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Electron Capture from Atomic Nitrogen and Oxygen by Protons. I
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The BK approximation (Born approximation using only the proton-active electron interaction, rte) is
used to derive the cross sections for p-orbital capture from atomic nitrogen and atomic oxygen by protons.
These processes are represented symbolically as follows:

H++A Pp" (LS)j~ H('S)+A+Lp" '(I.'S') g.

Russell-Saunders (LS) coupling is assumed for the description of the atoms and iona, and only terms of the
ground configurations are considered. Cross sections are derived for the set of processes for which the multi-
plicity is conserved between the initial state, H++AL'P" (LS)j, and the final state, H(gS)+A+Pp" '(L'S') j.
Approximate cross sections for the inverse processes are expressed in terms of the cross sections for the
corresponding direct processes. Furthermore, it is shown that all these cross sections are approximately
related to one another for each atom. From this same analysis it is found that the cross sections for the direct
processes are proportional to each of the following quantities: (2L+1) '; n, the number of p orbitals in the
target atom; the square of a coefBcient of fractional parentage; a sum of squares of vector coupling coeffi-
cients. Detailed numerical calculations are presented for the following processes:

H++N(4S) -+ H(1s)+N+('P)
&

H++0('P) ~ H(ls)+0+(4S; 'D; 'P); H++0('P) ~ H(2s)+0+(4S).

The cross sections for the last process are approximately 8 of the cross sections for the second process, and
thus they obey the n 3 law of Oppenheimer. This fact supports the use of this rule for estimating the cross
sections for capture into all s states of hydrogen for each residual ion. Estimates of (2s) and (1s) orbital
capture are also obtained; the cross sections for (2s) orbital capture from N(4S) and 0('P) are compared,
and it is found that the process becomes significant relative to p-orbital capture for an impact energy
somewhat below 1 MeV for nitrogen, and somewhat above 1 MeV for oxygen; however, (2s) orbital capture
dominates (2p) orbital capture from both atoms for impact energies above 8 MeV. Estimates of the Born
cross sections (Born approximation using the proton-nucleus interaction together with all proton-electron
interactions, "Nrz+rte") are obtained from the relation, Qa, (A) =R(H; He)Qax(A). R is the ratio, Qs/Qarc,
previously calculated for atomic hydrogen and helium, and Qsx(A) are the calculated BK cross sections
of this paper. These Born estimates, QB„do not differ a great deal from the experimental cross sections
per gas atom for capture from the corresponding diatomic molecule.

' 'N a previous paper' this author proposed a Inethod
- - for estimating the Born electron capture cross
section for protons passing through an atomic gas. This
method is used in the present paper to estimate the
Born cross sections for capture from the ground state of
atomic nitrogen and atomic oxygen. As was discussed in
I, this method consists of calculating the Brinkman-
Kramers cross section for the atom of interest, and
multiplying this result by the ratio,

~(A) =Qn(A)/QnK(A),

action and all of the proton-electron interactions,
"rzrz+tze" terms. )

The unsymmetrized BK amplitude for the capture of
electron one (1) from an oxygen atom by a proton is
given by Eq. (1).' [In the integral of Eq. (1) and all
subsequent calculations of this paper, integration over
spin coordinates is always understood, and is not
written. j

@CO

g(8) = '[H(xgr)O+(xg' ' 'xs)]O(xr xs)
~
xgr

~

2xss

which has been calculated for atomic hydrogen and
helium at the same impact energy. (A represents the
atom, hydrogen or helium, and the subscripts, B and
BK, refer to Born and Brinkman-Kramers, respec-
tively. ) Although this program of calculation has some
basis for successfully predicting the electron capture
cross sections for a restricted energy range, there are
questionable assumptions implicit which will be dis-
cussed later in the paper. (By BK approximation is
meant the Born approximation with only the proton-
active electron interactions, me terms, whereas the Born
approximation is reserved to mean the same approxima-
tion but with the inclusion of the proton-nucleus inter

&&exp[i(Ag xgr —Ar xr+ g A; x,)]

)t,dxgttfxt' ' 'dxs. (1)

For the present, some of the identifying subscripts are
omitted from g(8), and the notation, g[HO+], is ex-
plained later in the text. The other notation used in
Eq. (1) is now explained. The laboratory coordinates of
the particles are the following: r, (j=1 8) =electron;
r„=oxygen nucleus; r„=proton. In the center-of-mass
system, the set of independent relative coordinates used
are

' Robert A. Mapleton, Phys. Rev. 126, 1477 (1962).This paper
is denoted by I.

x;= r; r„(j=1 8); xgr———rr —r„.
2 N. F. Mott and H. S. Massey, The Theory of Atomic Collisions

