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An approximation developed by one of the authors for treating macroscopic bound systems in the ground
state is applied to a homogeneous system of nuclear matter using a simple separable potential. More exten-
sive numerical results are given for the density, energy density, chemical potential, effective potential,
momentum distribution, pressure, and density correlation function. In addition, we discuss an ambiguity in
the calculation of the pressure arising directly from the approximation. This ambiguity and its eBect on
the nuclear parameters at the physically meaningful point of zero pressure is treated in detail. In particular,
three diRerent expressions for the pressure are derived which lead to zero-pressure values of —14.4, —17.0,
and —17.5 MeV for the binding energy/particle and 0.8'/, 0.95, and 1.01 F for the interparticle spacing. A
numerical examination of the density correlation function suggests, as expected, that correlations of more
than two particles are rare at nuclear densities.

I. INTRODUCTION
' 'N a previous paper, ' one of the authors developed
- ~ an approximation for calculating the ground-state
properties of nuclear matter based upon the general
formalism of AIartin and Schwinger. 2 In this paper we
present more extensive numerical results for the volume
properties of nuclear matter, and discuss certain am-
biguities which appear in the calculation of the
pressure. A later paper will be devoted to an extension
of the approximation to the calculation of surface
properties.

The basic approximation involves a treatment of
two-particle correlations which is sufhcient to remove
hard-core divergences and which allows for the effect
of these correlations on both the energy-momentum
relation and the momentum distribution. The approxi-
mation leads to a two-particle scattering matrix which
is independent of many-body effects, so that only
one-particle equations need to be solved self-con-
sistently. As a result, the necessary numerical com-
putations are straightforward, particularly for a simple
interparticle potential.

The development of the approximation leads to a
set of equations which determine various parameters
of nuclear matter as functions of the density. To
determine these parameters for the physically mean-
ingful case of an unrestrained system, one must impose
the requirement that the pressure be zero. This re-
quirement may be formulated in several ways which
are completely equivalent in an exact theory. For
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example, we know that at zero temperature and
pressure the chemical potential equals the total energy
per particle. An equivalent statement of the T=O,
P=O condition is that the slope of (E/.V)(p) be zero.
The former condition was the 6rst imposed in con-
nection with the application of the Martin-Schwinger
formalism to nuclear matter. ' The second condition
was used by Falk and filets' in their investigation of
nuclear compressibility. Numerical results for the
parameters of interest were different in the two cases.
Such differences are to be expected unless the approxi-
mation is capable of giving correctly both the chemical
potential and the slope of the (E/1V)(p) curve a,t
saturation. The extent of these differences rejects the
error involved in our approximation.

There are, of course, other elementary relations
among the theI modynamics quantltles which ln pl ln-
ciple can be used to 6nd the density of the zero-pressure
system. One can also use for the pressure an expression
which we will derive from momentum transport
considerations. All of these relations would give the
same results in an exact calculation, but the answers
may di6'er to some extent in any approximation. The
best choice probably depends on just what quantity
is to be calculated, and it is our feeling that there is no
clear-cut basis at present for preferring one relation
over another. We treat on an equal footing the choices
used in references I and 3 together with the expression
which we will derive from momentum transport
considerations.

In the following sections we discuss the general
derivation of the approximation, the calculation of the
parameters for a homogeneous system as functions of
the density, the calculation of the pressure and the
parameters of the system at zero pressure, and the
calculation and interpretation of the density correl. ation
function.

' D. S. Falk and L. Wilets, Phys. Rev. 124, 188/ (1961).
877
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II. THE APPROXIMATION

Since a detailed derivation of the approximation
which we use has been given in reference 1, we will
limit ourselves to a brief recapitulation. We deviate
from reference 1 by postponing the transformation into
momentum space to as late a stage as possible (antici-
pating the extension of the approximation to inhomo-
geneous systems) and by avoiding the use of Fourier
series expansions over a finite time interval, which have
rather obscure physical significance.

