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Extension of the relationship to larger clusters is
obvious, demonstrating the expansion (41).

It is easily seen that any term in (A6) corresponding
to a choice of integers (I'„}vanishes if the nonzero
integers I';; can be divided into two sets with no indices
in common. That is, all "unlinked diagrams" vanish.
This follows from the fact that, in generating the term
by operating with the D's we can first apply all the DI, &

in one set. When we then apply a D,; from the second
(nonoverlapping) set, the quantity immediately van-
ishes. To see this we let Q) be one of the averages
generated by the Dsi of the first set so that p involves

only the KI,& in this set. We can let all the yI, ; which
join the two sets vanish, and p~ factors into pip2 where

pi involves the spins of the first set and p2 involves the
spins of the second set. Then

Qi) = trPpips/trpips ——(topi) (trps)/(trp, ) (trp, )
= tr(&pi)/trpi, (A11)

and this quantity is independent of the indices of the
second set. Hence, if D,, belongs in the second set,
D;,(p)=0, proving that all such unlinked diagrams
vanish.
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In a previous paper, a theoretical model was presented from which the critical magnetic fields of thin
superconducting films could be calculated. The model was worked out for the nonlocal model of Pippard,
but only thickness effects were discussed in detail and compared to experimental data on pure indium films.
In this paper, mean free path effects as well as thickness eBects are discussed, and the results are found
to be in good agreement with critical field measurements on thin alloy films of indium containing 0-4.6 at.%
tin, if one assumes that PsXz,' is equal to 1.62X10' (A)' at 0.9T„$0 is equal to 2600 A, and pl is approxi-
mately 2.0X10 "0-cm'. For these values of $0 and pl, the coherence length, P, has been calculated for each
film from measurements of resistivity and thickness, and is found to vary from 2600 A at 0 at %Sn to .1000 A
at 4.6 at.% Sn. Also, the question of whether size effects in thin films are equivalent to mean free path
eG'ects is discussed in detail. It is concluded that size eGects are not equivalent to mean free path sects, or
more precisely, boundary scattering is not equivalent to scattering by randomly distributed defects. In fact,
it is demonstrated that whereas the London or "local" limit obtains in the presence of high concentrations
of randomly distributed defects, the Pippard or "nonlocal" limit obtains in very thin films, where boundary
scat tering predominates.

1. INTRODUCTION
' 'N a previous paper, ' hereafter referred to as I, a
~ ~ theoretical model was presented which relates the
critical magnetic fields of thin superconducting films

to the kernel of the current-vector-potential relationship
for any theory of superconductivity. The model was
worked out for the nonlocal theory of Pippard, ' but
only thickness effects were discussed in detail and com-
pared to experimental data. In this paper, mean free
path effects, as well as thickness effects, will be discussed
and compared to critical field data obtained for indium-
tin alloy films. The theoretical discussion will be limited
to the nonlocal theory of Pippard with specular bound-
ary conditions. Because of the similarity between the
kernels of the Pippard and BCS' theories, it is expected
that the results are substantially the same that would
be obtained from the BCS kernel. In addition, the ques-

' A. M. Toxen, Phys. Rev. 127, 382 (1962).
2A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
3 J. Bardeen, L. ¹ Cooper, and J. R. Schrie6er, Phys. Rev.

108, 1175 (1957).

tion of whether size effects in thin films are equivalent
to mean free path effects is discussed in detail.

2. THEORETICAL

For the case of the Pippard kernel with specular
boundary conditions, an expression for the critical field
is derived in I which is of the form

h./a, =g(~,),'/a', ~/~), (1)
where h, is the critical field of the film, H. is the bulk
critical field, $ is the coherence distance, $s is the co-
herence distance in pure material, ) I, is the London
penetration depth, c is the half-thickness of the film,
and g is a function which can be numerically evaluated.
The evaluation is carried out most conveniently in two
steps. First, the film susceptibility is calculated from
the results of Schrieffer, 4

(ir 2
=1—g P:+E(u„)j-i, (2)

i Ks spec g m=s2

4 J. R. Schrieffer, Phys. Rev. 106, 47 (1957).
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FIG. 2. The theoretical dependence of critical Geld upon coher-
ence length. The curves shown are plots of the ratio of Glm critical
Geld to bulk critical Geld vs coherence length and are calculated
for various values of &0'.', holding the half-thickness u Gxed at
1250 A.. The solid and dashed curves have the same signiGcance
as in I'ig. i.

indicates, h,/H, increases for increasing (pXz, (i.e.,
increasing temperature) and decreasing $.

