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Proton-Lattice Interactions in Hydrogen-Bonded Ferroelectric Crystals
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The distortions of the lattice accompanying protonic order-disorder transitions, and the difference
between the observed frequency of protonic or deuteronic intrabond motion and the one estimated on the
basis of the rigid lattice model, seem to indicate that proton-lattice interactions are not negligible in the
case of ferroelectric H-bonded crystals. In order to throw some light on this problem, the energy spectrum
and polarizability of an isolated hydrogen-bonded proton, interacting with polar lattice vibrations in the
presence of an electric Geld, have been studied both in the strong- and in the weak-coupling limits. The
results obtained show that the intrabond tunneling frequency of a proton, interacting with the lattice, is in
fact much smaller than the tunneling frequency of a bare proton in an undeformed lattice. In the case of
strong proton-lattice interactions, the polarizability is anomalously large at relatively low Geld strengths
and any small fluctuation in the lattice potential is accompanied by a trapping of the proton in an off-center
position. Another speciGc consequence of proton-lattice interactions is an inherent distribution of dipolar
relaxation times.

I. INTRODUCTION

~ 'HOUGH ferroelectric phenomena in hydrogen-
bonded KH2PO4 type crystals have been exten-

sively studied in recent years, ' our understanding of the
basic interactions that lead to ferroelectric transitions is
still far from being complete, and no comprehensive
theory yet exists.

In particular, model theories proposed so far' have
considered the hydrogen-bonded protons to move in a
completely rigid lattice potential, thus, neglecting
proton-lattice interactions. On the other hand, it is well
known' that the protonic order-disorder transition in
KH2PO4 is accompanied by large displacements of the
potassium and phosphorus ions, which account for
nearly all of the spontaneous polarization of the crystal
and which cannot be understood in terms of a rigid
lattice model. Moreover, the observed protonic and
deuteronic mobility4 ' is much lower than the one
estimated' on the basis of the rigid lattice model. This
discrepancy in the order of magnitude of the protonic
tunneling frequency, as well as the above-mentioned
large lattice distortions, accompanying protonic order-
disorder transitions in KH&PO4 type ferroelectric crys-
tals, demonstrates that proton-lattice interactions are
not at all negligible in ferroelectric, H-bonded crystals.

The same seems to be true for some nonferroelectric
H —bonded crystals. Here, as well as in the case of
ferroelectric crystals, infrared absorption' ' and dielec-
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tric relaxation spectra' have been observed, which are
difficult to explain in terms of protonic motion in a
rigid lattice potential.

In view of the complexity of the many-body problem
in ferroelectric crystals, it seemed worthwhile to investi-
gate first the energy spectrum and polarizability of a
single, isolated hydrogen-bonded proton interacting
with polar lattice vibrations in the presence of an
electric field.

In Sec. II, the model Hamiltonian of the problem is
defined. In view of the strong localization of the proton,
the discrete structure of the lattice is taken into account
explicitly.

In Sec. III, the energy spectrum and polarizability of
a H bonded proton interacting with polar lattice vibra-
tions are studied. (i) in the strong coupling, low lattice
frequency limit where protonic excitations induced by
the zero-point fluctuations of the lattice field are
neglected, and (ii) in the weak-coupling limit, where
the proton lattice interactions are treated as a perturba-
tion. A short discussion of the dielectric relaxation
spectra of "dressed, "H-bonded protons is added.

In the Appendix, the interaction parameters are
explicitly evaluated for two simple lattice models, and
a numerical example is given.

It is the explicit introduction of the concept of a
"dressed" 0—H —0 dipole and the examination of some
of the observable consequences of proton-lattice inter-
actions that is the contribution of this paper.

II. THE HAMILTONIAN

We study the properties of the following Hamiltonian:

&=&v+EEt+H, =&o+EE,, (&)

where H„stands for the energy operator of an 0—H —0
hydrogen-bonded proton, moving in a "rigid lattice"
potential in the presence of a time-independent electric
field F, H~ for the energy operator of the polar lattice
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where

4 i= ei ~i(r)+e~V .(r),
'I(2= egg~(r) —cia„(r),

&vii vi)=&v. l v.)=1.

(3)

As shown previously, '

c, '(F) = —'[l~pP/(P'+ p'P')' ']

vibrations in the absence of the proton, and H; for the
electrostatic "proton-lattice" and "electric field-lattice"
interaction operators.