A many-fermion system may be described by a
sequence of n-particle Green's functions describing the
propagation of e particles through a many-body
background. These functions are defined as expectation

values of time-ordered products of field operators,

G„(1. n; 1'. . n')=—(—i)" expLip Q; (t,—t,')]
X(2g(1) "y( )P( ') 4~(1'))),

where each numerical argument is used to indicate a
set of space-time coordinates (as well as a discrete
internal coordinate specifying spin and isospin, which
we will usually neglect). T is the usual time-ordering
symbol, and the exponential phase factor is inserted to
simplify boundary conditions.

A set of coupled integrodifferential equations for the
Green's functions may be obtained from the equation
of motion for the field operators. For a nonlocal
potential v these equations are

Q 2

i +—+p G„(1. n; 1'. ~ n')+i (1, n+1~ p~ 1",n+1")G„+i(1"2 n, n+1"; 1' n', n+1+)
Bt~ 2m

n

=P (—1)' '&&(1—j')G„ i(2 n; 1' . j—1', j+1' .n'). (1)
1

dip(N)/dkV =
I&, . (2)

The advantage of the canonical expectation value
lies in the cyclic properties of the trace, which lead to

The integrations extend over space and time coordi-
nates and include an implied sum over internal co-
ordinates. The notation n+ refers to t +=t„+0, and it
indicates the correct ordering of field operators in the
potential term.

The expectation values of various operators can be
expressed in terms of the G's; in particular the number
and Hamiltonian operators may both be written in
terms of Gi. Furthermore, the nature of the expec-
tation value used in defining the Green's functions acts
as a boundary condition on Eqs. (1). We are actually
interested in the expectation value

(X), =PV,Z, (X) ixicV,Z, PV))

for a state of JV particles (in a fixed volume) with
ground-state energy Ep(cV). However, it is convenient
to treat this as the low-temperature limit of a grand
canonical expectation value, (X)"p= Tr[e "&~ "~&X7/

TrLe "~ &~&), which is taken over a complete ensemble
of states with temperature 1/ir and chemical potential
p. As ir —+ ~ the weighting exponential picks out the
state or states for which E—IJS is a minimum. This
occurs at E=Ep(lV), where, V is such that

antiperiodic boundary conditions on the Green's
functions for real r. Thus, "-

G„(ti——r) = —G„(ti——0), (3)

Then, an expansion of G& and G& as traces shows that
for arbitrary complex r

G&(r, t+ r; r't') = G&(rt, ; r't')—
This relation establishes a proportionality between the
Fourier time-transforms of G& and G&. By expressing
these transforms symmetrically in terms of a function
A, called the spectral function, one may write G~ in a
form which insures the satisfaction of the boundary
conditions,

if r is real and positive and all time coordinates lie in
the interval 0 to r.

The use of these boundary conditions for real r
necessitates using analytic continuation to obtain the
limit ir ~ ~. For a one-particle function such as G~
this continuation may be carried out by expressing
the Green's function in terms of a spectral function.
Thus, one defines two continuous functions G& and
G& by

Gi(1; 1') =G&(1; 1'), ti)ti'
=G((1; 1')) ti(fi .

Gi(1; 1')= e '"&" "'&A(riri'&p)X&
1+e &er-

t&t'.
gtQ t
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dQl—A (r,r, '(a) = tI (r,—r, ').
27r

(7)

The number and energy averages may be written in
terms of A as

(X)= IEr p(r); (H) = dr e(r),

The magnitude of the discontinuity in G~ at t~ ——t~',

which is determined by the 6eld operator anticom-
mutation relations, establishes a normalization con-

dition on the spectral function,

where

and

d(o A (re))
p(r) =

2%' 1+8

A (rr'(o)d~ 1 v2

e(r) = —lim — (o— +p,
2zr r'~r 2 2zzz 1+g'++

are particle and energy densities which will be constant
for a homogeneous system.