To compare the theoretical model of Eq. (1) to critical
field data obtained for alloy 6lms, one must know how

P varies with the composition of the films. This informa-
tion is obtained from Eq. (12) which relates $ to the
electronic mean free path in the normal state. Since the
product of resistivity and mean free path is, for a given
material, a constant, i.e.,

(13)

the quantity & can be calculated from the resistivity of
the alloy samples by means of the relation

(14)

However, when Eq. (14) is applied to thin films, the
appropriate value of A will, in general, not be the same
as that deduced for bulk specimens. For the sake of dis-

cussion, consider the simplest case, a metal having cubic
symmetry. In a bulk specimen, the electrical conduc-
tivity is a scalar, and the constant A is inversely pro-
portional to the area of the Fermi surface, excluding
those regions touching a zone boundary. ' In thin films,
however, when surface scattering is important, elec-
trons moving at different angles to the surface of the
film contribute differently to the total current. For
different orientations of the crystal axes relative to the
surface, different groups of electrons become effective.
Thus, the apparent dc conductivity (and hence the
constant A) depends upon the orientation of the surface
relative to the crystal axes. ' When the orientation is
such that a large number of electrons are traveling at
small angles to the surface of the film. , i.e., when that

7 R. G. Chambers, Proc. Roy. Soc. (London) A215, 481 (1952).
8 J. M. oman, Electrons and Phonons (Oxford University

Press, ¹wYork, 1960), Chapter VII.' R. Englman and E. H. Sondheimer, Proc. Phys Soc. (London).
869, 449 (1956}.

part of the Fermi surface corresponding to such angles
has a large radius of curvature, the apparent dc con-
ductivity will be high and A will be small; when the
effective part of the Fermi surface has a small radius of
curvature, the apparent conductivity will be low and A
will be large. In noncubic metals (indium is tetragonal),
the situation is analogous but more complicated be-
cause the electrical condutivity, even in a bulk sample,
is a second-order tensor. For 61ms which are poly-
crystalline with randomly oriented crystallites, it is
plausible that the nontensorial anisotropy effects due
to surface scattering might average out to give the
same value of A as in a polycrystalline bulk specimen.
However, the indium films discussed in I and the indium
alloy films to be discussed below, while not single crys-
tals, do possess a very strong preferred orientation with
the (101) planes of the body-centered tetragonal cell
parallel to the substrate. "Hence, only a limited zone
of the Fermi surface is effective in determining the dc
conductivity.

Another effect which may be important in thin films
has been suggested by Olsen. "To explain deviations
from Matthiessen's law in thin indium wires, Olsen
suggested that small angle scattering of electrons by
phonons may give rise to a size dependent (and tempera-
ture dependent) resistivity. Theoretical calculations by
tuthi and Wyder" and Blatt and Satz" support this
hypothesis. Such a mechanism might also cause A, as
measured in thin films, to be different from values meas-
ured on bulk specimens because of differences in
geometry.

Another point of importance concerns the quantity
This qua. ntity, like the quantities $s and) z, is a "bulk"

parameter in the model presented in this paper. Hence,
when $ is calculated from Eq. (14), the appropriate
value for p is not the measured 6lm resistivity, for the
latter includes boundary scattering.

3. EXPERIMENTAL

The indium-tin 61ms reported on in this paper were
evaporated from a single source onto fused quartz sub-
strates and varied in composition from 0.02 to 4.6 at.%
tin. Because of the relatively large difference in the
evaporation rates of indium and tin, the tin content of
films produced by this technique differed from that
of the crucible melt. However, the compositions could
be varied over the desired range of 0—5 at.% Sn by
adjusting the melt compositions and the evaporation
temperatures and times. The melt consisted of high-
purity (99.999% pure Tadanac Brand) indium and tin
inserted onto a previously degassed tantalum crucible.
To avoid highly agglomerated 6lms, the film substrates
were maintained in contact with a reservoir held at liquid
nitrogen temperature. Further details of the evaporation

'0 M. G. Miksic (to be published)."J.L. Olsen, Helv, Phys. Acta 31, 713 (1958)."B.Liithi and P. Wyder, Helv. Phys. Acta 33, 66/ (1960)."F.J. Blatt and H. G. Satz, Helv. Phys. Acta M, 100'I (1960).
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techniques and the film properties other than critical
field will be discussed in a future publication.