Experimental and theoretical investigations indicate
that the potential energy surface of the proton in many
H bonds has two minima. ""Assuming interbond pro-
ton jumping4 and band conductivity to be negligible for
the phenomena treated in this paper, II„is taken as

H„=—PP/2m) 6+V(r) —exF, (2)

with V(r) being a double minimum potential, which is
symmetric about the center of the H bond [e.g. , com-
pare Eq. (43)]. It should be noted that in the absence
of Ii, the whole Hamiltonian has the same symmetry.

The eigenfunctions of H~ in the absence of the field
describe a nonlocalized state with the proton oscillating
between the two potential minima in V(r). The presence
of a field results in a localization of the particle. In the
case of a high intervening barrier —which is the case
treated in this paper —the two lowest eigenfunctions can
be approximated by a linear combination of wave func-
tions localized in one or the other potential well,
respectively,

The "inert lattice" in the "absence" of the proton is
supposed to consist of a regular array of e polarizable
ions. Each of the polar vibrations of the lattice can be
described by a polarization vector

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

p ~ +tSpg tg)QCZ) ) J)

where (p;, (t),p;„(t),p;, (t)) is the dipole moment associ-
ated with the polar deformation of the ith ion. P is
understood to be a vector in the 3e-dimensional
Hilbert space, where the scalar product of two vectors
P and P' is defined by

(P,P')=Z', p'p*', '=1, 2.

Assuming that the potential energy of the polar lattice
vibrations is a quadratic functional of P, the inert part
of the classical lattice Hamiltonian in the absence of the
proton can be written as

Hi ———', (P,MP)+-', (P,EP),

with M and E being time-independent, self-adjoint
matrix operators. Since the kinetic energy is always
positive and the system is assumed to be stable for P=0,
M and E are positive delnite operators. Hence, M'",
M '~' and M ' 'K3f ' ' exist and are, as well, positive
definite and self-adjoint. The eigenvalues coI,', 4=1,
2, , 3e of M '/'EM '/' are thus all positive, and the
corresponding eigenvectors M''XI, form a complete
orthonormal system:

(&I,3fxa)=41 .
where the overlap integrals

P=Pi Pp(t)xi,

Expressing the polarization vector P in terms of
normal modes,

(5

and inserting (11) into (9), we get

&i= ', pa(~1-'&a'+~L'),~= &V. l e*l V.),
p=&vil&nl v.),

(6)
where the normal coordinates I'I, are given by

are neglected, and where the symbols 1i and P are
defined as

(12)

with e standing for the effective charge of the proton.
In analogy to the procedure used in the treatment of

electron-lattice interactions, " " the polar vibrations of
the lattice are divided in an "inert" and an "inertless"
component, and H; stands only for the interaction of the
proton with the "inert" component. The interaction of
the proton with the "inertless" component, which
follows the motion of the proton adiabatically, is in-
cluded in V(r), whereas the interaction of the electric
field with that component gives rise only to a constant,
mass-independent term, which is omitted.
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Pi, (t) = (P,MXI). (13)

Introducing the dimensionless normal coordinates

qr, (cuI/Ii)'i'P& and——replacing PI, by i (Acyl, )'~'8/Bq&, —
the quantum lattice Hamiltonian is obtained as

&,=-,'g&~,
l q, —

aq, ')
' (14)

e
II,= P, grad, . r—r' '—I"

4meo
(15)

with coI, being the frequency of the 0th polar lattice
mode.

The proton, moving slowly between the two potential
minima in V(r), interacts electrostatically with the
polar lattice modes. Using expansion (11), the electro-
static proton-lattice interaction Hamiltonian
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can be written as
H'= Q p

&aqua.

Here the coeScients t/'I„- are given by

(16)
is indicated for the investigation of the ground state. " "
Here fi depends only on the protonic coordinates and P
on the coordinates of the polarization field. We assume
that both Pi and p are normalized,

e
~»=i~/ »)'"(» g«~" I»—'I ' —& I, 0i)'

4~pp )' Q j~)=Qj~)=1 (21)

and the 3ip-dimensional vectors grad, jr—r'j —' and F
are defined as

grad, jr—r'j '=(;;Bjr—r j

—'/Bx, Bjr—r j-'/By
XBj.—,j-/B, ;; ); (»)

F=Fei, ei= (1,0,0; 1,0,0;;;1,0,0).

