
standard calculation, the expectation value of Q is given
by (see the derivation in the Appendix)

0s=(0)s=1(J2J0|J1)|?Q.*
| 21Z/Ry? [ 7 \ 1!
' 4W(S)U2\Ei5>

J(2J—1)
J+1)27+3)

where Qs° is the shell-model quadrupole moment given
by the expression in the curly bracket of Eq. (29b).
Obviously, the well-known conclusion that the quad-
rupole moment vanishes for total angular momentum
J=0 and J=1 still holds.

It is interesting to observe that the magnitude of the
intrinsic quadrupole moment in the semiatomic model
is reduced by a factor of |(J2J0|JJ)|? from the shell-
model quadrupole moment Q;° and this reduction is
“compensated” by the contribution from the core.
Since the contribution of the core is always positive in
this case, the compensation actually becomes suppres-
sion for Q*<0. It should be pointed out that, even in
the strong-coupling theory of Bohr and Mottelson, the
intrinsic quadrupole moment should also be approxi-
mately the product of the shell-model value and the
square of some Clebsch-Gordan coefficient. (The total
angular momentum of the extra-core nucleons in this
case can be considered only approximately as a good
quantum number.) Therefore, the effect of suppression
of negative quadrupole moments should also occur.
However, in this case, the contribution from the core
may be negative, because the average value of (3 cosy
can be negative. Therefore, the suppression of the
negative quadrupole moments is suppressed. Finally,
we come to such cases which may be represented by
the type of wave function given by Eq. (22). Then, the
intrinsic quadrupole moment becomes a linear com-
bination of the shell-model values for states with defi-
nite J and different projections, and the collective
contribution of the core is also a linear combination
of the quadrupole moments for states with definite
angular momentum of the core and different projections.
This is a sort of smearing out of both negative and
positive quadrupole moments.

2 M. Moshinsky, lecture notes (unpublished).
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In the above discussion, we have presumed the general
validity of our theory. This may not be legitimate at
the present stage. However, the positive-negative asym-
metry of the quadrupole moment distribution®? for
odd-even nuclei corroborates our picture very well. It
seems that this asymmetry has been so far overlooked
without explanation. Furthermore, in our theory, the
signs of the quadrupole moments can always be ex-
plained. For example, according to the shell model, the
quadrupole moment of 53V should be negative, but the
experimental value is ~+-0.3 b. However, in our theory,
it can be positive.?

The experimental value of ground-state quadrupole
moment of »sMn® is 0.55 barns.?* From this experi-
mental value and Eq. (37) in which (»?) is taken
approximately as (3/5)R¢* (Ro=1.543X 10~ ¢cm and
A is the atomic number),?® the dimensionless parameter
(#*/BC)!* is found to be 0.218. By using this paremeter,
the quadrupole moments for the excited states can also
be calculated easily from Eq. (37). These values are
not very interesting, at least for the time being, be-
cause their experimental determination is still very
difficult. The present purpose of this numerical calcula-
tion is to get some general idea about the order of
magnitudes of the parameter K and the surfon energy
fiwo; and to see if the assumption of weak coupling is
valid.

From S=5Y2(9K/32x)(#*/BC)"*=0.187 MeV and
(#*/BC)Y4=0.218, we have K=4.284 MeV. Since the
parameters B and C cannot be empirically determined
separately, we shall take the hydrodynamical estima-
tion for B, namely, Bx~3M'A’R?/8=1.902X10~%
MeV-sec? (M’ is the total mass of the core).2?! Then
we have C=19.172 MeV and %wo=2.089 MeV. Accord-
ing to the criterion given by Bohr and Mottelson,? the
“strength” of the coupling (not K alone) is determined
by the magnitude of the dimensionless parameter X
= [5K2/16mjhwoc J/2. Substituting the numerical values,
we have X=0.124. Therefore, the assumption of weak
coupling is valid.