(Oxford University Press, New York, 1949), 2nd ed. , Chapter
XII, p. 273.

i829



1830 ROBERT A. MAPLETON

The masses on the 0"=16mass scale are: M =proton;
m, =electron; M„s——oxygen atom; Mi=M+nt; M 7

=M„s—ng; M2 =M 3+M; t4=M1M„2/Mr. The magni-
tudes of the initial and final wave vectors of relative
motion are denoted by Kg ancl K, respectively, and
other derived quantities are As=KM/Mi Kp A—1=K

KpM 7/M„s., A, =Aint/M 1. The wave functions that
represent the hydrogen atom, the oxygen ion, and the
oxygen atom are denoted by H, 0+, and 0, respectively.
Dimensionless units are used with ag ——i'22/nteg, the unit
of length, and eg=nte4/21'22, the unit of energy. In the
subsequent calculations the momentum change vectors
of the passive electrons, A; (j=2 8), are neglected,
since their omission does not affect the accuracy of this
calculation. ' Before proceeding with the calculation it is
necessary to determine the wave functions.

The Russell-Saunders, or I.S, coupling scheme is as-
sumed, and the I.SMgJI/I8 representation is used. Now
the wave functions for the ground states of the oxygen
atom and ion contain equivalent P electrons, and Racah
has developed methods for the construction of such
wave functions4; moreover, these wave functions not
only are antisymmetrical in the electron coordinates,
but they are orthogonal for the different terms of a
given configuration. The wave functions for the 45, 'D,
and 'P terms of the configuration P', written below, are
taken from Table I of R.

0CP"('s)]=4CP'('P)P "s]
KP'(D)]= (1/~2) &~CP'('P)P D]

—&IP'('D)P D]&,
(2)

1PCP3 (2P)]=C1/(1 g)»2] {21PCP2(1S)P 2P]

—34LP'('p)P "p]
5'tV CP'('D)P—'p]).

The notation used here is fairly standard, and it is
described elsewhere. 5 These relations are diagonal in 3fI,
and If', and the vector coupling formulas for the
addition of two angular momenta are used to get the
various components (Mr, and Ms values) of the differ-
ent terms. ' The numerical coefFicients appearing in these
relations are called the coefficients of fractional parent-
age, abbreviated cfp's. 4 These cfp's and Eqs. (19R)and
(65R) (with n=2) can be used to obtain the cfp's re-
quired for the construction of 1PCP4(3P)]. Alternatively,
one can use Eqs. (9R) and (11R) and solve for the cfp's,
but, as discussed in R, this latter method leaves a phase

3 Robert A. Mapleton, Phys. Rev. 122, 528 (1961).This paper is
denoted by II.' Ginlio Racah, Phys. Rev. 63, 367 (1943).This paper is denoted
by R.

'D. R. Bates, Quoutum Theory (Academic Press Inc. , New
York, 1962), Vol. II, Chapter I, pp. 66-67.

6 K. U. Condon and G. H. Shortley, The Theory ofAtomic Spectra
(Cambridge University Press, New York, 1953), Chapter III.
This reference is denoted by T. A. S.

factor undetermined. These cfp's and |PCP4(3P)] are
given by

(P3 4SIIP4 3P) (4/12)1/2 (P3 2I)lIP4 3P) (5/12)li2

(P3 2P jIP4 3P) — (3/12)1/2.

kCP'('P)]= (4/—12)"VCP'('S)P P]
+ (5/ 12)"VCP'('D)P 'P]

(3/1—-')"VLP'('P) P 'P].

(3)

The normalized antisymmetric wave functions are
now easily constructed by coupling the two 'S subshells
to the wave functions given in Eqs. (2) and (3). These
wave functions can be expressed as linear combinations
of determinants, and they are listed in Appendix II. The
calculations for the processes of Eq. (4) are described
next.

3CH(2S)0+(4S)].

Ms=&,

H(xgi) 2~(1)O'('S 2) —P(1)O'('S; 2);
2

M8 ——0,

H(xg, )
I: (1)O+('S —l)—P(1)O'('S; l)];

-v3

2

Ms= —1

'CH(2S) o+(2L)]:

%8=1

H(x 2) t(r1) 0+( I2. .M r, -') .

8=0
H(xgi)

I: (1)O'('I ' M, —-')+P(1)O+('I- M, -')]
v2

~s=-
H(xg, )P (1)0+ ('I- ' M r„——',).