In case of the dielectric continuum model essentially
the same treatment is applicable. The vector P becomes
a 3-dimensional vector, the components of which are
functions of the continuous variable r. Accordingly, in
the definition (8) of the scalar product, the summation
over the discrete variable r; has to be replaced by an
integration over the continuous variable r.

III. ENERGY SPECTRVM

A. Strong-Coupling Case

I.et us first investigate our Hamiltonian

A2

H= — 6+V(r) exF-
2ns

B2

+& l"q~+l P &~pl q"— (19)
i» P ( BqiP

in the strong-coupling, low-lattice-frequency limit,
using a variational method. ""

We treat two distinct cases:
In the first, the intrabond proton tunneling frequency

P is larger than the lattice frequencies, but smaller than
the spacing hvp of the unperturbed protonic energy
levels in case of an infinitely high intervening potential
barrier: Apip(P&hvp. The lattice cannot follow the
motion of the proton at all and responds to the charge
density of the proton averaged over the two sites.

In the second case, the lattice frequencies are larger
than the intrabond tunneling frequency: P&kpip&hi p.

The lattice cannot follow the motion of the proton with-
in one well, but is able to respond to the slower proton
motion between the two wells. Thus, in this case, the
lattice interacts with the charge density of the proton
averaged only over one site.

Minimizing the expectation value (4'jHj+) with
respect to P under the restraint Q jP)= 1, we obtain a
solution for it in the form"

II|'» 0'»»p(qk qk, l)» qk, l g'i j l Ig j $1)/hpiky (22)

the P»(qp —
q&, i) being displaced harmonic oscillator

wave functions.
Substituting this solution into (+ j H j4) and putting

all displaced lattice oscillators in their ground states,
eg, =o, we obtain

with
(e jH je)=a(P,)+-,' Pi, h~, ,

@(0'i)= Q'i
j Hi j4'i) pZ p "ppiqp—, i .

(23)

The protonic part of the ground-state wave function
has now to be determined by minimizing the functional
d(Pi) with respect to Pi.

Since we are interested in the eGects of strong proton-
lattice interactions in the presence of a field Ii, we take
for the protonic part of the trial wave function an eigen-
function of H„in the presence of an arbitrary field n,
which is considered as a variational parameter:

A=ci(u) p i(r)+cp(u) p. (r) (25)

P'+ p,
' (u1+B) F p'u'

a(u) =—
(P2+p2u2) i/2 P2+~2u2

with

A+ DF', (26)— —

D= ', Qp pip '(xi, e-i)-'.

Here 8 stands for

Here ci(u) and c&(u) are given by Eq. (4), with u taking
the place of Ii. In this way, the effect of the induced
lattice displacements on the motion of the proton is
replaced by an effective field n which has to be deter-
mined self-consistently. The treatment of the problem,
taking into account the changes in the shape of y~ and

p,.—which are small anyway in the case of high inter-
vening barriers —is reserved for a subsequent paper.

jnserting (25) into (24), and noting that the ground-
state energy does not depend on the particular direction
of F, the functional d(Pi) becomes a functional of u:

(1) AMi»(P (hpp

In this case, where the lattice interacts with the
charge density of the proton, averaged over both sites, a
Hartree-type wave function

with
(Xee,)it

,I x4 grad,
8il ppIippg k

p i'(r) —
p '(r)

)
dr j,

(27)

+( q )=4 ()4( "q ") (20) and 4+, which is a measure of the strength of the proton-
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lattice interaction, for

fg=pk Ak, g,
with

proton in the undeformed lattice,

E1 ———
~ p)+2 Qk Ao/k, (32b)

1 e 2(
Ag, ~———

~
xk, grad,

2 87M ol'A k

In deriving expression (26), overlap integrals have been
neglected.

It should be stressed that the expression (26) contains
just one effective parameter A, which determines the
change in the polarization behavior of the proton due
to proton-lattice interactions. 8, namely, amounts just
to a renormalization of the 0—H dipole moment:
Instead of the 6eld Ii, the proton "sees" the field

(1+8)F.In the following A, 8, and D will be treated
as parameters which have to be evaluated for each
particular crystal lattice we are interested in (cf.,
Appendix).