Looking at the numerical calculations presented
above, one may wonder why the surfon excitation
cannot occur after the intrinsic excitation approaches
the same order of magnitude of 7w, This misunder-
standing originates from preoccupation with the semi-
molecular model. Up to now, the relative magnitudes
of Hyy, and H o have not been specified. In the semi-
molecular case, H,o is supposed to be smaller than
H.i. However, in the semiatomic case, the opposite
situation may occur. If this is the case, then we may

2 D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

2 In Table X.1, p. 168 of reference 4, the shell-model quadrupole
moment divided by (#?) for 23V5! is tabulated as +0.66, but it
should be —0.222 [see (A22) and subsequent remark].

2% Nuclear Data Sheets, compiled by K. Way et. al. (National Re-
search Council: National Academy of Sciences—National Re-
search Council: Washington, 25, D. C., 1959). )

25 J, M. Blatt and V. ¥. Weisskopf, Tkeoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952).
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solve Hyi for fixed H.o. Actually this case has already
been considered by Bohr,? although on a different
physical basis. The conclusion is that the first vibra-
tional excited state is 3%w,. Therefore, in calculating
the parameter X, we should have used 37w, instead of
#iwo. Then the value of X would be reduced by a factor
of (1/3)¥2 and the coupling would be very weak indeed.

We mention, in passing, a very interesting statement
made by Ford and Levison.?® After a general survey of
the experimental situation, they conclude: “The sur-
face coupling is self-reinforcing, being strong when
strong and almost negligible when weak.” The implica-
tion of this conclusion depends upon the approach
adopted in the original investigation. However, if our
theory is correct, this statement seems to indicate that,
in general, the nuclear system can be approximated in
the low-energy region either by the semi-molecular
model or by the semiatomic model.

D. Transition Probability

According to our assumption, an M1 transition is
forbidden. This is due to the fact that the off-diagonal
matrix elements of the magnetic dipole operator vanish
between states due to the recoupling of nucleons of the
same type.”” However, Coulomb excitation and life-
time measurements show that the transition /=7/2 —
Jo=5/2 in sMn% is the E2-M1 mixture type.?®?
Therefore, configuration mixing is possibly not negli-
gible and/or the specification of the core is not
appropriate.

It should be noted, however, that the statement that
configuration mixing is not negligible is not a contra-
diction to the conclusion drawn from the magnetic
moment investigation (Sec. B). In the case of the
magnetic moment, only those configurations which can
be mixed with the ground state contribute. However, in
the case of a transition, both initial and final states can
have configuration mixing. Furthermore, the magnetic
moment is given by the diagonal matrix elements of
the magnetic dipole operator in the space of total
angular momentum, while the M1 transition proba-
bility is determined by the off-diagonal elements of the
same operator [except for the factor (e/4w)Y?] in the
same space. Therefore, configuration mixing can be
important for M1 transition probability and at the
same time irrelevant for static magnetic dipole moment.
It is also clear that comparison between the conclusions
from static quadrupole moment and E2 transition
probability investigations is also in general misleading.

The calculation of configuration mixing requires de-
tailed information about the nuclear interaction; and,
furthermore, our lack of the exact knowledge of the
gyromagnetic ratio of nucleons in nuclei introduces

26 K. W. Ford and C. A. Levinson, Phys. Rev 100 1 (1955).
275, A, Moszkowski, Phys. Rev. 89, 4;,

28 (. M, Temmer, Phys. Rev. 104, 967 (1956)‘

® R. E. IHolland and F. J., Lynch, Phys. Rev. 121, 1464 (1961).
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further uncertainty in this type of calculation. In order
to keep our main idea simple and clear, we shall confine
ourselves to the consideration of E2 transition proba-
bilities only. Another reason for doing this is that a
nearly pure E2 transition can be experimentally pro-
duced by Coulomb excitation and, therefore, theory
and experiment can be compared with less ambiguity.*

In the body-fixed coordinate system, the electric
multipole operator can be written?2,25

Ze
M (Elm)=3", (Gi——511)7i2Dmlelu @; (38)
wi A

and the transition probability is then given by

OGN IAY

8r(4+1)  1/w\2HH
=" (=) B
1[(2z+1)11]2h< ) ),

> |G| (Em) | f)]?

mMjy

8r(lI+1) l(co)”‘“1

(39)

where B(El) is usually called the reduced transition
probability. In writing down Eq. (38), the surfon ex-
citation has been neglected entirely.