The compositions of the films were determined by
Miksic" using an x-ray fluorescence technique capable
of determining the tin content of these films to %0.05
at.% Sn.

The methods for measuring the film thicknesses and
critical magnetic fieMs have been discussed previouslyi4
and will not be repeated here.

4. COMPARISON OF EXPERIMENTAL DATA
TO THEORETICAL MODEL

As Sec. 2 of this paper indicates, in order to calculate
the critical field ratio k,(JJ, for a superconducting film,
one must know the film thickness and the nonlocal
parameters f and $e)~z.'. The quantity $ has been calcu-
lated for each film from Eq. (14) using the intrinsic
resistivity, i.e., the resistivity which would have been
obtained if boundary scattering were not present. The
latter was calculated from the measured resistivity and
thickness by means of Fuchs' relation. "It is felt that
this procedure is justified in these dilute alloys since
Fuchs' model has been shown to be in reasonably good
agreement with resistivity measurements made upon
evaporated indium films, " thin indium foils,"and fine
indium wires. "The values for the constant A of Eqs. (13)
and (14) obtained from these experiments are 2.0X 10 "
Q-cm' 1.6X10—"Q-cm', and 1.8X10—"Q-cm' respec-
tively. It is interesting to note that these values for A
are in reasonable agreement with one another yet dier
considerably from the "bulk" values of 0.89X10 "
0-cm' obtained by Roberts' and 0.57X10 " 0-cm'

"A. M. Toxen, Phys. Rev. 123, 442 (1961)."K.Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).
M A. Gaide and P. Wyder (to be published).
'7 D. C. Roberts (unpublished). See T. E. Faber, Proc. Roy. Soc.

(London) A241, 531 (1957).
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FIG. 3. Comparison of the theoretical model to the experimental
data. The points shown are the calculated ratios of theoretically
predicted film critical field to experimentally observed critical
field at 0.9 T„plotted as a function of 61m composition. The
theoretical critical 6elds were calculated for each film from Eqs.
(11) and (5) using the measured values of thickness; with
)OXL,'=1.62&(10'(A); and with (=(0=2600 L (i.e., mean free path
effects are neglected).
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FIG. 4. Comparison of the theoretical model to the experimental
data. The points shown are the calculated ratios of theoretically
predicted 61m critical field to experimentally observed critical
6eld at 0.9 T„plotted as a function of 61m composition. The theo-
retical critical fields were calculated for each film from Eqs. (11)
and (5) using the measured values of thickness; with (OXgm
=1.62&(10'(A)'; and with P calculated from Eq. (12) for (0 ——2600
A., y=1, and l determined from the measured thicknesses and re-
sistivities by means of Fuchs' model for pl =0.98X10 '1 o-cm2.

"P.N. Dheer, Proc. Roy. Soc. (London) A260, 333 (1961).

by Dheer. "Values for the quantity A can be obtained,
not only from dc resistivity measurements on thin
specimens and high-frequency anomalous skin eGect
measurements on bulk samples, but also from critical
field measurements on thin films. It is shown in I that
A, on the basis of a simple free-electron model, is related
to )eXr,', which in turn can be obtained from critical
field measurements. On the basis of the specular reflec-
tion model, one obtains A =0.98X10 "~-cm'. For the
diffuse scattering model, one obtains A=0.74X10 "
0-cm'. Whether these two values are "thin film" or
"bulk" values is, perhaps, debatable. However, it is
felt that, because fe and)~r, are bulk, parameters, these
values for A are bulk quantities, i.e., they are charac-
teristic of the entire Fermi surface, not just a limited
area of the Fermi surface which might be important in
determining the conductivity of thin films. At any rate,
it is clear that the experimental values for A fall into
two groups: 0.6—0.98X10 " Q-cm' for the "bulk"
values, and 1.6—2.0X10 " 0-cm' for the "thin film"
values.