The use of a spectral representation for G~ is a special
case of a general method for analytically continuing
any function F(t t ) w—hich is discontinuous only at

and satisfies either periodic or antiperiodic
boundary conditions within 0 to 7 ~ These conditions
imply that the function may be expressed in terms of a
spectral function P(~) by

F(t—t') =Fy(t —t')+ &
—i&a&I—I'&p(~) ~&

27ri

where the upper and lower signs are appropriate for periodic and antiperiodic functions, respectively. Ke may
then define a function of complex energy,

It(d & (CO )
F(a)) =Fp+

27)' GO
—

CO

such that the spectral function is just the discontinuity in F(&v) across the real axis,

P((o) =hm, ~0 (1/z) [F((o—zz) —F(cu+ze) j. (12)

The replacement F(t—t') ~ F(~) ~F(Id) is a linear transformation which obeys general convolution and
product rules. One may show that if

F(t—t') = dt" G(t—t")H(t"—t'), (13)

when 0(t, t (~, and Ii, G, and II are all periodic or all antiperiodic, then

On the other hand, if
F(a)) =G((u)H((a).

F (t—t') =G(t—t')H(t —t'), (15)

where neither G nor B contains delta functions, then

1
F(o))=— d(dI, ItMz g (Gdz)BC(Mz)

(-', [COth (-', ZG) Ir) $"+-', [COth (-', uezr) $")
(2zl') c0—co y

—M z

(16)

where the script letters designate spectral functions and e~ ——+1 if G is periodic or —1 if G is antiperiodic, while

e2 depends similarly on H. Finally, if

then

and

F(t—t') =G(t' —t),

~(~)= —8(—~),

F (co)=G(—(o).

(17)

(18)

(19)



RE YNOLDS AND

pro»m
n e uatipn oi

atlng
wh

i2; 1'2')

manipulated to

2. 2 )+Gi(1 ' 2 )Gi 2'
V2

(G (12, 1/2 )—Gi(1 i 1 ) i~—+ +
25k

+v
2m

+)G (24 . 1&4+)} (20)3+)G (24; 2'4+)+G2('3'G4 1234~ ir2i3y4+) G,(13;(13I, I 13)(24I vl 2 )( '( '

. „ion of its iilferd side of this equat,
f G and the exact

ion and a dls
~

the right-han
~

e ex ress»&
ation is o tain

rewrite
b ed by neglecting '

'
b th the approximate e p

h t the interaction
e 1. ~ y '

G o h' h t. 1) wit
on can

b introducing t
und in re ere .

unctionf r 6) ln integral fprm y "
5 Thus, we have

equatlPn
ion

2

term, t o„ndary condit (

1 G, (2. 2)(12IvI 1'2'

ether with the bou

G 1'2' 1'2')2. , ) G, (1;2 )Gi(2; 1')+'G2 G, (1; 1')Gi(2, 2

(22)
. G,(, . ;)(12I,I12)G2(1' ' ""(1 1')=Gi (1 i 1 )

and

) t be truncated y aP

3.880

t of coupled equations (
G G and G, may be

the inlnite se
e uatlons for G~

appr oxlmat
F this purpose th

Yo produce a compu
b atlpn Of smaller 6'ssome G Qy a corn ina

mmetric ln varia
~ - ic

d to the interval 0 to r.'
bles are restricte o

'
ns as well as eth free time variabhere the time integrations

6 the function T by9'e then de ne

' G (2; 2') = (12 I
v

I
12)G2(12; 1'2',(12

I
T

I 12)Gi(1; 1' Gi (23)

and so obtain

G ' 1; 1')Gio(2; 2')(1'2'I TI 1'2'.—12I.I21')+i (12I.Ii2G,o;, ;
' ' ' T 1'2'. (24)

t p
'

and rimed coordinatesT ssy etrclnt p a
itsp n G

de6nition into t e exac
gives

higher order functions,

G 12 1'2')=Gi(1:1)Gi(;G ' —:' 2 2') —Gi(1;2'2 (

G 12' i2 v
' ' ' '; 1' Gio 2'; 2'). (2g)Gp 12; 12)(12IvI 1'2')Giv(1'; 1)G,

g 2

i—+ +p Gi(1;1')
2w

where

r, (1; i)= —i (12ITI12)G, 2; 2+

23 and Gy lsG v=G,G,T (instead of 23),No, 6dG

hi o d
b (21) h2g'

