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Variational Calculation of the Ground State of the Lithium Atom
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The ground state of the lithium atom is calculated using wave functions containing interelectronic
separation terms. A 13-term properly symmetrized variational function is employed yielding a ground-state
energy of —14.9559 in units of e'/2ao as compared to the previous best value of —14.9542 using the super-
position of 45 configurations and the experimental value of —14.9561. A brief discussion of applications
and extensions of the present work is given along with solutions of the integrals which occur.

INTRODUCTION

HK principal defect in most approximations to
the wave functions for many-electron atoms is

the failure of such methods to account suKciently
for the relative motions of the electrons with each other.
Thus, such solutions introduce the so-called correlation
eBect errors. Various methods have been introduced to
compensate for these errors. The simplest approach
analytically is to add configurations of hydrogen-like
orbitals of the same symmetry as the atom under con-
sideration. The amplitudes of the configurations are
obtained from the Rayleigh-Ritz variational principle
and by this principle the approximate wave function
converges to the exact wave function with the addition
of configurations. It has been shown by many authors, ' '
however, that for configurations of hydrogen-like
orbitals the convergence is quite slow. It is reasonable,
then, to investigate other configurations which although
possibly more complex may converge rapidly enough to
make the resulting wave functions more compact and,
hence, more useful for general applications.

Recently there has been considerable interest in the
use of wave functions containing interelectronic separa-
tions terms for two electron atoms and ions. 4' The
convergence is rapid and Pekeris' has been able to
calculate measurable quantities within the limits of the
presently known experimental deviations. It is only
recently, however, that computer technology has
reached the stage where calculations involving inter-
electronic separation configurations for three electron
atoms can be performed so as to improve the monumen-
tal work of James and Coolidge. r

The present paper extends the work of James and
Coolidge on the ground state of the lithium atom and
considers possible extensions of the method to more
complex atoms. Calculations of quantities other than
the ground-state energy are brieQy discussed along with
the possible application of the wave function to solid-
state phenomena. A discussion of the integrals involved

' Charles SchwartzPhys. ,Rev. 126, 1015 (1962).' A. W. Weiss, Phys. Rev. 122, 1826 (1961).
' R. K. Nesbet and R. E. Watson, Phys. Rev. 110, 1073 (1958).
4 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)' Charles Schwartz, Phys. Rev. 128, 1146 (1962).' C. L. Pekeris, Phys. Rev. 126, 14'?0 (1962).
r H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).

and the method of computation are discussed in an
Appendix.

CHOICE OF FUNCTION

Neglecting nuclear motion, the nonrelativistic Hamil-
tonian for many-electron atoms with the energy in
units of e'/2as is given by

a=+—V, —(2Z/r, )+(P 2/r, ,).

By choosing a real wave function normalized to
unity we are concerned with the calculation of J'&Hpdr
=2'+V. The quantities T and V represent, respec-
tively, the kinetic and potential energy contributions to
the total energy.

Apart from electron spin, the approximate wave
function employed here may be represented generally as

p= P C(i,j,k, l,m, e,n,P,p)rrr', &'r,"rss'rrs rr, "
Xexp) —(nr&+Prs+ mrs) j (2)

Due to the complexity of the invidual terms, it is
judicious to make limitations on the summing indices
Thus, following James and Coolidge, ' choose l, rw, I so
that at least two of them are always zero. Then, at
most, only one interelectronic separation coordinate
enters any given term. Further, consider the three-
electron atom as composed of a two-electron core
interacting with a third electron. Choose Hylleraas"
two-electron core. Combine this with Wilson's' rep-
resentation of the third electron and then add inter-
electronic separation terms between the core orbitals
and the outer orbital. In this way one arrives at the
James and Coolidger wave function approximation.
The powers of the radial coordinates and of the coor-
dinate coefficients in the exponential are tabulated in
Table I for this wave function.

The first improvement considered is that of the
proper spin angular momentum symmetry and has
been discussed by James and Coolidge in a paperm
subsequent to their initial calculation. In principle, the
terms within the sum of Eq. (2) may in turn be written
as sums of products of terms each involving only the

s E. A. Hylleraas, Z. Physik 54, 347 (1929).
9 E. B.Wilson, J. Chem. Phys. 1, 210 (1933).
"H. M. James and A. S. Coolidge, Phys. Rev 55, 873 (1939.).
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TABLE I. James and Coolidge wave-function parameters.