Now our problem is to calculate B(£2). In Secs. A,
B, and C, the static nuclear properties are discussed
thhout considering the surfon excitation, so the pro-
jection of the total angular momentum J on the
body-fixed 3-axis must take on the value J (or —J).
However, in the transition problem, we have to con-
sider the finite probability of the surfon excitation. The
“direct” contribution of the surfon excitation to the
total transition probability may be negligible, but its
effect on the intrinsic transition probability may not
be ignored. In order to take this effect into account,
we shall assume that the projection of J on the body-
fixed 3-axis will be no longer restricted to the value J
(and —J). Then, the proper wave function for this
problem would be

2T 41\ 172
¢JM:<1 2) ©o(B,7)

T

X2 ADun?Xoa (X)) +Dy—a?Xr-a(x")}.  (40)

It is noted that the wave function given by Eq. (40)
makes no contribution to the diagonal matrix elements
(in the space of the total angular momentum) of the
operators Hini, O, and @ (discussed in Secs. A, B, and
C). This is consistent with the assumption that the
surfon excitation is so high that only the residual de-
formation is significant. In other words, the wave
function given by Eq. (23), acting as a projection opera-

# K, Alder, A. Bohr, T. Huus, B, Mottelson, and A. Winther,
Rev. Mod. Phys, 28, 432 (1956).
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TaBLE II. E2 reduced transition probabilities in the region of
(1f2/2) shell, The experimental data are taken from reference 28.
The second and third columns are the spins of the ground state
and the first excited state, respectively. In order to avoid am-
biguity, only the experimental data from Coulomb excitation
measurements are taken. In these measurements, nearly pure E2
excitation is assumed. The approximation for (7%) in the calcula-
tion of B(E2) for 2;V¥! is taken as £(1.5)X1071341/3)2 cm? as usual
[however, see V. F. Weisskopf, Phys. Rev. 83, 1073 (1951), in
which 7, is taken as 1.2X10™8 cm].

B(E2; Jo— J)(e2X107*8 cm?)
Theoretical prediction

Coulomb Shell  Semiatomic
Element Jo(#) J (k) excitation model model
23VEL 7/2 5/2 0.0055 0.0075 0.0058
25Mn56 5/2 7/2 0.075 .-
2o Ti47 5/2 7/2 0.040

tor, sorts out those parts of Hin, O, and fi, which are
related to the residual deformation.

Following a similar procedure in the derivation of Eq.
(36), it can be easily shown that the E2 reduced transi-
tion probability can be written as follows (see the
derivation in the Appendix)®

2J;+1
B(EZ;]V—)];)=2

Bs(E2;J:— J;), (41)

7

where B*(E2;J;— Js) is the E2 reduced transition
probability in the usual shell theory.

Before presenting the numerical calculation, some
remark about the ordering of the initial state and final
state in calculating the matrix elements is in order. It
is a general rule that in the body-fixed coordinate
system, all expressions should be taken the complex
conjugate with respect to the corresponding expressions
in space-fixed coordinate system.!® Therefore, in calcu-
lating the matrix elements of an operator written in the
body-fixed coordinate system, we have to take the
complex conjugate of the initial state instead of taking
the complex conjugate of the final state.

The calculated value of B(E2) for 23V® in the transi-
tion Jo=7/2— J=5/2 is presented in Table II. The