as the solution to ( ev h
) P )

same as

d d Bh
bo h 22)ta o d(27) wthth

h th rr t1-2 nd
of the basic conservatioll1'-2' symmetry, th

. al self-energy func lvtion (or e ec iv

dTh f h
m rules w icth Gd

of G~ are satisfie . ei ate the Green s d 6 t
whlc ls n

latin the primed indices.

equa
that we have not sa i

rvation

The exac ext pression for

for G2 shows
a con ltlons. Since the conserv

G (1:1')=Giv(1; 1')

aw
thermodynamics qG —. » 0 iI 1I) (27) .G, (12 ;i2)(i2I.I-1'2')G, (

'
h our approximat'ation on theand the G2 equation, wit in o

and L. P. Kadanoff, Phys. Rev. 124, 28y
G. Baym, ibid. 127, j.391



yUCLF- AR MATTEOUN D —STATOF GRVOLUUMF PROPER

5 we lnv estig«e the 'c between numerical)os . . of the discrepancy e w

rom the sales
rmod namic re

beIt' t 1 t
h

' t threga
igu

'
e .1 tion is conceptuallyer ressure re a

'

11

gyppp
n in cases where it is ndisturbing even in c

mporta»ceilnpo) ta In an/
ear matterh,s diKculty o' ""'"

jnteractjon allow
oft is

n instantaneous inTh fact the ~ is an
the substitution

.
' —t. ') (29)T ri rg ti )ti(12 »'2') =~(ti —t~)&rir»I

me 1satis6eswhere the common-tim

(rir2t
~

T
~
r, r2lTl ' 't')={&rir2lvlrir2— 1'1r2 'V f2 I'1 )}s(«)

"' "'t"
I
Tlri"2't')' 1' f2 t f1 f2"ADO(r, "r2' t; r,f1f2 'V

ancl

to functions of compm lex g
wo ant p

(32)

is erloc 1c 0over 0 to 7. since it is e

1'1 f2 ', 1'1 f2 GO 1'1I'i rg I
i'i 2 lT(M)lrir2),1' —f1f2 'V f2 1'1( )) i' = I' — i )+ (rirzl'vlri r2 )i1 (I'i rp' , ri(rir2l T((o)

)
ri r, =1 2 ( )) f flf2 & flf2 1

where

31)1'' G1' r2t; r2$t )=$Gi (rit; i'i t

h transformationdifference, we m y p
12 K ot th tA'

e
' '

his e uation depend on y
o) ogh h' d 'bdb E

Since e
ener y whic is

i erioclic functions. '

Aov(rix2, ri'r2'~) =
(2v-)' GO

—071—(02

1 h 1 'dioikd2 A (I'iri Mi)A (r2r2 C02

2 (33)

'
e coordinates and a

'" *'"""
d

gpfh 1
p

This result m y
into momentum stransformation in o

(r,r, l
T ((u)

l
ri'r2') =

l
(ri —r2l T (~) lr '—r ')p Kl — r—

(2~)'

dkdk' v,— —' ' r' —r2') (klTK(ca)l '. 34l+'k (r,—r )—'k' (r —r ' '. 34
(2v)' 2

This reduces the T qe uation to

k'' —k v —k')+ dk" (klv K
' " I k,k v — ' " k")AKoo(k"(o)(k"

l TK(M)

pectra 1 function for fre p

1

2 252m

K' k' -'
A» (klan) = (d+ 2ti

&klTK(~)l )=k' =,klvlk) ( l l

artie es = —k'/2m) givese articles A'(ka)) = 2v-5(&uf the momentum-space swhere the use o

(33)

(36)

