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A cluster series is derived for the Heisenberg ferromagnet. The theory is evaluated in zero order, for
two-spin clusters, and for three-spin renormalized clusters. The zero-order result is the Weiss molecular
field approximation, and the two-spin cluster is identical to the constant coupling approximation. The three-
spin cluster result does not coincide with any existing phenomenological cluster approximation. The origin
and nature of the inconsistencies in the phenomenological cluster methods (Oguchi, Bethe-Peierls-Weiss,
etc.) is discussed.

I. INTRODUCTION

'HE statistical mechanics of a simple Heisenberg
ferromagnet has been rigorously analyzed by

Dyson' in terms of a series expansion in powers of T
(the spin-wave solution), valid at low temperatures,
and by Opechowski, ' and Brown and Luttinger, '4 in
terms of a series expansion in 1/T, valid at high tem-
peratures. Each of these solutions is valid only far from
the transition temperature and, therefore, various
approximations have been proposed to study the be-
havior at intermediate temperatures. Most of these are
of the small cluster type. Our purpose here is to study
the nature of the small cluster approximations and, as a
standard of comparison, to derive a cluster series from
a direct expansion of the partition function. The two-

spin and three-spin cluster results are explicitly evalu-
ated, giving Curie temperatures for representative
lattices with nearest neighbor exchange and spin -', .
These results differ from the common cluster results,
such as those obtained by the Oguchi' and Bethe-
Peierls-Weiss' ' (BPW) methods, both of which con-
tain internal inconsistencies. The nature of those in-
consistencies will be discussed.

The zero-order result of the theory is the Weiss
molecular field approximation, and the two-spin cluster
result is identical to the constant coupling approxima-
tion of Kasteleijn and Van Kranendonk. The three-
spin cluster results make significant changes in the
Curie temperatures (relative to the two-spin cluster
results).
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Expansion in spin-deviation operators implicitly re-
normalizes the clusters, summing into the clusters
certain classes of diagrams actually lying outside the
clusters. In particular the zero-order approximation im-

plicitly sums all tree diagrams, ' corresponding to the
high-density limit. Because of this renormalization the
cluster expansion, which is nominally a low-density
expansion, contains at least some elements of a high-
density approximation as well.

We hasten to stress that our purpose is to analyze
existing cluster approximations, deriving a rigorous
cluster series in the process; we do not claim that the
leading terms of this series are a satisfactory approxima-
tion for dense ferromagnets. In fact, in dense ferro-
magnets the long loop diagrams almost certainly
dominate the ladder diagrams of the cluster methods at
temperatures below the Curie temperature. ' In suK-
ciently dilute ferromagnets, on the other hand, small
clusters dominate at all temperatures.

II. CONVENTIONAL CLUSTER APPROXIMATIONS

To establish a basis of discussion we briefly summarize
several representative cluster approximations, selecting,
in particular, the Weiss molecular field approximation
(a single-spin cluster), the Oguchi first approximation
(a two-spin cluster), the Oguchi second approximation
(a three-spin cluster), and the Bethe-Peierls-Weiss
approximation (a cluster consisting of a spin and all
of its nearest neighbors).

The given problem is described by the Heisenberg
Hamiltonian

3c= g„sII p, S;,—2 p—,;,„I,,S,"S„(1)
where g is the Lande factor, po the Bohr magneton, and
H is the magnetic field, which is assumed to be in the
negative z direction. The first summation is over all
lattice sites i, and the second over all pairs of sites (ij )
The exchange integral J;, is assumed to be a function
of the distance between the sites i and j (not restricted
to nearest neighbors), but of such a sign and magnitude

' G. Horwitz and H. B. Callen, Phys. Rev. 124, 1'/57 (1961).
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where J is the value of the exchange integral for nearest
neighbor spins and J(& is defined in. Eq. (6). In the
special, but commonly considered, case in which J;; is
zero except for i and j nearest neighbors, the quantity
(J(&—J) becomes J(s—1) where s is the number of
nearest neighbors. Again the trace in Eq. (3) can be
evaluated easily, giving for spin —',

p= exp( —pK)/tr exp( —pK), (2)

which determines the magnetization, or the average
value of S„by

() (S)= (S +S*)(S,)= trS, ,p.

that the ground state of the system is one in which the
average value of S;„(S,,), is equal to +S for all i.
S is the magnitude of the spin on each site.