31Tt is noted that in the calculation of static quadrupole mo-
ments, the parentage coefficients appear in the formula in their
absolute values, so their phases are irrelevant. However, in the
calculation of transition probability [Eq. (41)], the relative phases
of the parentage coefficients become important. Unfortunately,
there are some errors in the phase values in the classical tables
given by A. R. Edmonds and B. H. Flowers [Proc. Roy. Soc.
(London) A214, 515 (1952)7]. The misprints, which we found in
the tables we needed, are as follows: (()*/[(%)3(J")%J) must
change sign for J=2,4,6 in the partition [11117(1100) and
J'=3/2,5/2,9/2,11/2,15/2; and ((3)¥[($)*(J")3J) must also
change sign for J=15/2 and J’'=6. A simple formula for checking
the relative phase of two parentage coefficients can be found in
reference 14, p. 207; but a general formula is given by P. J.
Redmond [Proc. Roy. Soc. (London) A222, 84 (1954)]. (The
author is indebted to Dr. R. D. Lawson for pointing out this
formula.) For a practical way to check possible mistakes in sign
of the parentage coefficients, see Eq. (A19).
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agreement with the experimental value is very good.
However, the calculated value of B(E2) for 5sMn?® in
the transition Jo=5/2— J=7/2, which is approxi-
mately the same as that for »V®, is about ten times
smaller than the experimental value.

The configurations of 5sMn® and 53V are (1f79)~2
and (1f72)3, respectively, so their reduced transition
probabilities should be approximately the same if their
core difference can be ignored. However, in view of the
big difference between their E2 reduced transition
probabilities, the effect of the two (2ps2) neutrons in
the core of 5sMn% cannot be neglected. This point of
view is supported by considering the £2 reduced transi-
tion probability of 2, Ti*". In this case, if the two (1f7/2)
protons can be included in the core and the semiatomic
model is valid, then the E2 transition probability would
be vanishingly small. However, experiments show that
20T1% and 2sMn®® have approximately the same E2 re-
duced transition probability in the transition Jo=5/2 —
J=17/2. Therefore, in both cases, the two (1f7/2) protons
and the two (2p32) neutrons, whose effect on static
nuclear properties may be approximately included in
the core, become rather important in affecting the £2
transition.

From the arguments given above, we can also con-
clude that 50Ca*® would show very small probability for
Coulomb excitation. This conclusion is actually con-
sistent with the experimental fact that no vy ray
(E4£0.5 MeV) has been observed when 5,Ca’ is
bombarded with « particles (E.~3 MeV).

Detailed investigation about the E2 transition proba-
bilities of 32Ti*” and »sMn% would require some modifi-
cation of the intrinsic part of the wave function given
by Eq. (40). However, this will be considered in a later
publication. For the purpose of comparison, the experi-
mental values of the £2 reduced transition probabilities
of 95sMn5® and 4, Ti%" are also included in Table II.

IV. GENERAL DISCUSSION

Historically, the unified model of Bohr and Mottelson
is supposed to be an extension of the shell model by
including the motion of the core, so the shell model
must be logically a limiting case of the unified model.
However, from a general consideration of the adiabatic
principle, which is the physical basis of the semi-
molecular limit, it becomes clear that the other limiting
case of the unified model is possibly the semiatomic
model, but not the shell model. Fortunately, in many
respects, these two models, namely, semiatomic model
and shell model, are approximately equivalent except
for the residual deformation. This idea needs further
explanation.

In the calculation of the unified model, the constitu-
tion of the core should be specified beforehand (usually

32SG. M. Temmer and N. P. Heydenburg, Phys. Rev. 93, 351
(1954).
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on the basis of the shell model), but it can be arbitrary
with “some degree of freedom.” For instance, we could
also choose the double-closed shells of 5sMn®® as its
core, and consider the two (2p32) neutrons and the
five (1f72) protons as the extra-core nucleons. Under
this specification, the structure of the intrinsic part of
the wave function would change (for instance, isotopic
spin formulation becomes necessary) and the parameters
B and C, which specify the dynamical properties of the
core, should also be modified. Then we have a problem
which is formally different from that discussed in the
present paper. However, in principle, the results of
these two problems should approximately agree, pos-
sibly with some improvement in the calculation of the
transition probability. The main point at which we are
driving here is that the effect of the residual deformation
should be included in both cases. In general, when the
nuclear system is divided (say, according to the shell
model) into two parts, namely, the core and the extra-
core nucleons, an interaction between these two parts
always exists (no matter how strong or how weak it is)
and may not be easily explained by the shell-model
calculation alone; only when the extra-core nucleons
are in a state with total angular momentum J=0 and
1/2, will this interaction disappear. This is the central
theme of the present paper, which has been constantly
emphasized.