'
in is negative
) h

U d t}1ets will become unity.factor in brackets wi

cu k')=(klvlk') —(klvl —')

2 —K'/4m —k' "/mM+ 2'
e uation for the energy-depen tendent

th ti t t'system,t apart from t e an
'

2 —K'/4m to the energy.potential and the addition o 2p, —
ntial simphci yTh esult revea s the esse

n that the T matrix is
'

consideration
eo t es'f h ingularities ot wle g

is for
imme '.

h line along e'll have a brancwi.

is
' '

r of the deuteron.is the binding energy owhere ag is

ainst both the
bt h

e be made aga1ns
ese

ul the neglected sym
p

roximations are usefu ePP'"' ' ll; p„t,"„tnot numeriea y
'



i882 J. C. REYNOLDS AND R. D. PUFF

(klvlk")(k" IS(cp) lk')
+ dk" (41)

pp —k'"/222A (4p')
T (4p+4p')

1+et(0 T
Z(cp) =

for the appropriate matrix element of the interaction,
then

The remainder of the approximation is the relation satisfies
between G~ and the self-energy Z expressed by Eqs.
(25) and (26). By applying the usual energy trans- (kl~(~)lk'&=(klvlk'&
formation to (26) one may obtain

where V" is the spectral function corresponding to T.
However, for ground-state nuclear matter this result
is subject. to an important simplification. On the one
hand, V will vanish at all real co' for which T is analytic,
i.e., for ~'(erg —2p, , while on the other hand the factor
(1—e'"") ' will vanish for pp')0 asia ~ pp. Thus, the
second term will be zero if 2p &or~, which we find to be
true for nuclear matter at reasonable densities. When
the appropriate spatial variables are inserted into the
remaining term and the low-temperature limit is taken,
the equation becomes

Z(rory 4p) =
dc'

2'
df 2d1'2

dK

fri+r2 r2'+r2'~
xexp 2K

I

2 2 )

'I/2

4p+ +p, G(rr'4d)
2fn

X(rl r2
I
Tx(pp+pp') I

ri' —r2 &-4 (r2 r24p'). (39)

It should be noted that this equation implies that Z(&p)

is continuous across the real axis in the region
co(~~—2p, which includes the region co(0.

Finally, Eq. (25) may be transformed into

(r I
T (~) lr') = (r

I

L."5'-(~')+P'4. (~')
+P'. (~')+ (9/4)~«(~')l lr'&

+(r I L
——,'S„(m')+~s„(~')+~s„(~')

—(9/4)5'«(~')11 —r'&
I
- =-.2.-x*i4- (42)

A second consequence of the internal variables is
that Eqs. (9) for the particle and energy densities must
be multiplied by a degeneracy factor of 4. The numerical
results which we give for these quantities do not include
this factor.

III. RESULTS POR HOMOGENEOUS
NUCLEAR MATTER

For a homogeneous system, single-particle functions
such as A(rr'&p) depend only upon the difference of
their spatial variables and may be expressed by Fourier
transforms in one momentum variable, such as

A (rr'4p) = e'" &'—"&A (k4p).
(22r)p

Equation (39) and (40) can then be written in mo-
rnentum space and the function A (k4p) is given by the
discontinuity in G(kcd) across the real pp axis. The
expressions for 2 and for the particle and energy
densities require a knowledge of A for negative fre-
quencies only. In this region, however, the properties
of T imply that Z(4p) is continuous, so that A will
vanish except in the neighborhood of pp=4pp(k) where
4pp(k) is the solution to

dr" Z(rr"4p)G(r"r'&p) =b(r —r'), (40)
4P 2 (k) =k'/2222 —P+Z(k, 4P 2 (k) ). (43)

which establishes G(&p) as the energy-dependent Green's
function for the self-energy Z. The spectral function A
is then obtained as the discontinuity in G across the
real cv axis.