H++OCP'('P)] —+ H(1s)
+o'I:P'('s); P'('D); P'('P)] (4)

Since spin-dependent forces are neglected, the final
state, hydrogen atom, and oxygen ion, must be a triplet.
This condition is fulfilled by vector coupling the spin of
the hydrogen doublet to the oxygen ion in question so
that the coupled state forms a triplet. The Mq com-
ponents of the coupled state, 3CH(2S)O+(gs+'L)], are
given in Eq. (5) for the case that electron one (1) is
captured (T. A. S.). The customary notation, n and P,
is used to denote the spin functions.



EI ECTRON CAPTURE FROM ATOMIC N AND 0 BY PROTONS 1831

The relations in Eq. (5) are diagonal in Mz, of the ion.
These relations are not antisymmetrical in all electron
coordinates, but this detail is treated at a later stage of
the calculation. At this point of the calculation an
interesting fact is mentioned. Since the independent
relative coordinate, X9~, of the electrostatic interaction
is not contained among the coordinates of 0 and 0+, and
remembering the approximation, A, =O (j=2 .8), it is
evident from Eqs. (1), (3), (4), and (5) that non-
vanishing matrix elements occur only for the case that
coordinate one (1) of 0 is occupied by a p orbital; i.e.,
only a p orbital is captured. For example, if the ap-
proximation, A;=0, is not invoked, then matrix ele-
ments exist for s orbitals of 0 occupying coordinate one.
This approximation is excellent and it simplifies the
calculation immensely.

For the calculations of this paper, the wave functions
derived by Tubis are used. v The one-electron orbitals
are written for convenient reference:

of Eq. (4) which leaves the ion in the eS state is de-
scribed first. With the use of the relations in Eq. (5)
that define 'LHO+(4S) j, and Fq. (1), the BK amplitude
can be reduced to the form

2pSo
gMz, Me (0) (Ts,Ss)s(Tr,Sr)'(Pn)"/s

2z.rl (24)"'

dx]dxsrl xsrl H(xs])
kp+nf

)&Pjez(xr) exp''(As xsr —Ar xr)$. (7a)

In Eq. (7a), both Mr, and Ms assume the values, &1,0,
corresponding to the three orbitals, P~~,o, and the triplet
state of the atom, 0('P); however, this amplitude is the
same for all three MB values. The integrals in Eq. (7a),
called I+&,o are easily evaluated, and are given by

—i128xnvi' -Ag ~idly
, Ar, . (7b)

K2

S ( )= (v 'I )'"
lpx, o=

/t1+Aos jttn'+A rs /'

p s )1/s-
S,(x)= l l

ge-~ .—
E3z./V(A) j e V3X

In Eq. (7b), (Ar„Ar„,Ar, ) are the rectangular com-

(tt+b)s 48A (A) 3A (A)s ponents of A&. At this stage of the calculation a nor-

A(A) = /V(A) =1 + (6) malized antisymmetric state is constructed from the
(1+tt)4 (1+b)' b' quantity,

(ns) 1/2

P~, ,(x)=l —
l

xe- *

igrI

sin8
e+'& cos8) 7

p].=QC~ +2= Qq +3=QSq Ot= QC.

dx Tr, s(x)Ss,,(x)«dx Tr, ,(x)St,s(x) = (Tr, s,Sr,s).

With this stock of information, it is not diAicult to
evaluate the BK matrix element. That capture process

r Arnold Tubis, Phys, Rev. 102, 1049 (1956).
e Professor John C. Slater (private communication).

The functions of Eq. (6) are the one electron orbitals for
0 and N written in the notation of this paper. S~,2

denote the orbitals of the subshells (1s)' and (2s)', re-
spectively, and the notation for the p orbitals is self-
evident. This notation is replaced by the following
notation for the 0+ and N+ orbitals. Tr, s are the (1s)'
and (2s)' orbitals; 7r, s, s are replaced by Pr, s,s, P~ is
replaced by P *, and n is replaced by P. LThe value of
(ub) is misprinted in the table of the 0 ('P) parameters, r

and the corrected value, Qb= 7.11, has beea. supplied by
a separate calculation. sj An important property of the
orbitals, T~,2, of the ion is their approximate ortho-
gonality to the orbitals, S2,~, of the parent atom, and in
the subsequent calculations, the following very good
approximation is used:

'LH(xsr)0+(4S; xs xs)j,
in the usual manner. As discussed in II, this operation
requires the use of a different relative coordinate,
x» (j=i . 8), for each permutation of the electron
coordinates. However, the relabeling of xg; does not
change the value of Eq. (1), and thus, using the
antisymmetric property of 0(sP) it follows straight-
forwardly that the net effect of calculating the ampli-
tude with the antisymmetric final state is to multiply
the amplitude of Eq. (7a) by the factor, 8'".