Terms i
1 0
2 1
2 0
3 2
3 0
4 1
5 0
6 0
7 0
8 1
8 0
9 0

10 0

Power sb

k

0
1 0
1 0

0
0

1 0
0

1 0
0 0
0 0
0 0
0
0 0

0
0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

Coefficients"
I'a =.P ='3.0)

V.

0.65
0.65
0.65
0.65
0.65
0,65
0.65
0.65
1.5
1.5
1.5
0.65
0.65

" Identical lumbering of terms means they have identical amplitudes as
a result of symmetry.

b Powers and coefFicients correspond to the representation

r1'r2&'rsvp'rg31 r1q vis» exp L
—(nri+prm 1yr3) g.

coordinates of a single electron. This may be done by
expanding first the interelectronic separation terms by
the law of cosines then the cosine of the angle between

— two radii by the rules of spherical trigonometry. Con-
sider a single term of an inner sum. Denote it by
E(1)E'(2)L(3).The total wave function is constructed
by taking a product function of this spatial representa-
tion with a spin function of the proper symmetry.

Two linearly independent spin functions with eigen-
values of 3/4A' and 1/2A for S' and S„respectively, are"

2 '"L '(1)P(2) (3)—P(1) (2) (3)j,
& "'L2n(1)n(2)P(3) —n(1)P(2)n(3) —P(1)n(2)n(3) j. (3)

By combining the spin and spatial functions and
antisymmetrizing the result, one obtains

y, = [(A,—A,)I (1)E'(2)I (3)—(A g
—As)L(1)E'(2)K(3)—(Ate+As)L(1)E(2)E'(3)+ (A,+A s)K'(1)E(2)l (3)

+2AsE'(1)L(2)E(3) —2AsE(1)L(2)K'(3) jn(1)P(2)n(3)+[(Ag —As)E'(1)L(2)E(3)
—(A g

—A s)E'(1)E(2)L(3)—(Ay+A s)K(l)E'(2)L(3)+ (A g+A s)E(1)L(2)E'(3)+2AsL(1)E(2)E'(3)
—2A sL (1)E'(2)A (3)jP (1)n (2)n (3)+[(A g

—A s)L (1)E(2)E'(3)—(A g
—A s)E(1)L(2)E'(3)

—(A y+ A s)E'(1)I.(2)E(3)+(A y+ A s)L (1)E'(2)E(3)+2A sE (1)E'(2)L (3)—2A sE'(1)E(2)L(3)j
X n (1)n(2)P (3). (4)

3& and A2 are variational parameters multiplying,
respectively, the two linearly independent spin func-
tions. It will be observed that any term which is enclosed

by a square bracket may be obtained from any other
term within a square bracket merely by a permutation
of electrons and since the spin functions are orthonormal
and not operated on by the Hamiltonian, then, for
purposes of computation, one need only consider any
one of the three spatial functions within the square
brackets.

Consider the 6rst square bracket. Let the analytic
form of E and E' be identical. Thus, we have

y;= 2A, [E(1)E(2)L(3)—L(1)IC(2)IC(3)j
&&n(1)P(2)n(3)+terms which differ only in

permutation of electrons. (5)

Now E and E' have identical analytic forms if two
terms within the inner sums of Eq. (2) become identical
when the numbering 1 and 2 is interchanged in either
of the terms. This may be accomplished without
resorting to expansions of the interelectronic separation
terms by the simple expedient of requiring that those
terms of Eq. (2) which differ only in the permutation of
the 1 and 2 indices have the same amplitude factor.
Thus, a single determinant wave function requires that
the core orbitals have identical analytic representations
to satisfy symmetry restrictions. This is not the case for
the James and Coolidge function for it will be observed

that all the terms have the proper symmetry. (The four
from Table I that from symmetry criteria terms 9 and 10
should then be a single term. From Table II it is seen
terms listed as 13 could have been grouped in two sets
combining the 6rst and last and the rniddle two terms
and still satisfy symmetry criteria. They were combined
in order to be able to write the individual terms as
functions of the sum or product of r~ and rs. )

Additional improvement may be obtained by adding
more terms representing the outer electron with the
addition of interelectronic terms between the core
orbitals and the improved outer orbital representations.
Furthermore, one may introduce a scaling parameter K

such that p=Kr and the equation to be solved becomes
J'&IIgdr =~'T+~ V. It has been shown" that the scaling
parameter may, in principle, be easily determined.
However, in the present calculation the use of a scaLing
parameter is circumvented by choosing the exponential
coeKcients of Eq. (2) from Wilson's' calculation and
fi.om Slater's rules. "Then set K= 1.