Throughout our derivation we have neglected the
effects of spin and isospin, which produce a few modifi-
cations of the 6nal formulas; we will state these without
proof. We assume that the interaction between particles
conserves the total spin and isospin and is symmetric
in these variables, i.e., that there is no spin-orbit
coupling or electromagnetic effects. In this case the
T matrix becomes a combination of the two-particle
scattering matrices S„, S», , S,», and 5»» for singlet
(spin)-singlet (isospin), triplet-singlet, singlet-triplet,
and triplet-triplet scattering, respectively. If each 5

Using the Taylor series expansion of Z(4p) about this
point, we find

where
2 (k4p) = 2v-p(k)bl 4p —4pp(k)$,

p(k) = (1—4l&(k, ppp(k))/pl4p) '.

(44)

(45)

This procedure is carried out in detail and the unique-
ness of the solution is discussed in reference 1. It is also
shown that BZ/84p is negative, so that 0&p(k) (1.

Since the spectral function 2 (k&p) describes the
energy spectrum of a single-particle excitation of
momentum k, we see that the negative region of this
spectrum either consists of a single delta function of
strength p(k) or else vanishes completely, depending
on whether k is smaller or larger than a cutoff mo-
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mentum kr determined by coo(kr)=0. Of course, since
p(k) (1, the normalization condition (7) implies that
A (k~) is nonzero in the positive energy region. However,
this portion of the spectrum, which describes hole
excitations, does not contribute to Z or to the particle
or energy densities.

For a homogeneous system, the momentum dis-
tribution is given by the integral of A over negative co,

which gives p(k) for k(kf and 0 for k)kf. As in

conventional perturbation approximations there is a
sharp cutoff momentum kf, but the distribution below
the cutoff is now decreased. by the factor p(k). This
implies a corresponding increase of the cutoff mo-

mentum beyond the conventional Fermi momentum.
It is convenient to define an effective potential which

is a function of momentum alone by V(k) =Z(k,eo(k)).
Then V(k) and p(k) are solutions of the simultaneous

equations

and

kg-k2
V(kg) = dk, p(k, )

[kg)(kf 2

kp+k22
Tg,+pm} V(kg)+ V(k,)+

l
) k,—k,

)—2p }) 2
(46)

kg —k2 kg+kg ) kg —k,
p(kx) = 1— &k2 p(k2) Tz,+vz'I V(kg)+ V(k2)+

[k2) (af 2 2m ) 2
(47)

where T' is the energy derivative of T, and kf is related
to gaby

p= kf2/2'+ V(kg). (48)

From Eqs. (9) (in the zero-temperature limit) we may
obtain the particle and energy densities as

and

p= p(k),
,
"(2)'

dk -k'
p(k)

~i&~f (2&)'
+kV(k) .

2m
'

(49)

(50)

The numerical solution of these equations was per-
formed on an electronic computer. The solutions of
Eqs. (46) and (47) were obtained for a range of kf, and
these results were used to evaluate Eqs. (48) through
(50). The integrations were approximated by Gaussian
quadrature and the resulting nonlinear matrix equations
were solved by a multidimensional Newton-Raphson
technique.

As in reference 1, an interparticle potential was used
which is the sum of three separable terms; an 5-state
hard shell, and two Yamaguchi potentials acting in
single and triplet spin states,

0.,=2.004 F ', ),=3.64037 F ',
a&=2.453 F ', X~

——8.6949 F ', r, =0.45 F, (53)

while the average nucleon mass was taken as
(2m) '=20.7347 MeV-F'

The results of the calculations are shown in Figs. 1
to 4. Figures 1 and 2 show the values of ~, p, p= kg/2m
+V(kr), L'/S = e/p, and dE/d, V=de/dp (computed
from the values of e and p) as functions of kr. Figures
3 and 4 show V(k) and p(k) for selected values of kr.
The results for E/X appear to agree with those given

by Falk and Wilets' for a more limited range of k~.
As shown in Fig. 2, the numerical results for p, , as

given in our approximation by Eq. (48), violate the

O.I4

O.I2

-0.2

-0.4

reference 1 and were obtained by fitting the singlet
phase shift at 310 MeV, as well as the usual low-energy
scattering data and the binding energy of the deuteron.
We have

~= ~.+~r.&.~+~rF~', (51)

xA, , g 1
~r(, , ,) (rr') = — ' —exp} —n„,(r+r')).