The cross section is defined by"

(vf &
Q= 2tr d8 sinful

kg v.l

L' L S
x Z Z Z lg . . "(9)l'. (8)

ML'=—L' ML -L MS S

In Eq. (8a), v, and vs are the initial and final velocities
of the incident particle, respectively; g; is the degeneracy
of the target atom; L' and L are the L values of the ion
and its parent atom, respectively, and (2S+1) is the
multiplicity of the atom. In the present example these
values are g;=9, L'=0, and L=1. Conservation of
energy is applied and momentum change variables are
introduced. The final result for the process of interest is

e Gerhard Herzberg, Spectra of Deatorrtec Moleclles (D. Van
Nostrand Company, Inc., New York, 1951), Chapter I, p. 21.
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4 vtC('S)
Q('~') =-

9 vEpE

dAg A)-'
[1+Ass'7'[cr'+A

is7'

=—Q(x), x= A i(min),
9

2M„8-64 0.»'
(TsSs)'

p
C('S) =

M„~ m
( 2 ls —2

&& (T'.& )'(tl )""I
kP+n

The quantities, Q[x('D)7 and Q[x('P)7, differ only
slightly from Q(x) of Eq. (Sb), and these differences
result from the small internal energy changes together
with the small changes in the atomic orbitals of the
diferent terms of the ions. Mention is made of the fact
that the internal energy associated with the center of
gravity of the multiplet of a given term is the energy
that is used in the calculations [(T.A.S.), p. 1957. Each
of these cross sections exhibits the same energy depend-
ence at high energies; however, the onset of the E '
dependence occurs at a higher impact energy than it
does for the corresponding cross section for capture of
an s orbital from atomic hydrogen and helium into a p
state of hydrogen. ' ' This difference in the onset of the
E ~ dependence is readily explained in terms of the
difference in the exponential terms of the relevant
orbitals for these three cases. Perhaps more interesting
is the fact that the cross sections of Eqs. (Sb) and (Sc)
are proportional to the squares of the cfp's [see Eq. (3)7.
Thus, approximately 3 of the 0+ ions are left in the
metastable 'D and V' states. From a consideration of the
degeneracies associated vith the final states, ion, and
hydrogen atom, and 0 (sP)—or by a direct calculation-
it is rather easy to derive the approximate cross sections
for the processes inverse to those of Eq. (4).""These

' D. R. Bates and R. McCarroll, Phil. Mag. Suppl. 11, 39
(1962).

"H. S. W. Massey and E. H. S. Burhop, E/ectronic and ionic
Impact Phenomena (Oxford University Press, I.ondon, 1952),
Chapter VII, p. 417.

~ Donald Rapp and Irene B. Ortenburger, J. Chem. Phys. 33,
1230 (1960).

In Eq. (Sb), x is the minimum value of the momentum
change variable, and the notation, Q(x), is introduced
for later use. Since (EsK), As', and Ais are all Pro-
portional to the impact energy I, the cross section de-
creases as 8 ' for suKciently high energies. ' It is a
relatively simple exercise to derive the cross sections for
the other two processes of Eq. (4), and the results of this
calculation are given by

Q('D) = (5/9)QL*('D) 7,

Q('P) = (3/9)QLx('P)7

cross sections are labeled by the term values of the ion
and the atom.

QL5'- P7=(9/S)QI'P-'Z=-:Q[*(~)7,
Q['D 'P7= (9/20)Q['P 'D7=-'QLx('D)7

Q['P -+ 'P7= (9/12)Q['P -+ 'P7=-'Q[x('P)7

From these relations it is seen that the sum of the cross
sections for the inverse processes is approximately equal
to ~ the sum of the cross sections for the direct processes.

An investigation of electron capture from 0('P)
leaving the 0+ ion in excited configurations is treated
next. The first cases considered are the processes given
by

H++0 ('P) —+ H (1s)+0+(4P; 'P),
4P[2s(2p)47, 'P[2s(2p)47. (9a)

This example of the capture of a 2s orbital is of particular
interest since the cross section for this process obeys an
E 'law at high energies in contrast to the E r law for P
orbital capture. Thus, the problem is to determine the
energy region where this process becomes important.
The procedure for deriving the BK cross sections is
described brieQy. From considerations of coupling two
angular momenta, it is clear that the ion wave functions
are obtained by vector coupling a (2s) orbital to p'('P),
and with this task accomplished, one forms the antisym-
metrical states, '[H(x»)0+(sP)7 and s[H(xsj)0+('P)7,
as outlined previously. The cross sections for the two
processes have been estimated by using the 0(sP) radial
functions for 0+('P; 'P). These cross sections are given

by
vIC('P)

Q('P) =-'v.as' I[x(sP)7
v;EOK

vtC('P)
Q('P) =-;s.as' I[x('P)7,

Vs+0+
(9b)

dA) Ag
I(x)=

[1+A 272 (p 2+A 2)2

abyss 3A (0)ys
+

(Vs'+At')' 7s(vs'+Ai')'

These formulas were evaluated for tv o values of E, and
the results are expressed in terms of the sum of the cross
sections, Q(F), of Eq. (4).