APPENDIX

Some of the derivations presented here are not en-
tirely new. They are included only for the purpose of
completeness and orientation.

A. Derivation of Eq. (22)
Combining Egs. (17) and (18'), we have

Yru(r,Q,J)= N2 %(Qf,u M—yu|IM)

X o™ (8,Y)Dur®Dar—un "X g5 (X'). (A1)
By the well-known relation!*
Dy Doy’ =3~ {T1J apirpaa| J w1+ pis)
57
XTI 1T amama | T it mo) Dy pomasmy”’, - (A2)

Eq. (A1) can then be written

‘)bIM(T:Q’])
= (N E {{QIRA | Tk~+A) 0oi™ (B,¥) Darrsa ™ sa (x")

HQJ—k—A[I— (k+A)) oo™ (B,7)

XDa—rny™Xs_a(x)}.  (A3)
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Finally, by using Eq. (19) and the symmetry relation
of the Clebsch-Gordan coefficients,4

QT —k—A|I—(k+4))

= (=D)HHQIRA|TRA-A), (A4)

we obtain the final result.

B. Derivation of Egs. (29a) and (29b)

The result of Eq. (29a) is trivial, and the only calcula-
tion we have to carry out is the following integral

e[

0 1 /3
X / B exp{ ~%(BC)1/2B2 }dﬁ / cosy sin3ydy
0 0

9 H2 1/4
_4(7r)”2(~5;(?) ’

The derivation of Eq. (29b) is a little bit complicated,
but there is a standard procedure to follow. Expanding
the intrinsic part of the semiatomic-model wave func-
tion by using the parentage coefficients,?®

Xys(x)= IJ'”JJ>=§ GIL I0DINDN T 0IT),

where symbols for additional quantum numbers such
as seniority are dropped for simplicity. Then we have

<ﬁint>J =

K 7 h2\V4 . a .
4(_,,)1/2(%) %}I G I

XIS Fa@)| U030, (AS)

The matrix element in the summation is well known!4:26
[also see G. Racah, Phys. Rev. 62, 438 (1942)7:

(G IDIT lé Voo(@)] 7771 (T0)4IT)

=vQI+D (=D GVl )W (G577 5 20)

XV (JJ2; —JJ0), (A6)
where
S\ (27— 1) (25+1)(25+3)
Yol )=—( — . (A7
(ivai=—(=) pa (A7)
and
V(JJ2; —=JJ0)=(—1)2 (2J+1)"V2(J2J0|JT). (A8)

In order to use the tabulated values of the parentage
coefficients, we need the following relation [G. Racah,
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Phys. Rev. 63, 367 (1943)]:

.
o y —, 1/2
=(=1 [ 27+1) ]
X (P [ ()507). (A9)

Combining all equations from (AS) to (A9) and multi-
plying and dividing the final result by (72) at same
time, we obtain Eq. (29b).

C. Derivation of Eq. (37)

The result of the second term of Eq. (37) is easily
obtained by using the well-known formula!*

J3¥ J J
f Darsss?* D7Dy

8w?
=( >5u1+uzn35m1+m2m3<] 1J o iue ] J 3,Uv3>
2J3+1

X(T1J gmyms| T yms).  (A10)

2J+1
2741

Gl (2 1)~
Therefore,
27 41
B(E2;Ji— =2 |(ff2MfmlfiMi>|2(
mM ¢ 2]
But

<XJ¢A¢ (x) l é erV s, (Q) | Xrsag (x)= (

7

2J+1)
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Similarly, the first term is given by
Qu(first term)
=2 {J2J0| JINT2Tu|JT)
m

16m\12 »
X5,,‘o<]"’f],(-5-) > r2Y,(Q)

=1

)
12 ,

Z 7Y 5 (91')

=1

=|(JZJO!JJ)I2<]'”JJ’(?) ]"’JJ>,

(A11)

where the expression in the curly bracket is just Qy°.
For numerical calculation of Eq. (A11), all equations
from (A6) to (A9) should be used.