2ns rr'

where the I"s are spin-state projection operators and

mX, 1
w. (rr') = lim —b(r —r.)8(r' —r,),

"o "2mrr'

O. IO

0.08

0.06

0.04

0.02

-0.6
tp

la

-0.8

"I.o

-l.2

- l.4
Here n and ) are the range and. depth parameters for
the attractive potential in the appropriate spin state
and r, is the hard shell radius. For a potential of this
sort the scattering matrix may be obtained analytically. '
The values used for the parameters are those given in

0' } } I }

0.6 0,8 I.O I.2 I.4 l.6 l.8 2.0

FIG. 1. Particle density p and energy density e as functions of
the cutoff momentum ky. Both p and ~ must be multiplied by a
degeneracy factor of 4.
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FIG. 2. Chemical potential p=krs/2&a+ V(kr), binding energy
per particle s/p, and the derivative of energy with respect to
particle number at constant volume ds/dp as functions of the
cutoG momentum kJ.

(Both these expressions should be multiplied hy a
degeneracy factor of 4, which will be omitted from our
equations and numerical results. )

Unfortunately, since our calculated p violates the
relation is=de/dp, Eqs. (54) and (55) lead to different
values of the pressure and thus to different densities
for uncompressed matter. We refer to (55), which was
used in reference 1, as the p pressure and to (54), which
was used by Falk and filets, ' as the F-% pressure.
The corresponding values of kI at zero pressure will be
called the p and F-W zero points.

In choosing between expressions for a quantity which
differ only because of the approximate nature of a
calculation, it is impossible to single out one relation
as correct in any absolute sense. %e might expect both
p and de/dp to be less accurately given by any approxi-
mation than e or p. Indeed, we can see no reliable basis
for preferring either (54) or (55) and suggest that the
discrepancy between results at the two zero points
should be viewed as a reAection of the inaccuracy which
is inherent in the approximation. Nevertheless, we
wish to derive and use a third expression for the
pressure which, although not inherently better in any
sense, is at least a plausible alternative, and which
will be required for consistency in the extension of the
approximation to inhomogeneous matter.

This third expression is derived from the definition of
pressure in terms of the local transport of momentum.
The local momentum density g(ri) is given in terms of

exact thermodynamic relation p, =dE/dlV. It is the
extent of this failure and its effect on the calculation
of nuclear parameters which we want to investigate.

k)=0.6

25 k)=0.8

IV. COMPUTATION OF THE PRESSURE

The results of our calculation specify the properties
of nuclear matter as functions of the cutoA momentum,
or equivalently of the density. 9"e must now determine
the point on these curves which corresponds to an
actual nucleus. As we stated before, the necessary
physical condition is that the nuclear material is un-
compressed, i.e., that the pressure of the system is zero.

One equation for the pressure may be obtained from
its de6nition as the negative rate of change of the energy
of the system with respect to its volume, with the
number of particles held constant. If surface e6'ects are
neglected, the energy density e=Ep/V will depend on
the volume only through the particle density p= iV/V,
so that the pressure will be

(ciEp ( 8 de
Lve(iV/V)j

~

=,—., (54)
(ciV s (BV dp

ol, bv using p=-de/dp,

-75 =

X- -IOO =

-l25—

-I50—

-200
0

k)= I.O

kg= I.2

0.2
I

0.4
I

0.6
I

0.8 I.o

I =pp (55)
FIG. 3. Effective potential V(k) as a function of k/k~ for

discrete values of ky.
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FIG. 5. Pressure P' as a function of the cutoR momentum kf as
calculated from Eqs. (54) (F-W), (55) (p), and (80) (I -T). These
functions must be multiplied by a degeneracy factor of 4.

unrealistically simple potential which was used in our
calculation, it is difFicult to infer much from these
results about the inherent accuracy of the approxi-
mation or the best choice among the pressure relations.
It should be noted that at all three zero points the
momentum distribution p(k) shows a significant de-
crease from unity, although not as great as was expected
in earlier work with the approximation.