In principle, the solution is provided by the density
operator

where
Se,&('& = [gIzsH+2 Js—(S,))S,„

Jp ——P, J,;, (6)

and where terms not involving the ith spin, being merely
constants, are omitted. As the trace in Eq. (3) now
involves only the summation over (2S+1) states,
evaluation is simple, yielding the familiar equation

(S )=ST (PS(g ~+2Jo(S*)))
where Be(x) is the Brillouin function

The conventional cluster methods generally proceed
by selecting some small cluster of spins and by replacing
the spin operators for all other spins in the Hamiltonian
(1) by

S.=S2=0, S,,= (S,).
The Hamiltonian, and thence p, thereby depends on
(S,) and Eq. (3) becomes an implicit or "self-consistent"
equation for (S,).

The Weiss approximation" selects a cluster consisting
of a single spin, so that the cluster Hamiltonian becomes

1( sinh(PgfzpH, r&)

(10)
2(1e e~ cosh(PJ)+cosh(PgfzpH ff)

where H, ~~ is the expression in large parentheses in

Eq. (9). The Curie temperatures evaluated by solution
of Eq. (10) are listed in Table I.

An unfortunate aspect of this theory is the fact that
it predicts a Curie temperature for all lattices (as does
the molecular field theory), whereas one-dimensional
lattices with nearest neighbor interactions, for instance,
cannot be ferromagnetic.

The Oguchi second approximation selects a cluster
of three spins. For simplicity we restrict the description
to the case of nearest neighbor exchange only. The
cluster is selected so that spins 1 and 3 are nearest
neighbors of spin 2 but not of each other. Then the
cluster Hamiltonian is

X,&

"& = —2J(S1 Sz+ Sz' Ss)
—2J(s—1)(S,)(Si,+Ss,)—2J(s—2)(S,)S2.

—g&,H(S,.+S,.+S,.). (11)

The trace in Eq. (3) can be evaluated for spin —', giving

The Oguchi 6rst approximation selects a cluster of
two nearest neighbor spins. The cluster Hamiltonian
then becomes tr(S1,+S2,+Ss,) exp( —PX,&"&)

=3ee~ sinh[P J(32—4)(S,)]+sinh[P J(s—2)(S,)j
+e ie " ""( &l cosh[-'PJ((S )'—4(Sz)+9)'~'j

e
—ze j[1+2(z—1&(Sz)& (OSh[rp J((S )2+4(S )+9)1/zj

(13)

K,i('&= —2JSi S2

( 2(J,—J)
-g~ol H+ (S*) l(S.+S.), (9)

gpp

=1 /2S+1 t x
Ils(x) =—(2S+1) cothl x —cothl — . (8)

2S 2S (2S =
S tl 1 2* 2

Xexp( —PX, &
"&)/tr exp( —PÃ, 1"&), (12)

TA&&LE I. Values of 2kT, /zJ for various lattices. hl is the hexagonal layer lattice (z= 6); sc, simple cubic;
bcc, body-centered cubic; fcc, face-centered cubic.

Weiss molecular Geld
Oguchi two-spin cluster
Oguchi three-spin cluster
Bethe-Peierls-Weiss
Kramers-Opechowski
Our 2-spin cluster (constant coupling)
Our 3-spin cluster

Linear
chain

1
0.625
0.518
none

none
none

Square

1
0.845
0.865
none
0.55
none
0.572

1
0.933
0.937

~ ~ ~

0.58
0.607
0.532

sc

1
0.933
0.937
0.617
0.61
0.607
0.694

bcc

1
0.930
0.965
0.725
0.70
0.721
0.762

fcc

1
0.955

~ ~ ~

0.822
0.775

' J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press, New York, 1932).
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g z

K,inpw= —2JSp'g S; glj&HS—o, gpsffi —p S;„(15)

where H~ is the effective field acting on an ion in the
first shell by virtue of its exchange interaction with
ions outside this shell. For simplicity of exposition we
have assumed, as we did implicitly in the Oguchi
second approximation, that the lattice is such that
triangular configurations of nearest neighbors do not
exist. Rather than evaluating H& by replacing the spin
operator of external ions by (S,), as done in the cluster
methods described above, the BPW method evaluates
Hj by requiring that

(16)

That is, the spin average of an ion in the first shell,
(S;,), is required to be equal to that of the central ion.
The Curie temperatures found by this method are
listed in Table I.

The BPW theory has the catastrophic property"
that the system ceases to be ferromagnetic below a
certain temperature (the "anti-Curie" temperature),
thereby violating the third law of thermodynamics.

IIL THE CONSISTENCY CRITERION OF KASTELEIJN
AND VAN KRANENDONK

Although cluster methods generally assume a value
of (S,) and evaluate it self-consistently, or apply a
similar "self-consistency condition" such as Eq. (16),
this is certainly no guarantee of the complete con-
sistency of the resultant theory. In fact, the strange and
impossible behavior predicted at low temperatures
points to the fact that the theories are internally incon-
sistent. The nature of this defect in the theories has
been analyzed by Kasteleijn and van Kranendonk. '
They point out that the thermodynamics of the system
is completely determined by the two-particle density
matrix p;;, which is the projection of the full density
matrix p on the two-partide subspace. If p;; is written
in the form

pg= exp( —PBC,;)/tr exp( —Pfg, ;)
"P.W. Anderson, Phys Rev. 80, 922 .(1950).