E= 1 MeV, Q('P)+Q('P) =0.05 P(1),
E= 10 MeV, Q('P)+Q('P) = 24 g (10).

These results show the predominance of (2s) orbital
capture at high energies. ' For sufBciently large impact
energies (1s) capture likewise becomes important, and
for this case the ion configuration is 1s(2p)4. In fact, (1s)
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capture dominates (2s) capture for a sufhciently high
energy since the (1s) electron is more tightly bound, and
consequently, has the larger spread in momentum
space. ' The cross sections for the process given by Eq.
(9c) have also been computed, but a discussion of these
results is deferred for the present.

The calculation of cross sections for capture from atomic
nitrogen is described next.

The first process considered is the one given by

H++N[p'(4S)] ~ H(1s)+N+[ps(sP)]. (4a)

H++0('P) -+ H(2s)+0+(4S).
The unsymmetrized BK amplitude for the preceding

(9c) process is given by Eq. (1a,).

@$0
a(&) =

2gfs
4[H(xsq)N+(xs xq)]N(x& xz)

~
xs&~

' exp[s(As x»—A& x&+ g A;. x;)]dxsAxa
1 2

Ag= K—KpM„s/M„7,

A;= A,~/M„p,

Mr ——M+M 7,

As= KM/Mx —Kp,

p=MgM 4/Mz.

$n Fq. (1a) M„& represents the mass of the nitrogen atom, and the other notation has been explained. Exa«ly the
same procedure as described under the oxygen calculations is repeated, and with the omission of these details, the
results of this calculation are

pfC ('P)
Q('P) = -nap'

v'+0
x 'P),

[1+Ass]'[n'+A P]s

p
C('P) =

3f.6
2M„V-64 n'" ( 2 )1P-s

P' Ss)'s(2'~S~)'(P )n'I

kP+n&

(10a)

Q['P 'S]= (2/9)Q['S 'P]= (2/9)QL*('P)].

5 pfC(sS)
Q('S) =- sap'I[x('S)],

4 vro&

3 vfC(sS)
Q('S) =- s.ap'I[x(sS) ].

4 p;E'pK

(10b)

These cross sections were calculated for two energies,
and the cross section for (1s) capture was evaluated only

Also included in Eq. (10a) is the approximate relation
between the inverse and direct processes. All the nota-
tion was described under the oxygen calculations. At-
tention is directed to the absence of the numerical factor
that defines the cross section [see Eqs. (Sb), (Sc)];the
origin of such factors is explained in Appendix I. With
use of the same type of approximation that led to the
relations of Eq. (9b), several cross sections for capture
of (2s) and (1s) orbitals were calculated. The nitrogen
ions in this case are the 'S and 'S terms of the conhgura-
tions 2s(2P)s and 1s(2P)s. The cross sections are written
in the notation of Eq. (9b), and are given in Eq. (10b)
for (2s) capture —of course, ys, ys, etc. , are the constants
appropriate to nitrogen.

for one energy. The results are expressed in terms of
Q('P) of Eq. (10a).

Q=Q( S)+Q(S);
1 MeV, Q(1)=0.2SQ(sP) (1), (1s)'(2s) (2P)';

10 MeV, Q(10)=49Q('P) (10), (1s)'(2s) (2p)',

1 MeV, Q(1)=0.03Q('P) (1), (1s)(2s)'(2P)s.

A comparison of these results with s-orbital capture
from oxygen suggests that this capture process starts to
dominate p-orbital capture at a somewhat lower energy.
However, this comparison should be accepted with reser-
vation until it is supported, or rejected, by a calculation
with improved wave functions, a task the author hopes
to accomplish. It is instructive to notice that the nu-
merical factors in Eqs. (9b) and (10b) are equal to
(2S'+1)(2I.'+ 1)/(2S+ 1)(2I.+1),and this factor is the
ratio of the degeneracy of the ion to that of. its parent
atom.