The final form of the wave function as determined
from the previous considerations but reduced in size by
calculation restrictions is given in Table II.

"L. I. Schiff, Quanta Mechanics (McGraw-HiB Brook Com-
pany, Inc., New York, 1955), p. 235.

"Per-Olov Lowdin, J. Mol. Spectr. 3, 46 (1959).
'~ J. C. S1ater, Phys. Rev. 36, 57 (1930).
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TABLE II. Wave function parameters of present calculations.

Terms~ i
1 0
2 0
3 1
3 0
4 1
5 0
6 0
7 1
7 0
8 0
8 0
9 0

10 0
11 0
11 0
12 0
12 0
13 1
1,3 1
13 0
13 0

Powersb
L

1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 0
0 0
0
0 0
2 0
1 0
1 1

0
0 1
0 0
0 1
0 0
0 1.

0 0

0
2
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CoeIIj.cientsb
(n=P=2.69)

'y

0.64
0.64
0.64
0.64
0.64
0.64
1.5
0.64
0.64
0.64
0.64
0.64
1.5
0.64
0.64
1.5
1.5
0.64
0.64
0.64
0.64

' Identical numbering of terms means they have identical amplitudes as
a result of symmetry.

b Powers and coefFicients correspond to the representation

r1~r2~rg&rga&r1g~r1g& expr —(nrt +Prg+yr3) g.

Now
T= 7122 q~2 (7)

2 8 2 8 8' 8' 4 8 28'
v12 + + + + +

r1 ~ri r2 ~r2 rl ~r2 r12 ~r12 ~r12

~12 +rl r2 f12 fl +f2 8
(8)

rlr12 r2r12 Br28ry2

The latter expression has been given by Hylleraas'
and may be obtained by expressing the Laplacian and
the r~, r2, r~2 coordinates in cartesian coordinates.

One must now calculate the kinetic energy, potential
energy, and overlap matrix elements. A matrix element
of an operator 0 is given by

(Q)kki ——
Q kQQkr JT1 (9)

where pk and pk are any two terms, aside from the
amplitude factor, of Eq. (2). The resulting integrations
are discussed in the Appendix.

Denoting the ij energy and overlap matrix elements

by II;; and S,;, respectively, one is then led via the
variational principle to the 13 secular equations

Q, H;, C;k Q; S,,C,kI'k, i=1,——~ ~ ~, 13, (10)

METHOD OF CALCULATION

The first step in the calculation is to break up the
Hamiltonian into kinetic and potential energy operators
and then perform the indicated operations. Thus,

(6)
or

where C;,* is the jth amplitude factor for the kth
eigenvalue and Eg, is the kth eigenvalue. The latter
equation may be written in the usual matrix notation
as HC=SCE, where E is a diagonal matrix. In. this
application H and S are real symmetric and S is positive
definite. The procedure then is to diagonalize S via the
unitary transformation U8, forming the diagonal
matrix S'. Applying a similarity transformation with
UB on (S') '" one obtains S '~'. A matrix H'=S '~'

)&IIS '" is formed and then diagonalized to the matrix
F. via the unitary transformation V&. Finally, C=S '"
)&U& yields the associated amplitudes of the various
eigenvalue s.'4

Jacobis method of matrix diagonalization is em-

ployed here. A uni. t matrix U is formed and a two-
dimensional rotation on the ij, ii, jj, j~ elements is
performed rotating U into O'. Then the transformation
O'H (where H is to be diagonalized) is restricted to the
case for which the ijth element and its symmetric
counterpart. are zero. This determines the transforma-
tion. The rotation of U and H is continued until H is
diagonal. ""

In the actual calculations, one term at a time was
added and the associated eigenvalue computed. How-
ever, at the completion of the calculation of an 11-term
function a precision check in the program noted that
the desired precision of 6 digits was lost. Thus, the
hrst 10 terms with their associated amplitudes were
combined into a single term and the remaining three
terms of Table II were added one at a time (without
varying the relative amplitudes of the first ten terms)
and the associated eigenvalues computed.