Minimizing the ground-state energy (26) with respect
to the variational parameter u, dd/du=0, the self-
consistency equation for I is obtained as

(1++)F+2A u/(P2+~2u2)1/2 (29)

Any change in F results according to Eq. (29) in a
change in u and in qk, 1. Inserting (22) into (11), the
time average value of the lattice distortion due to
proton-lattice and electric held-lattice interactions, is
obtained as

Zk h o/k Q'l l U. lk)xk. (30)

It should be noted that in the absence of an external
or internal 6eld Ii, the true ground state of H must have
the symmetry of U(r), and hence a nonvanishing value
of I is not allowed.

On the other hand, Eq. (29) shows that if the condi-
tion 2A )P is fulfilled, i.e., if the strength of the proton-
lattice interaction exceeds a critical value, determined
by the tunneling frequency of the proton in the ground
state, even the smallest Ii will result in a relatively large
u. Thus, the system is inherently unstable, if 2A )P,
and any small asymmetric fluctuation 6 in the hydro-
gen-bond potential is immediately accompanied by a
self-trapping of the proton, i.e., a nonhero value of u:

1 (4A 2 P2) 1/2 (31)

The protonic part of the "true" ground-state wave func-
tion corresponds thus in the presence of small Quctua-
tions 6 to a localized, "self-trapped" stat- = though
8=0—and permanent "0—H" dipoles are thus created.
The ground-state energy Ej of such a self-trapped state
in the absence of F is obtained in the limit of 6=0 as

E1 —p'/4A —(A++A )+2——pk bio/k, (32a)

if the condition 2A )p is fulfilled.
The "self-trapped" ground state evidently corre-

sponds to a lower energy that the state of the bare

e;= v;(r)II @„k(qk—qk, ;),

qk; —(q;~ Uk~ q——;)///ioik, i l, r, ——
(33)

is indicated. This function is a linear combination of
states where the proton is localized on one site and is
surrounded by suitable displaced lattice oscillators.

Rlinimizing the expectation value g1jH~$1) with
respect to the variational parameter u, we obtain I as

(34a)
with

p& (+ l&il/+. )=p exp( —2 Ek Ak, -/&~k) (34b)

Inserting this value for I into

(4' (nk ——0)
~

H ~%' (iik ——0)),

the ground-state energy E& and the energy of the 6rst ex-
cited state E2 )corresponding to 42 ——c2(u)41—c1(u)+„j
are obtained as

(A + f ) DF2~1 P 2+~2(1++)2F2$1/2

+-,'Qk hook (35a)
and cy, 2 as

c1 '(F) =-'{1~/ (1+&)Flp~'+/'(1+&)'F'j '") (33b)

The above treatment is appropriate as long as
(E2—E1)&Ao/k. Hence, we get for its validity, in the
case F=O, the condition Pal&ho&k&hio which is less
restrictive than the one assumed before: P & bio/k &h/ o.

since the constants A+ are always positive.
Excited "dressed" proton states 4'(p, .

, /ik, .)
=P~(r) &&Qk /t/ k(qk qk, ~—) can be calculated in a similar
fashion, using trial wave functions P~ which are
mutually orthogonal.

Using a trial wave function

A= c2(u) o /(r) -c1(u) v .(r),
orthogonal to the ground state, the energy of the 6rst
excited state is obtained in the case 2A )P and F=0 as

E2 3p'/4A ——(A++A —)+-,'Qk ho/k. (32c)

The introduction of proton-lattice coupling, thus,
reduces the resonance energy splitting of the ground-
state doublet from 2P to the smaller value P'/A and,
hence„decreases the intrabond tunneling frequency of
the proton.

(ii) P&ho&k&hi'o

In this case, where the lattice interacts with the
charge density of the proton, averaged only over one
well, a ground-state trial wave function

e1——c1(u)ei+c2 (u)e„,
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It should be pointed out, that in contrast to Eq. (29),
Eq. (34a) does not have a nonzero solution for I in the
absence of J and, hence, the ground-state wave function
(33) automatically has always the correct symmetry.
On the other hand, here as well as in the former case,
even the smallest F will result in a large I, i.e., in a
localization of the particle.

The resonance matrix element Pd between two
"dressed" protonic states 0'& and 4'„is always smaller
than the corresponding resonance matrix element P
between two "bare" protonic states. The reduction is
the larger, the greater the strength of the interaction

, and the lower the frequency of the normal mode
coj„interacting with the proton.