In Figs. 3, 4, and 5 are shown plots of the ratio of the
theoretically predicted h, to the experimentally ob-
served h, at 0.9 T,. What is actually calculated from the
theoretical model of Sec. 2 is the ratio of the film critical
field to the bulk critical field. To calculate the film
critical field, one must know the bulk critical field as a
function of temperature and composition. This informa-
tion was obtained from as yet unpublished data of D. J.
Quinn on specimens of indium containing up to 6 at.%
tin. In Fig. 3 we have taken $= $e for all of the films,
i.e., we have neglected mean free path effects in calcu-
lating the theoretical film critical field, (h.),s„. In
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Fig. 4 we have calculated $ for each film on the assump-
tion that 2=0.98)&10—"0-cm', and in Fig. 5 we have
taken 2 = 2.0&(10 "0-cm'. In each of the plots we have
taken )OXr,' ——1.62X10' (A)' and $0——2600 A, the values
found in I to be appropriate for indium at 0.9 T,. We
have also assumed that bXr,', $o, and 2 are independent
of composition over the composition range shown,
0—4.6 at.% Sn.

In Fig. 3, where we have neglected mean free path
e8ects, we see that the theoretical values of h, are too
small, the ratio (h.)ti.../(h. ). , varying systematically
from about one at 0 at.% Sn to 0.78 at 4.6 at.% Sn. In
Fig. 4, where we have taken 3 =0.98&10 "Q-cm', the
values of (h.),i,„are too large, the ratio (h.)ii,«/(h. ),~~

becoming about 1.22 at 4.6 at.% Sn. Had we taken
3=0.57)&10 " 0-cm', the disagreement would have
been even worse. In Fig. 5, where we have taken
2=2.0X10 " 0-cm', the agreement between (h.)~h«
and (h,),„„is reasonably good. For most of the films,

(h,),q„and (h,), , agree within &6%.If we assume that
varies slightly with composition, decreasing from

2.0X10 " 0-cm' at 0 at.% Sn to 1.6X10 " 0-cm' at
3 at.

%%uoSn, the n increasin g to1.8X10 "0-cm'a t Sat.%
Sn, we can get exact agreement within the scatter of
the data, between (h, )ii,„and (h,), p. However, the
data may not be accurate enough to justify such detailed
examination.

In Fig. 6 are shown the values of coherence length
calculated for each film with 2 =2.0&&10 "0-cm' and
go

——2600 A, and plotted as a function of film composi-
tion. Although there is a fair amount of scatter, one
can see that the data lie on a smooth curve. To see how
one might expect the critical fields of thin alloy films
to vary with composition at constant thickness, we
have plotted, in Fig. 7, the quantity h,/H, versus film
composition. We have taken the dependence of ] upon
composition to be given by the solid curve of Fig. 6, and
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FiG. 5. Comparison of the theoretical model to the experimental
data. The points shown are the calculated ratios of theoretically
predicted Qlm critical Geld to experimentally observed critical
field at 0.9 T,. The theoretical critical fields were calculated for
each film in the same manner as in Fig. 4, except that pl was as-
sumed to be 2.0)&10 "0-cm'.
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Fio. 6. Variation of coherence length with composition. The
values of coherence length shown were calculated for each film
from Kq. (12) with &0=2600 A, y=1, and l determined from the
measured thicknesses and resistivities by means of Fuchs' model,
under the assumption that pl=2.0&(10 "0-cm' (the value that
gives the best agreement between theory and experiment).

have calculated h, /H, from Eqs. (5) and (11) with
)OXi,

' ——1.62X10' (A)'. (See also Fig. 1.)
There are several significant points to be made. First,

there is the fact that the observed variation of critical
field with composition and thickness is in good agree-
ment with the theoretical model. Second, it is important
that the value for A, which must be used to get this good
agreement, is the "thin film" value 1.6—2.0X10—"
0-cm' obtained from resistivity measurements on thin
specimens rather than the bulk value of 0.6—0.98' 10 "
0-cm' obtained from high frequency or critical field
measurements. Third, one can obtain a detailed fit of
the theoretical model to the experimental data over the
entire range of composition 0—5 at.% Sn by postulating
a variation in A of no more than 20%. In view of the
fact that indium has a complex Fermi surface which
extends into the third Brillouin zone, " this would not
be an unreasonable assumption. Fourth, the values of
(olii,' and &o obtained previously from measurements
on pure indium films seem to fit the data of the dilute
alloy films.