RESULTS

The final form of Eq. (2) as determined by this
calculation is

P = 1.03670(19.0146(f i —2.02248&2 —2.08637(f k

—0.142702$4+7.02797&/&k —9.82786/6 —0.562915&7
—0.296473&k —2.19970/9 —3.45488&io)
—0.0913939&ii+1.94123pi2+0.00994224gik, (11)

where the subscripted P's refer to the terms of Eq. (2)
without the amplitudes. The parameters of the p's are
listed in Table II.

Table III lists the energy values obtained as a func-
tion of the number of terms used.

Table IV compares the theoretical values obtained
here with those of gneiss' and of James and Coolidge. '

"This solution of the secular determinant is due to Fred J.
Quelle, Jr., of the Solid State and Molecular Theory Group at
MIT and has been written by that group as MIT SSMTG
Programming Note No. 17,

"This diagonalization procedure has been programmed in
FORTRAN for the IBM 70 series machines. A more complete
description is available from MIT in Computer Center Report
CC29 written by Miss M. Merwin.
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TABLE III. Ground-state energy of the Li atom using terms
containing interelectronic separation coordinates.

Xo. of terms Energy (e'/2ap)

1
2
3

5
6
7
8
9

10
11
12
13

—14.8358—14.8396—14.8849—14;9102—14.9345—14.9345—14.9363—14.9370—14.9370—14.9541—14.9549—14.9559—14.9559—14.9561

a See reference 15.

The experimental energy is taken from the compilation
of Scherr et al."

This table also includes comparisons of the energy
values for equal numbers of terms in order to provide a
clearer comparison between the different methods
employed.

TABLE IV. A comparison of ground-state energies of the Li atom
as determined by various authors.

No. of
terms Author

45 Weiss

10 James and
Coolidgeb

10 This paper

13 This paper

Method

superposition of

configurations

interelectronic separation
coordinates

interelectronic separation
coordinates

interelectronic separation
coordinates

experimental'

Energy
(&'/2&o)

—14.9542

—14.9522

—14.9541

—14.9559
—14.9561

a See reference 2.
b See reference 7.
o See reference 15.

DISCUSSION

The advantage of using configurations containing
interelectronic separation terms is apparent from Table
IV. The convergence towards the experimental energy
arrives very close to the experimental value with the
addition of comparatively few terms. Also gneiss's best
45-term superposition of configurations is as good as a
10-term function of the type used here.

The error introduced by using improper symmetry is

' Charles W. Scherr, J. N. Silverman, and F. A. Matsen, Phys.
Rev. I27, 830 (1962).The experimental energy is the nonrelativis-
tic energy as obtained by these authors and combines two-electron
theoretical energies with experimental ionization energies taking
into account relativistic and nuclear motion corrections.

also clear in the results tabulated in Table IV. It is
observed that the James and Coolidge' 10-term function
and the 10-term function used here are quite different
with the latter function lower by 0.002 e'/2ao. Although
these two functions are not the same (see Tables I and
II), they do have identical interelectronic separation
terms. Thus, as is expected proper symmetry of the
wave function yields a better representation of the
system.

It is worthwhile to consider the continuation of this
calculation until one arrives at the accuracy achieved
by Pekeris' for helium. On the surface it might appear
that a wave function that requires 3 hours running time
on an IBM 7090 and at the same time extends the pre-
viouscalculation by only three terms is not worth contin-
uing. It must be pointed out, however, that the present
program is written in such a way that a great deal of
calculation is unnecessarily repeated. With the initial
program written and tested, numerical checks are now
available to decrease, substantially, the required
running time. Furthermore, although only three terms
of diferent symmetry have been added to the function
of James and Coolidge' it will be observed by reference
to Tables I and II that the present calculation employs
21 terms as compared to 13 terms for the earlier
calculation.

With the completion of refinements of the present
program it would be interesting to apply the general
approach to other atoms. Beryllium, being spherically
symmetric, should not present any great difhculties.
Terms containing only one interelectronic separation
term each would be used and then basic integral
programs for lithium could once more be applied.