(17)

and

tr exp( —PX,&&'&)

=2ee~ cosh[PJ(3s —4)(5,)]+2 cosh[8J(s —2)(5,)7
+2e &e &' '«' " '&' cosh[sj8J((5, )'—4(S,)+9)'"j
+2e—rt& J[1+2&z—1&&sz&] coshP&8 J((5 )2+4(5 )+9)1/sj

(14)

The Curie points evaluated by solving Eq. (12) are
given in Table I.

The cluster selected in the Bethe-Peierls-Weiss ap-
proximation consists of a central spin Ss and all of its
nearest neighbors. The cluster Hamiltonian is of the
form

then K;; is related to the full Hamiltonian in a very
complex fashion. It is, of course, this operator 3C;;
which the cluster methods attempt to compute by re-
placing some of the spin operators in the Hamiltonian
by their average values. In the case of spin 2, Kasteleijn
and van Kranendonk observe that K,; must be of the
form

BC&;
———2AiS; S; 2A—sS;,5,, gpo—As(5;.+5;,), (18)

where A~, A 2, and A 3 can be functions of the tempera-
ture and of the externally applied field. Furthermore,
the three functions are subject to a consistency condi-
tion derived by requiring that (S,) be the same when
computed in either of two ways; first, by computing
(S,)=—', tr(5;,+5;,)p,;; and second, by differentiating
the free energy with respect to the field (the free energy
being obtained from the average value of the energy,
which, in turn, is obtained by averaging the Hamil-
tonian over the two-particle distribution p;,). In the
"constant coupling approximation" Kasteleijn and van
Kranendonk attempt to guess a consistent set of
values of A~, A2, and A3, for nearest neighbor inter-
action they select A&= J and A2=0 and compute A3
from the consistency condition, finding

s—1 1+2(S,)
zA =rr+ ln( ). (19)

However, we are not concerned with the constant
coupling approximation at this point, but rather with
the implications for the cluster methods of Kasteleijn
and van Kranendonk's relation among A~, A2, and A3.
The Weiss approximation corresponds to

A i——A s ——0, A s =If+2Js(Sg)/gps) (20)

as is easily seen by comparison of Eqs. (18) and (5);
these values do, indeed, satisfy the Kasteleijn and van
Kranendonk condition. The Oguchi first approximation
corresponds to the same values of A ~ and A 2 as chosen
by Kasteleijn and van Kranendonk in their constant
coupling approximation, but A 3 is given by the incon-
sistent value

A s H+ [2 J (s 1)/gps](5——,), —(21)

rather than by Eq. (19). Similarly, the Oguchi second
approximation and the Bethe-Peierls-Weiss approxima-
tion give density operators which are inconsistent in
the sense of Kasteleijn and van Kranendonk's condi-
tion. Only the Weiss single spin cluster provides an
acceptable approximation to the density operator. It is,
therefore, of some interest to derive a cluster series
which gives a self-consistent density operator for every
order of cluster, and which follows in a logical and
direct way from basic principles, without ad hoz
assumptions.
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IV. HAMILTONIAN

We divide the Hamiltonian (1) into an unperturbed
part and a perturbation term by introducing an ex-
pansion parameter

0.;=S—5;,. (22)

8 is a parameter whose best value will be determined by
minimizing the free energy F. In contrast to a previous
theory' involving a similar parameter, 8 will not turn
out to be equal to (S,) so that o., is not simply the
deviation of the spin from its average value; we shall,
of course, return to this question of interpretation subse-
quently. We note, however, that choosing 8 to minimize
the free energy will allow it to somehow embody the
behavior of ions outside of the cluster, and we shall
6nd that S plays the role of an internal field acting on
the spins of the cluster.

The Hamiltonian becomes

Here
po ——exp( —pXo)/tr exp( —pXo) (34)

and the average is dehned with respect to this unper-
turbed density matrix, i.e.,

(A) = trpoA.

V. ZERO-ORDER APPROXIMATION:
THE MOLECULAR FIELD

(35)

8= lnirz =SBs(PS(gpoH+2 Jo8))
a(pI.)