V. THE DENSITY CORRELATION FUNCTION

Since the basic task of a many-particle theory of
nuclear matter is to treat particle correlations, it is
desirable to investigate some measure of the correlation
effects which occur in our approximation. The simplest
description of these effects is given by the density
correlation function f(rgr, rsfs), which measures the
probability of simultaneously finding a particle at r&

with spin and isospin i t, and a second particle at rs,
with spin and isospin l s This fun.ction may be expressed
in terms of G~ as

f(rid 1 r t2) G2(r-lfltrsi 2t rid lt rsvp 2t ) ~

From Eqs. (21) and (23) we have

(81)

FH:. 6. ERective potential V(k) and momentum distribution
p(k) as functions of k/kr for the p and local transport (L-T) zero
points.

f(rirs) = —Gi(rit; r it) G(ir, trsr )+Gi(rit; rst+)Gi(rst; rtt )

+s i1"(rrrst; rr'r, 't')(ri'rs't'~ 7
~

ri"rs"t")h. (rr"r&"t"; r,r&t ), (82)

where A" is given by (31) and h. by the corresponding equation with interacting G's. By introducing the usua, l

energy transformations, we may obtain

where

' chal 2—A (rirsru)
— 2'

dM—lim PC (rirs, M-—$e) —C(rirs, to+se)],
QQ 2X

(83)

C(ce) = cV'(cu) T(c0)A(re) (84)

However, since in the low-temperature limit A" and T are continuous for co(0, the effect of taking the discon-
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unction whtch ts (at zero1 tore lace y ecA b th orresponding spectral func
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tinuity of C across the real axis is simp y p
temperature)

t, r(rtr2rt r2 Ge) = A r,rr' —+re' ~A rmr..'—ce' j.
— 22~ 2 & 2

s ace and using (36), we, thus, obtainBy transforming to momentum space an
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dk
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dk
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'l'he consideration of interna. vaiia,l .' bles corn. licates
bl for a general interaction,this expression consideraMy or

but for our particular choice p ', isof a otential, w ic is
independent of isospin and ac y e

~ ~

ts onl in the estate, t e
le. There are four cases, e-situation is fairly simp. e.

ave theon whether the correlated particles have e

in (87), which describes exclusion effects, vants es or
while the third term vanishes for

'
h are exclu e rom

state and do not interact. For unlike partices, t e
combinations o ef the singlet and triplet scattering

matrices which form T are

Isospin
same
opposite
opposite

a&(r) =-
P lr'i«

(88)

Spin
T=5,opposite
T=5]same
T= (S,+S,)/2,opposite

d S are the appropriate scattering matrices.
1 df hThe four correlation functions, as ca cu a

own in Fi . 7, alonglocal-transport zero point, are s ow
with the function

TABLE I. Parameters of nuclear matter at zero pressure.

Cutoff momentum k~
Chemical potential p,

Density pb

Interparticle spacing ro
Energy density ~"
Energy per particle «/p
p, pressure I'„"
l.-T pressure I'q, r"
F-% pressure PF ~4

s (55)

1.8491
14 437
0.09028
0.871

—1.3034
—14.437

0.0
0.9073
1,4 approx

Pressure expression set to zero:
I.-T (80)

1.6865
—24.028

0.06991
0.949

—1.1903
—17.026
—0.4895

0.0
0.38 approx

F-W (54)-

1.575
—27.7

0.0579
1.01

—1.01
—17.5
—0.59
—0.27 approx

0,0

I&
—1

MeV
F 3

p
MeV-F '
MeV
MeV-F '
MeV-l'
MeV-F '

from results given in reference 3,Quoted or calculated f om res
~ These qpaptitiep ~&st ~ rppltip &e, y a
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