Since the energy value is not a very good criterion of
the "goodness" of a wave function and since the
present energy value is still outside of experimental
limits, it was considered unnecessary to calculate any
other quantities. With the improvement of the wave
function, however, such things as ionization potential
and electron density at the nucleus for use in hyperfine
structure calculations should certainly be ascertained.
Application of the wave function to solid-state phenom-
ena should also be considered especially for applications
using the orthogonalized plane-wave representations.
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( @)cos'8 sioede.yaioes of f(g")= +Y &LE@. a&

f(g,n)

2/3
2/3
4/15
2/5
4/35
2/5
8/55

16/515
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0
1
0
2
1
3
0
2
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0
1
2
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3
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which reduces to 16 infinite series of the type I(0,0,0j—1, 0, —1). Each of these series converges to the
desired accuracy within three or four terms. It is found
to be more expedient, computationally, to combine aH.

16 series into a single series for which convergence is

obtained. in two or three terms. The computation of
this integral required. douMe-precision arithmetic
tabulating. It is the only place in the entire calculation
which such precision is required.

By the de6nition

WH'(K, M, .V,A, B,C,L,J,q) = W(M-2+2q—+L+J, .7+3 I., K——2q+2 —J, 8, C, A)
+W(iV+2q+I. , M+1 I+J,—K—2q+2 —J, C, 8, A)+W(iV+2q+I. , K—1+J, M+4 L, J—2q—, C,—A, 8)
+ lV (M 2+2q+—L+J,K+3 J, X —2q—+2+I-, IS, A, C)+lV (It+2q+ J, M+1 J+L—, S—2q+2 —L, A, 8, C)
+W (K+2q+ J, M+1 J+I.—, iV 2q+—2 I, A—, 8, C)+W (K+2q+ J, iV —1+L,M 2q+4—L J—, A. ,

—C, 8),
(24)

one obtains

K=642rs Q [WW (E+2, M+2, iV, A, 8, C, 2, 2, q)+WW(E, M+4, 1V, A, 8, C, 2, 2, q)
2 (2q+1)'

+ lVW(E+2, M, iV+2, A, 8, C, 2, 2, q)+ WW(E, M+2, 1V+2, A, 8, C, 2, 2, q)j
2g

ffV W(If+1, M+3, iV, A, 8, C, 1, 2, q)+ WW(E+1, M+1, X+2, A, 8, C, 1, 2„q)
(2q —1)

+WW(E+2, M+1, iV+1, A, 8, C, 2, 1, q)+WW(E, M+3, Iq+1, A, 8, C, 2, 1, q)j
2(q+1)

[WW(E+-1, M+3, iV, A, B, C, 3, 2, q)+WW(E+1, M+1, iV+2, A, 8, C, 3, 2, q)
(2q+3)

+WW(E+2, M+1, iV+1, A, 8, C, 2, 3, q)

+WW(E, M+3, %+1,A, 8, C, 2, 3, q) ]+ —WW(E+1, M+2, iV+1, A, 8, C, 1, 1, q)(2q-1)'

4(q+1)'
+ ttWW(K+1, M+2, iV+1, A& 8, C) 1, 3, q)+ WW(E+1, M+2, iV+1, A, 8, C, 3) 1, q)3

(2q+3)'
(25)

Equation (25) is obtained from Eq. (23) in the follow-

ing %'ay:

1. &«itipiy by r22r12/ 22r12

2. Expand numerator by law of cosines.
3. Expand denominator by Neumann expansion.
4. Rotate Z~ and Z~ along r2. Hence, 8~2

——8..
5. Apply the addition theorem" for I,egendre poly-

"P.M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953},p. 1274.

nomials to I', (cos812). Thus, we have

P, (cos812) =P, (cos81)P,(cos82)+ f($12). (26)

Upon integration over $12, f(p») vanishes.
6. Integrate r2 between the limits (O,r&»), (r&12,r&12),

and (r&12, ~), and integrate rs between the limits
(O,r,) and (r, , ~).

7. Finally express the resulting integrations in terms
of the lg integrals. "

'9 A more detailed discussion of the evaluation of this integral
and a discussion of convergence properties is available on request.