The intrabond tunneling frequency of the proton,
dressed in a self-consistent polarization cloud, may be
thus much smaller than the tunneling frequency of a
bare proton in an undeformed lattice. Strong proton-
lattice interactions, thus, drastically reduce the mobility
of the protons, since the whole lattice ought to "tunnel"
through the potential barrier together with the proton.

In this connection it should be noted that the fre-
quency of the deuteron intrabond motion in KD2PO4,
as obtained from magnetic resonance data, 4 is much
smaller than the one estimated on the basis of the rigid
lattice model. The temperature dependence of the
deuteron motion4 shows further that the contribution
of tunneling to the deuteron mobility is negligible
within the investigated temperature region (T=200-
300'K), and that the deuteron —in spite of the low
potential barrier —behaves like a classical particle with
a large effective mass. Similarly, the frequency of the
protonic ground-state doublet transition in' KH~PO4 is
much lower than the one calculated within the rigid-
lattice model' on the basis of neutron diGraction data. '
Moreover, no double minimum effects at all have been
observed in the vibrational spectra of triglycine sul-
phate, ' where proton-lattice interactions seem to be
particularly strong, though the rigid lattice model pre-
dicts very large resonance matrix elements due to the
shortness of the 0—H—0 bond (Rp. ..p

——2.43 A). The
introduction of proton-lattice coupling and the corre-
sponding reduction of the resonance matrix elements
may explain all above discrepancies.

B. Weak-Coupling Case

Since the protonic excitations, induced by the zero-
point Quctuations of the lattice field, have so far been
neglected, the above treatments are essentially static.
Let us now investigate the dynamic aspects of proton-
lattice interactions in the weak-coupling limit, using
second-order perturbation theory. Since the two lowest
eigenvalues of H„ form a closely spaced doublet,
separated by a large gap from higher vibrational states,
we will consider only protonic excitations induced within
the doublet and neglect the contribution of higher
excitations.

The matrix elements of H; with respect to the eigen-
functions of Ho are

XL(n2+ 1) 42', e'1 1+—n/: ~ta2, n'2+1j g ~@2',e'„"q
k', O'Qk

(36)

and the ground-state energy E& is obtained in the dy-
namic case as

with
jV,=g, (0)+g, (2)

(0) — (P2+~2F2)1/2+ 1 Q

(37)

(38)

Replacing co& with the limiting lattice frequency co and
noting that Eo is an even function of F, the above sums
can be evaluated giving

(2) (g +g ) DF2 fl~2F2()32+~2F2)
—1/2

+g P2 (P2+ 2F2)—1/2L(P2++2F2)1/2+ ~/2 j—1 (40)

Here A~, 8, and D are given by Eqs. (28), (27), and
(26) with (02——(d.

In the absence of the field F, Eqs. (37), (38), and (40)
yield

Fi I pl+2 2——1)2(p/, —2 App(A(p+2p)
—'—3+, (41)

and the ground-state energy of the proton, interacting
with polar-lattice waves, is again lower than the ground
state of a bare proton in a rigid lattice.

C. Polarization Behavior

Let us now investigate the polarization behavior of an
H-bonded proton, interacting with the lattice. The
polarization in the state @(p; .

,n/„)is obtained as
F(p;,n/„.) =- —B.F.(p;,n2, . )/BF and the po-
larizability as n(P; . ,n2, .)=E(P; .

,n2, )/F.
The ground-state polarization is obtained in the case

P ()2002 (hPP as

F= 2DF+p'(1+8)2FLPg2+p2(1+8)2F2) '/2. (42)

As a consequence of the introduction of proton-lattice
coupling and the corresponding reduction of the reso-
nance matrix element, Pd~(P, we obtain with increasing
static field F a rapid build up of an anomalously large
polarization, which approaches the saturation value at
relatively low-field strengths. The polarization is larger
for a deuterium than for a hydrogen-bonded crystal,
thus showing the correct dependence on the mass of the
hydrogen isotope. '

being the lowest eigenvalue of Ho, and E~&2) being the
energy shift due to proton-lattice interactions:

Q'il l'2
I
A&'

+1(2)— 1 Q + (39)
2 (p2+/12F2)'/2+)2002/)
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Essentially the same behavior is obtained in the
other two cases, treated above. It should be mentioned,
that in the weak-coupling dynamic case the correction
term due to proton-lattice interactions goes mono-
tonically to zero as the lattice frequencies increase.