There are three main sources of experimental error.
First, there is the uncertainty in the composition which
is estimated to be &0.05 at.% Sn. A second source of
error is related to the fact that the background pressure
in the vacuum system durii, g an evaporation would oc-
casionally rise suddenly, perhaps due to insufhcient
preoutgassing of the melt, crucible, etc. This would
result in films of lower purity which would have critical
fields higher than one would expect from their tin con-
tent. The third source of error is in the film thicknesses,
which are calculated from measurements of film resist-
ance. In addition to random errors in measurement,
there may occur occasional systematic errors resulting
from agglomeration in the films. When the thermal
contact between substrate and liquid nitrogen reservoir
is poor, as sometimes happens, the substrate will be too

"J.A. Rayne, Phys. Rev. 129, 652 (1963).
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h, /H, = 6'i'5p/a, (16)

implicit in the Pippard model. However, to obtain
boundary scattering, the distribution of scatterers is
quite "nonrandom. " Let us ignore this difhculty and
proceed. Assume that the formulas derived for the
London or impure limit are applicable to thin films. If
we substitute the expression for the penetration depth
given by Kq. (10) into (5) of I, which gives the critical
field of a thin film to be

j(r) =—
Actp

( rr 1 rP 2—Ei~ —— ———+—(1—c—"i2)
2 2 48 3rr

e ~is( n
~

1—— A(r), (22)
12& 2

A(r), then A(r) can be removed from under the integral
sign and the integration can be carried out to give the
result'4

we get

h./H. = (6P,X,'/~ a)'i'. (17)
where +=2'/t and Ei(X) is the exponential integral. "
In the impure limit, n ~ po, Kq. (22) gives

If we now set the coherence length equal to the film

thickness, 2a, we get

h,/H. =%3((pXr,'/a')'",
j (r) = — A (r).

gpAc
(23)

a result diGering from Eq. (15) of I by only a numerical
constant, v3 instead of 2.01. Although this derivation
yields the correct dependence of critical field upon thick-
ness, it involves the arbitrary assumptions that the
London limit is applicable to thin films and that t= 2g.
But if )=2a, then $k is of order one and the London
limit is not applicable. Indeed, considering the thin film

to be a bulk superconductor with short mean free path,
it would seem more natural to set the coherence length
equal to the mean free path. The theoretical model by
Fuchs gives the relation between the mean free path /

and thickness 2u to be

1.5a ln (0.76lp/a)

in the thin-film limit, where lo is the intrinsic mean free
path. If Eq. (19) is substituted for $ into (17), the result
is

h,/H, = 2Ltphr, '/g' ln (0.76&p/a) 7' ' (20)

j(r)=—
4ircA(p

RfR A(r')7

4

where R=r —r' and div A=O. Consider a slab of thick-
ness 2u bounded by two infinite planes. If we assume
that we can neglect the variation in the vector potential
over a coherence length and hen. ce replace A(r') by

which differs from Eq. (15) of I by the logarithmic
term. The origin of the logarithmic term was the as-
sumption that Pk —&0, which is the condition under
which Eq. (17) is valid. It is clear that if the coherence
length is given by Eq. (19),and if k is of order 1/a, then
tk —+ po for u —& 0, and it is not legitimate to use (17).

One can derive in a different manner an expression
similar to Eq. (20), which shows clearly that the
logarithmic term results from neglecting the variation
in the vector potential in a thin film. The Pippard
relation between the current and vector potential is

By comparing Eq. (23) to (3), we obtain the kernel,
E(k), to be the same as that given by (7), as it should
be. In the thin-film limit, cr ~ 0, Eq. (22) becomes

giving for the kernel

3a
ln—A(r),

2Acgp a
(24)

6sra
E(k) = ln—,

A.c'Pp a
(25)

h./H. = 2$&pXr.'/a' ln(&/a)7'&', (26)

a result virtually identical to Eq. (20), diGering only in
the replacement of 0.76lp by t. It is important to note
that in deriving Eq. (26) it was not necessary to use
any theoretical model for the thickness dependence of
boundary scattering, e.g. , I'uchs' model. The logarithmic
term in Eq. (26) was a direct consequence of the assump-
tion that A(r') was slowly varying over a coherence
length and could be replaced by A(r).