The numerical values of the cross sections are pre-
sented in Tables I and II. The notation used in Table I
is explained first. E(H) and R(He) denote the ratios
that were described at the beginning of this paper,
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R(He) is obtained from the cross sections that were
calculated using the six-parameter helium wave function
of Hylleras. "Qi ('~+'L) signifies the BK cross section for
capture from 0('P) into the final state, H(1s)+0+('~+'L)
Lsee Eq. (4)j; Qs( S) denotes the BK cross section for
capture from 0 ('P) into the final state, H (2s)+0+(4S);
Qs is the sum of the BK cross sections for capture into
a)l s states of hydrogen and the same three states of the
ion, 4S, 'D, and 'P. Qn, (H) and Qn, (He) are estimates of
the Born cross sections, and are equal to QsR(H) and
QsR(He), respectively. In both tables the Born esti-
mates contain allowance for (2s) orbital capture at the
energy, 1 MeV. This notation, interpreted through Eq.
(4a) instead of Eq. (4), is used for the analogous cross
sections for capture from atomic nitrogen that are
presented in Table II. The notation, Qs, appearing in
both tables, denotes the cross sections per gas atom for
electron capture by protons from the corresponding
diatomic molecule. ' Some interesting properties of the
numerical values of Table I are now discussed. It has
already been suggested following Eq. (8c) that the
ratios of the cross sections, Qi, are nearly proportional
to the ratios of the corresponding squares of the cfp's,
and the numerical values of Qi, support this remark.
The second interesting feature is the nearly constant
ratio, Qs(S)/Qi( S). Except at the lowest value of E,
this ratio is approximately equal to 8, and this is the
first term of the e ' relation for capture into s-states of
atomic hydrogen. '"' Since this relation is obeyed so
well for capture into H(2s), this n ' law is assumed to
hold for capture into all s states of hydrogen (for each
of the three 0+ ions), and thus, one obtains the cross
sections, Qs. The two Born estimates are not in serious
disagreement with the cross sections per gas atom of the
molecule; nevertheless, the experimental values for
capture from 02 do not cover a sufFicient energy range to
allow much of a comparison. However, in the case of
capture from N2, the energy range of the measured
values is much larger.

The cross sections, Qa, for Ns are larger than those for
02 at the low energy part of Tables I and II, but the 02
cross sections start to dominate those for N2 in the
vicinity of 100 keV. This same behavior is exhibited by
the corresponding two calculated sets Qs, and Qn, (H or
He). The Qn, are smaller than the corresponding Qs
near both ends of the energy range, but some of this
apparent discrepancy can be explained. First, the study
made of BK and Born cross sections for electron capture
from atomic and molecular hydrogen showed that the
cross section per gas atom for capture from H2 exceeds
the corresponding cross section for capture from H for
energies above 400 keV." Moreover, the preceding

"R. A. Mapleton, following paper LPhys. Rev. 130, 1839
(1963)j.

'4 S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958)."J.R. Oppenheimer, Phys. Rev. 31, 349 (1928); J. D. Jackson
and H. Schi8, ibid. 89, 359 (1953)."T.F, Tnan and E. Gerjuoy, Phys. Rev. 117, 736 (1960).

analysis also showed that agreement between these two
cross sections at any energy was accidental. Since it is
reasonable to expect similar relations to exist between
the cross sections for capture from N and N2, the afore-
mentioned high-energy discrepancy is less disturbing.
But quite separate from these molecular effects, there
are other contributions to the total capture cross section
that require mention. No allowance has been made for
capture into p and d states of a,tomic hydrogen, and the
calculations of 1 and II show that these contributions
are significant in the low-energy range of Tables I and
II; furthermore, contributions from simultaneous cap-
ture and excitation have been omitted, but again using
the results of II as an example, the author does not
believe that these latter omissions would significantly
alter the present values. However, it does appear that
the calculated cross sections are probably too small at
(Table II) energies in excess of 700 keV, and this may be
due to the inadequacy of the present estimates, but
perhaps more likely, to the failure of the Born approxi-
mation itself, and an example of this sort of failure is
found in the helium capture calculations. ' "Additional
evidence that the Born approximation underestimates
the cross sections for impact energies exceeding (roughly)
800 keV is supplied by comparisons of the Born ap-
proximation with recent calculations using an improved
perturbation procedure. '~ '

The author believes that the relative simplicity of
Born capture calculations together with the apparent
success of this method in predicting reasonably good
cross sections for capture from helium and the atoms of
this paper justifies the use of this method in the inter-
mediate energy range of 40 keV to 1 MeV.