Strong proton-lattice interactions may as well result
in a freezing out of the dielectric relaxation spectra at
sufficiently low temperature due to immobilization of
the 0—H —0 dipole moment by self-trapping in the
ground state." The necessary small, asymmetric de-
formation of the 0—H —0 potential, which is strongly
enhanced by the effect of proton-lattice interaction,
may be provided, e.g., by short-range interactions
between the 0—H —0 dipoles. A diminishing of the
amount of dielectric absorption with decreasing tem-
perature has in fact been observed in a variety of solids
with long H bonds and a correspondingly small P.P

Another specific consequence of strong proton-lattice
interactions is an inherent distribution of dipolar re-
laxation times, leading to broader dielectric loss vs
frequency curves than expected on the basis of the
Debye model with a single relaxation time. This effect,
which has been observed in a variety of H-bonded
solids, '"" can be easily understood in terms of a
classical model: At the time, when the external polariz-
ing Geld is removed, the e6ective lattice potentials will
not be exactly the same for all 0—H —0 dipoles, and
any class of dipoles in a given eAective potential will
relax exponentially, with its own relaxation time.

and assuming

0

(x()
kx„)'

(45a)

JIf/I =mggg
—' E= g(g

0 1
(45b)

k

we obtain X~ and X2 as

Xt——t es/(2md)'I'5
[

Xs= Les/(2m')'I'g] [, (46a)
1I E—1i

with e' and e being the high- and low-frequency
dielectric constants of the medium. "

In contrast to A which increases with increasing
mass of the particle, 8 is mass independent in case of
the homogeneous continuum model.

Due to the strong localization of the protonic wave
functions, the continuum model is a rather inadequate
approximation and expression (44) is not very useful for
a quantitative estimate of the magnitude of A .

Therefore, let us consider a case with the simplest
possible discrete structure of the lattice. In this model,
the proton, moving in a double minimum potential V(r),
interacts with two identical oscillating "lattice" dipoles

$(p~, , eqx——~, 0, 0) and (p...=ed'„0,0)$, located on the
x axis in a distance ~d from the center of the H-bond
potential. Writing the polarization vector P as
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APPENDIX

In order to get a notion for the dependence of the
coupling parameter A on the lattice structure, let us
consider two specific models.

In case of the dielectric continuum model, A is
easily evaluated, if we assume co&

——~, i.e., an Einstein
model. Describing the shape of the hydrogen-bond
potential by

V(r) =-,'kL(x+l)'+y'+s'j, x(0
=-', k[(x—l)'+y'+s'j, s:&0

and taking

..= ( / )'" ( —-' L(*~~)'+ '+ '3)
y= (mk)Us/fi,

is explicitly obtained as

e (1 1~p 1
/

——
I( (2v)'"— e 'dr, 44

32&ep E'I el k f p

' R. Fuchs and A. von Hippel, Technical Report 156, Lab. Ins.
Res., Massachusetts Institute of Technology, 1960 (unpublished).

~~ R. M. Hill (private communication).

and the frequencies of the two normal "lattice" modes as

tp, ps= (krak')/mg. (46b)

esses
A2, ——0,

(2s'ep) ppPmgd
(47a)

if terms higher than (1/d)P are neglected. Within the
same model

Gag

Bj—— , 82=0, D=
O~l~fggd3 ~12m

(47b)

In order to get a feeling for the order of magnitude of
As let us evaluate At, assuming cp/2pr=300 cm—',
d=1.25 A, ms=16X1.67X10 '~ kg es=e=1.6X10 'P

A sec p=1.6X10 " A sec 0.15 A. We get A, =744
cm ', showing that the magnitude of Ap, in polar
crystals may well lie in the 10' cm ' range, and is thus
definitely not negligible. The corresponding values of
B~ and D are: Bt——5.5, D= 1.5X10 't (m/V)' cm '

Here m~ stands for the e6ective mass of the oscillating
"lattice" dipole, k for the corresponding force constant
and k' for the interaction force constant between the
two dipoles p~, and p„.

Inserting the above expressions for Xs into Eq. (28),
and expanding

~

r' —r
~

—' in powers of r', we obtain As,
explicitly as