Thus, we conclude that size effects are not equivalent
to mean free path effects, or put another way, boundary
scattering is not equivalent to scattering by defects
distributed randomly throughout the volume of the
superconductor. As we have shown, in the limit of a
high concentration of randomly distributed defects, the
London or local limit obtains; in the thin limit, where
boundary scattering predominates, the Pippard or
nonlocal limit obtains. Hence, to describe the supercon-
ducting properties of films, we must "sort out" the
effects of randomly distributed scatterers from thickness

R. R. Haering (private corninnnicationl.' E J»n}re and F. Einde, Tables of Functions (Dover pu}&}ica-
tions, New York, I945), p. I.

a result quite different from the correct relation of Eq.
(15).From Eqs. (21), (19),and (16), we find the critical
field calculated from (25) to be
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FIG. 8. Comparison of weak 6eld penetration depths of pure
indium 6lms to those of the indium-tin alloy films. The penetration
depths are calculated from the measured critical fields by means of
the Ginzburg-Landau theory and are plotted vs the directly
measured residual resistivities. In the thin indium 6lms, the
resistivity is largely due to boundary scattering; in the alloy 6lms,
it is caused by a combination of boundary scattering and impurity
scattering.

effects. The experimental evidence appears to substanti-
ate this conclusion.

In Fig. 8 are plotted values of the weak-field penetra-
tion depth, 50, versus measured residual resistivity, for
pure indium films and indium-tin alloy 61ms. These
values of 50 were calculated from the critical field data
at 0.9 T, using the Ginzburg-Landau theory. (See Fig. 1
of I.) If the pl constant were the same for the pure and
alloy films, one would expect the two sets of data to
coincide in the high-resistivity limit in the event that
boundary scattering and random defect scattering were
equivalent. As Fig. 8 indicates, the two sets of data di-
verge in the high-resistivity limit. To account for this
divergence, one would have to postulate a 300%
change in the constant 2 over the range 0-5 at.% Sn.
This seems too large to be reasonable. On the other hand,
we have seen in I and in Sec. 4 of this paper that the
proposed theoretical model, which treats thickness ef-
fects and mean free path effects independently, 6ts the
critical field data of the pure indium and the alloy 6lms
reasonably well if we assume a constant value for A.
We can even force a 6t of the theoretical model to the
critical 6eld data by assuming a variation in A of only
20% over the range 0—4.6 at.% Sn.

6. SUMMARY OF CONCLUSIONS

The contents of this paper can be divided into two
broad categories. The 6rst part of the paper, Secs. 2-4,
contains a discussion of mean free path and thick-
ness effects upon the critical fields of thin films. Theoreti-
cal results, calculated from the model proposed in a
previous paper' and using the Pippard kernel with
specular boundary conditions, are compared to experi-
mental data obtained for alloy films of indium containing
0—4.6 at.% Sn. In making the comparison, the values of
)OX&,

' and )o were taken to be those previously determined
by 6tting the theoretical model to critical field data on
pure indium films. The coherence length, P, was
calculated from the intrinsic mean free path which in
turn was calculated for each 61m from the measured
residual resistivity and thickness for three values of
the pl constant: infinity, which leads to the result $= $0,
i.e., which neglects mean free path effects; 0.98X10 "
0-cm', a value obtained from critical field measurements
on indiUm films; and 2.0&(10 ' Q-cm, a value obtained
from resistivity measurements on thin indium 61ms.
Of the three values for pl, the best agreement between
theory and experiment was obtained for 2.0X10 "
0-cm'. For this value of pl the difference between the
measured and calculated film critical fields was less
than +6% for most of the films measured. If we postu-
late a 20% variation in pl over the composition range
0—4.6 at.

%%uoSn, w eobtai nexac t agreemen t withi nexperi-
mental error between theory and experiment.

The second portion of the paper, Sec. 5, contains a
discussion of whether boundary scattering is equivalent
to scattering by randomly distributed defects in films.
It is concluded that the two are not equivalent. In fact,
it is demonstrated that whereas the London or "local"
limit obtains in the presence of high concentrations of
randomly distributed defects, the Pippard or nonlocal
limit obtains in very thin films.

ACKNOWLEDGMENTS

The authors would like to express their appreciation
to Dr. R. R. Haering, Dr. P. M. Marcus, and Dr. P. B.
Miller for many informative discussions; and to R. E.
Horstmann and R. J. Parker for their aid in pre-
paring the alloy 6lms and making the critical 6eld
measurements.