APPENDIX I

A different approach to the calculation of BK cross
sections for p-orbital capture is described in this Ap-
pendix. It is recalled that the p-orbital part of the wave
functions for the terms of the configuration p" are ex-
pressed as linear combinations of terms of the con-
figuration p" ' each coupled to P('P). The normalized
antisymmetrical wave function for (x+4) electrons can
now be written in terms of the (I+4)!/I!4!products of
the antisymmetrical p" (p orbital) part and the anti-
symmetrical (1s)'(2s)' part. Thus, in the calculation of
a BK amplitude for p-orbital capture, one can anti-
symmetrize the captured electron with respect to the p
orbital (con6guration p" ') part of the ion, and then
antisymmetrize this group of electrons with respect to
the (1s)'(2s)' group as was just described. Since it is
readily verified that there are (I+4)!/e!4!nonvanishing
integrals of the type implicit in Eqs. (1) and (1a), and,
that the values of these integrals are all equal, the result
for n=4 is the same as given in Eq. (7a) except that the

rr R. McCarroll, Proc. Roy. Soc. (London) A264, 347 (1961)."R.McCarroll and M. B. McElroy, Proc. Roy. Soc. (London)
A266, 422 (1962).
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numerical factor 2(24) "' is replaced by the product of
several numerical factors.

Attention is now focused on the numerical factors,
and the origin of these factors is what motivated this
separate investigation. The number, n'12, originates
from antisymmetrizing the captured electron [now part
of H(pS)] with respect to the configuration p" ' of the
ion; i.e., the normalizing factor of the p orbital part of
the ion, f (e—1)i] 'i' has to be changed to [n!] '" to
allow for the inclusion of the hydrogen atom coordinate
in this group, and since e permutations are involved, the
origin of this number is clear. (It will be recalled that the
factor, (n+4)'", was required using the methods in the
main body of the text. ) The next modification intro-
duced is the decomposition of the triple sum of Eq. (Sa)
into the following three triple sums:

S I
[ E + 2 + E 1.

M8=—S ML,=—I Ml, '=MI Ml. ' MI,+1 MI, '=Mr, —1

TABLE III. Nitrogen cross sections, m=3,

Direct

Q('s ~ 'P) =Q(x)
Q('& '~) = (2/9)Q(~)
Q(P& 'D) = (s/&8)Q(&)
Q('P ~ 'P) =—', Q(x)
Q('D ~ 'D) = 2Q(*)
Q('D '&) = lQ(*)

Inverse

Q('~ ~'~) = (2, 9)Q(*)
Q('~ ~ '&) = -'Q(&)

Q('D ~'&) =pQ(&)
Q('& ~'&) =6Q(&)
Q('D —& 'D) =-,'Q(x)
Q('& 'D) =(5/»)Q(*)

although the value of the sum is usually di6erent for
each process. (More will be said about this in a future
publication. ) Consequently, the sums appear as a com-
mon factor, denoted by P(L —+L'), and the desired
numerical coeScient can now be identi6ed in terms of its
separate factors. The factor, (g;) '= [(2S+1)(2L+1)] ',
is taken from Eq. (Sa), and it is combined with the other
factors of Eq. (A1) to give the final result.

This expression represents the nonvanishing con-
tributions to the sums of Eq. (Sa). The result becomes
self-evident when one considers the fact that coupling
the components, mi= +1,0 of p('P) to the components,
ML' of a given term of the ion can change these ML'
values only by &1, 0. From these considerations and
the correspondence between the components of the mo-
mentum change variable, Ai, (A in this discussion) and
the p orbitals, Pyi, p(xi), [see Eqs. (7a), (7b)] it is
readily verified that the contribution from the sums of
Eq. (8a) can be written as in Eq. (A1).

(2S/1)g,
i
(p~—i(»'+iL') jjp~(»+iL)) i&

[Ap Q iC(MI.,Mi,)i'+iA il'
MI=L

I ~L I
CL'

X P ](:(Mz+1,M.) i'

+ i
Ai]' P i C(Mi, —1, Mz) ['][g(e) ('. (A1)

IML, —1I (L'

The notation used here corresponds to the notation
employed for the process defined by Eq. (A2).

H++A [p"(ps+'L)] ~ H(1s)
+A"[p"-'(' '+'I.')] n=3 4. ,(A2)

F (L —~ J.') = (2L+1) 'n g (L —+ L')

X i
[p~—i (»'+iI ') ]}p~(»+iI )]i

p (A3)

This number, F(L —+ L'), is the factor by which the
quantity, Q(x), (explained in the text) is multiplied to
get the cross section for the processes of Eq. (A2). The
SK formulas are now given for both the direct processes
of Eq. (A2) and their inverses. By inverse process is
meant the process obtained by reversing the direction of
the arrow. The formulas for the inverse processes are
only approximate in that small changes in velocities and
reduced masses are ignored. The argument, z, of Q(z)
[see Eq. (8b)] denotes the x value appropriate to the
process. The cross sections in Tables III and IV are
labeled by the terms of the atom and ion of Eq. (A2);
e.g. Q(' +'L ~ ' '+'L, '). Any other process between the
ground-state terms of the ion and the atom violates the
conservation of multiplicity, and therefore is forbidden
in the absence of spin-dependent forces. Since the value
of Q(z) differs only slightly among these possible
processes for a given target atom, the ratios of the cross
sections are nearly equal to the ratios of the numerical
factors. Although the values of the cross sections are
not representative of the actual cross section, except for
very large impact energies, these ratios are perhaps good
approximations to the ratios of the exact cross sections.