D. Derivation of Eq. (41)
By using Eq. (A10), it can be easily shown that

1/2 v
> 2 AT 2M pm | T M KT 228 g0 | T b Y(Xgin; (X)) | 2 er 2V 2,(Q) | 7,0, (X))}, (A12)

=1

1)[ ZA: (T 728 | T b )X g0, (X7) lé er#Y o, (@) | Xapa, (X)) ]2 (A13)

(T 228 | Tih ){we(r[ (2T ;1) (27 A1) 24| V| 5)

X; (=72 G T 0T DG DT 17T IW (53T 1T 55 270)},  (Al4)

where the expression in the curly bracket is independent
of u. Combining Eqgs. (A13) and (Al4), we have the
final result.

E. Numerical Calculation

The calculation of Qs and B*(E2) can be made
simpler by considering first the reduced matrix ele-
ments defined as

FJ1J2E<].”]1“ Z Y2(Qi)”jyj2>/

LI+ 27 +1)T2 (A1)
For » extra-core nucleons of the same type, the factor
7 and e; can be considered separately.

A nucleus with » extra-core nucleons in the shell j
can also be considered as (2j41—») extra-core holes
in the same shell. However, the reduced matrix ele-
ments should not depend on which point of view is
taken. Let us define Fy;,s,? as the value of F,;, calcu-
lated from the former point of view and F; " that

from the latter. Then we should have
(A16)

It is noted that both F;s,” and Fy,;,* are not sym-
metric in sign in exchanging J; and J,. In order to
remove this “undesirable” feature, we define

Fr5,?(s)=(—1)7771(2j+2—»)
X [(2J1+ 1) (2j2+ 1)]1/2FJ1-72py

Frp.p=Fr .t

(A17)
and
Frn(s)=(=1)7"12j+1=v)""Fs5,t,  (A18)

where s means “symmetric in exchanging J, and J,.”
These definitions are suggested by Eq. (A9). (Also note
that J and J’ in that equation are half-integer and
integer, respectively—or vice versa.) Then, from Egs.
(A16), (A17), and (A18), we have

2j+1— 1/)
2j+2—»
XL@TA1) 272+ 1) J92F 1,0, (s).

P (s)=(— 1>h+h(

(A19)
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Equation (A19) is a practically useful relation for check-
ing the numerical calculations. By using the tables of
parentage coefficients [see footnotes to Eq. (41)] and
Racah coefficients (K. M. Howell, Research Report

F.
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59-1, University of Southampton, England), both
Fr.7,7(s) and Fj ;,(s) have been calculated for the
case in which 7=7/2 and »=35. The results, when written
in the matrix form, are

(T /73\2 111\ 173\
E RO O N
20\14 10\ 7 2\35
1112 131 L/1\2 1765\
o7) mE e w00
10\ 7 402 2\30 8\42
173\12 1711\ 1 1/13\12 11
WA s
150\12|  2\35 2\30 12 6\14 2V3
F1112”(5)=4<-—-) , (A20)
63 1765\12 1713\ ST\ 1721\
T R R A R
8\42 6\14 24\22 6\11
11 172112 1/13\2 2
e
2V3 6\11 28\22 7
2 1
0 0 0 0 — +—(34)12
L 7 28 J
and
(1 7\ 1112 176\
SO AET A o e
20\6 15\42 12\35
1/1\2 13 1 111\ 1 713\
R O ) NI
15\42 180 V2 18\10 36\14
1 (6)1/2 1(11 vz 1(13 L | .
150712 12\35 18 10) 72 18 70) 182
FJ;JZ"(S)=3<~—> , (A21)
63 1/13\12 1 /713\12 177\ 17 7\
R G R GO
36\14 18\70 36\22 9\110
11 177\ 1 /13\12 11
R T
182 9\110 252\22 21V3
11 17 71\
0 0 0 0 +—— ———(—)
213 168\34

L

where the rows and columns are labeled by J1(J2)=3/2, 5/2, 7/2, 9/2, 11/2, and 15/2. It is a simple matter to
check that Egs. (A20) and (A21) satisfy the relation given by Eq. (A19). In making numerical calculations of Q*
and B*(E2), one of these two matrices is essentially the only thing we need.