In Eq. (A2), A denotes the atom and A+, the ion. Much
of the notation used in Eq. (A1) has been explained pre-
viously; g(8) is that part of the unsymmetrized ampli-
tude that is independent of L and I.'; the quantities
C(Mz', Mi) are the vector coupling coeKcients, orbital
and spin parts combined, that enter into the construc-
tion of P[p"(LSMzMs)] from the various components
of iP[P" '(I.'S'Mz, 'M )Ps(Ms "Ms"); P~(LSMrMs)]
For any of the p-orbital capture processes considered in
this paper, the three sums in Eq. (A1) are equal,

Direct

Q('& '~) = (4/9)Q( )
Q('~ ~'D) = (5/9)Q(~)
Q('& ~'~) = 3Q(&)
Q(D- D) =Q(-)
Q('D ~ '&) = 3Q(&)
Q(s- P)= Q(.)

Inverse

Q(4S 'Z) = 'Q(~)
Q('D '&) =-'Qb)
Q(~- ~) =-:Q()
0(D- D)= Q(-)
Q('& 'D) = (5P6)Q(&)
Q(P S)=;Q(*)

TABLE IV. Oxygen cross sections, n=4.



t I ECTV~OiN CA VTURt. I ROM ATOM I C N Ai(J I& 0 BY PROTONS 1837

APPENDIX II

In this Appendix some of the wave functions used are written as linear combinations of determinants. For
economy of space the s orbitals are not written, but are understood. Only the 6rst rovr of the determinant is written,
and the notation used in Eq. (6) is used for the p orbitals; the customary symbols, n and p, are used to denote the
spin functions. The wave functions are labeled by their Mr, and Ms values as f(Mr, ,3fs).

Ground-State Configuration Terms for (2P)'

f(2)=
(7!)'/'

2D ~

f(l) = (IP-»1nPa I+ IP-1nP1nPP I+ IP- nP»~ I) ",
(3X7 ))1/2

1
P(2,-,'}= IP»,nPa I,

(7 )"'

0 (1,-') = (I PPP1aPn
I

—IP-1nP1nP@I)
(2X7!)'/2

1
4 (0, 2) = (—2IP-1nP1nPop I+ IP-1pP1nPn I+ IP-1nP»~ I),

(6X7 t)'"

1
4(—1, 2)= (IP yP, P,al IP, P~—P pI),

(2X7!)"'

4(—2, -', )=
(7 )"'

'P: P(1,—2')= (IP 1aP»1nl+ IP1nPoPPonl),
(2X 7/)'/2

1
P(0,-'2) = (IPonP1nP 1PI —IPonP1PP 1nl),

(2X7 f)1/2

1
~(—1, —:)= (I P -P~P~-I+

I
P -P .PP -)--

(2X7!)'"

Ground-State Configuration Terms for (2P)4

'P: f(1,1)= IP1aP1PP 1nPonl,
(8!)'/'

P(1,0)= (I P,aPyZ, PP~I+ I P,aP,PP,nP,P I ),
(2X8 t)1/

1
$(0,1)=

I
P1aP 1aPonPoP I,

(8 i)1/2

!t/(0,0)= (I PlaP 1PPoaPOPI + I P1PP—1nPoaPoP I), —
(2X8!)'/2

f(—1, 1)= IP 1nP 1PPpuPiaI
(8 f)1/2

y(&S) = (IP,nP yP,aP,PI —
I
P,PP,nP~PP I+ I

P,nP, PP~P y I);
(3X8!)1/2
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1p(2) = i
PlnPQP puPop il,

(g f)1/2

(2Xg t)"'

$(0)= (2~PlnPQP lnP lp~+ ~PlpP 143PO43Ppp~ ~Pl/2P —lpPO43Ppp~)p
(6Xg i)'/2

4'( ~) ( ~
Plp/POP 143P—1P [-[Pl@ pp/P 1/2P 1p—

~
)y-

(2Xg ~)'"

1p(—2) = (P 1///P 4-Pp/2-PoP
I

(g f)1/2

Although some of the wave functions for p"(2s+'I) have been omitted from this list, enough are given to illustrate
the structure when they are expressed as combinations of determinants. The wave functions for p4('D) and p4('S)
require the following cfp's for their construction:

(p3(2P) jjp4(lg) )—] ~ (p3(2P) jIp4(lD) ) 1 ~ (p3(2D) )p4(lD) ) ~3/2
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