The numerical values of Q;* for the configurations (1f7/2) can be calculated by using the general expression
in the curly bracket of Eq. (29b); for the configuration (1f7/2)~%, we have

J (%)
Qu/(r)

3/2
—0,400

5/2
+0.619

+0.,222

7/2 9/2

—0,333

11/2
+0.071

15/2

+0.498

(A22)
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and for the configuration (1f7/2)3, the magnitudes of Qs°/{r?) in (A22) remain the same but all signs must be

changed.

As mentioned previously, the sign of Q3s* for the configuration (1fy2)~% in Table VIII.3 of reference 4 is incor-
rect. This can be alternatively checked by using the shell-model wave function expressed in terms of Slater deter-
minants. For three particles (not for three holes), this wave function can be easily constructed:

U gy oM=32= (3/14)2 |y 807,30y 552 | + (3/14)112 (W88 o gy 5212 |4 (3/10) 2 | rr o721 302 .

— (1/10)12 | ra o %221 %5752 | — (6/35)2 |y o¥ %y ot B 722

(A23)

where |y ipmi";mi"" | is the totally antisymmetric normalized Slater determinant.
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Some systematic features of the magnetic moment distribution of odd-4 nuclei are established and
theoretical explanation for them is given. The explanation suggested here is based on the idea of quenching
of the intrinsic magnetic moments of nucleons in nuclei. This idea was created independently by several
investigators many years ago and has been re-examined in detail recently. Essentially all these investigations
predict that the magnetic moment of an odd-4 nucleus should be somewhere between the so-called Schmidt
and Dirac limits. However, if the exclusion principle is the only reason for the quenching, the magnitude
of the quenching turns out to be too small to explain the large magnetic moment deviations from the Schmidt
limit. Therefore, the question is whether this idea is valid or whether, even if it is valid, other factors such as
configuration mixing, core excitation, etc., are more important. In this paper, these questions are attacked
empirically. Furthermore, it is shown that the parity rule may also be an important factor in quenching the

intrinsic magnetic moments of nucleons in nuclei.

I. INTRODUCTION

T has been shown by Bow that the magnetic moment
ratio of two odd-Z-even-N (or odd-N-even-Z)
nuclei with the configurations (#l7)” and (nl7)” for the
incomplete-shell nucleons of the odd parts, respectively,
is given by the following relation (assuming j-j coupling
and pure configuration)!:

wal (nl5)" )/ ur [ (nlf)" I= (J'+ 1)/ (J+1)J",
lp[=1], 1)

where » and »’ are positive or negative odd integers
(absolute value < j+43). When they are positive they
represent the number of protons (or neutrons), and
when negative the number of holes. The total angular
momentum of the ground states of these two nuclei
are J and J’, respectively.

The result of Eq. (1) is derived on the basis of the
semiatomic model which is an extremely weak-coupling
case of the unified model given by Bohr and Mottelson.
The counterpart of Eq. (1) in the shell model (or

1Y. F. Bow, preceding paper, Phys. Rev. 130, 1931 (1963).

Schmidt model) is as follows (also assuming j-7 coupling
and pure configuration)?:

wal (nlf)" Y/ wr [ (nlg)" 1=T/T",

no restriction on », »', #, and »’. (2
b 2 b

Here “no restriction” means that #» and #’ can be either
different or equal for arbitrary » and » (absolute value
<.

A test for the comparative validity of Eqs. (1) and
(2) has been made in the region of (1f72) shell.! The
results show that Eq. (1) is better. It is the purpose
of this paper to extend this investigation to the whole
range of the nuclear chart and, furthermore, to see if
there is any regularity (in addition to the Schmidt and
Dirac limits) in the magnetic moment distribution of
odd-4 nuclei. Theoretical explanation for the system-
atic features found in this investigation is also at-
tempted.

When J=J’, Egs. (1) and (2) become identical
except for the more strict restrictions on » and # in

2M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (John Wiley & Sons, Inc., New York,
1955).