(36)

where Bs is the Brillouin function defined in Eq. (8).
To evaluate Mo, the magnetization, we use the relation

Before expanding the perturbation Ii' in a cluster
series, we evaluate the zero-order or unperturbed free
energy Fo, as given in Eq. (31).The proper value of 8
is found by minimizing Po, which yields directly

K=Eo+I.Q; 0;
2 g(i, j) Jijf&(0)'+Si' Sj SizS&z]) (23) which gives

where

M = Bp/BH, — (37)

Fo gli, oHN——S—NJo8, —

I.=gpoH+2 Jo8,

(24)

(25)

and X is the total number of lattice sites. We choose
as the unperturbed Hamiltonian those terms which are
linear in the spin deviations, defining

where
3C=Ko+ V,

Xo=Eo+I.Q; o,,

2 P(ij) Jijg&ioz'+ Si' Sj SizSjz]

(26)

(27)

(28)

—PFo= PN Jo8'+N lnC—
where

C = tret'~8' .
Since Ho and V commute, we get

(3&)

(32)

This choice of the perturbation is reasonable, as the spin
deviations are presumably small, whereas S; S;—S,,S;,
=S;Q;,+S,„S;,and the transverse components of the
spin Quctuate around zero.

We now define the unperturbed free energy Ii o,

—PFo ——ln tr exp( —PXo), (29)

and the correction term

—pp' = —pp+ ppo
=ln tr exp( —PX)—ln tr exp( —PKo). (30)

The unperturbed portion of the free energy is easily
evaluated and gives

(38)lnC =NgpoS,~o= +gpo
~(PI-)

the second equality following from Eq. (36). Thus, 8 is
identified as the average value of S„or (S,). This rela-
tion, together with Eq. (36), identifies the zero-order
approximation of the theory as identical to the Weiss
molecular field approximation. In reference 9 it has
been shown that the Weiss result corresponds to the
summation of all Cayley trees (all diagrams having no
closed loops) and that this summation is carried out
implicitly by the evaluation of S.

—Pp'= ln(exp(g Q )), (39)

where the index n numbers the pairs (ij ) or "links" in
the crystal. Thus, n takes N(N —1)/2 values, where N
is the number of ions. The expansion of PF' as a sum-
of contributions from each distinct cluster or set of
linkages {n) in the crystal can be written

-Pp'=Z E-PF(-)],
a)

(40)

VI. CLUSTER EXPANSION OF E'

Having identified the zero-order free energy in terms
of the Weiss theory, we proceed to expand pF' in a-
cluster series. This is done by expanding it first in
clusters of linkages (or spin pairs), after which it is
quite easy to regroup the terms of this series so that
they refer to clusters of spins.

From Eq. (33) we note that PF' can be written i—n
the form

—PF'= ln
tr exp( —PKo) exp( —PV)

tr exp( —PHo)

=ln trpoe ~v=ln(e ev) (33

where the contribution from the cluster (n) is given by

{~I
PF( )

= Q (—1)' ) ' ' ln(e—xp(g, Q )). (41)
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The sets of links (o.'} over which the summation is to
be carried constitute all subsets of the set {a}.The
symbol Pn$ denotes the number of links in the set (a},
and similarly for Ln'7. Finally, the summation over n'
in the exponential clearly goes over all links in the
set (n'}.

The cluster expansion of Eqs. (40) and (41) has been
given by Horwitz and Callen" and by Kubo." The
proof of Horwitz and Callen is based on a direct dia-
grammatic expansion of PF', an—d a resummation into
the cluster series; this proof is indicated in Appendix I.
An alternative simple proof is given below.

We carry out the proof in two steps. We first show
that PF is—given by the series claimed, without re-
gard to the significance of the terms —PF~ ~. We then
show that PF~ ~

doe—s represent the contribution of
the cluster {n}.To carry out the first step we substitute
Eq. (41) in the right-hand member of Eq. (40)

PL—PF~ 1)=P P(—1)t ' ' ' in(exp(P Q .)). (42)

We now group together all those sets (n} for which the
number of links has some particular value /. We indi-
cate the number of links of a set {n}by the subscript t:
{a}i.Then the sum over sets (n} can be done in two
stages, first summing over all sets {n}iof a given / and
then summing over all / Lfrom t= 1 to I.=X(iV 1)/2j-. —
Thus,

in which case it is unity. Thus

EL—&Ff ))=2 Z»(expKQ))~ r
fa} m=0 fa}~ CC

=l (e p(Z Q-)) (45)
a

As the right-hand member is PF' w—e have demon-
strated the validity of Eq. (40).

We now demonstrate that PF~, ~

—has the signifi-
cance of the "pure" contribution of the cluster {n}.
That is, it not only contains all terms from the set (u},
but it contains no terms which arise solely from some
smaller cluster embedded in {rx}.In fact, the role of the
subtracted terms in Eq. (41) is just to remove all these
contributions of smaller clusters {n'} from —PF~ I,
leaving only the pure {n}contribution. To show that

PFt ~

—contains no contribution from any subset
(o.'} smaller than (u} we merely demonstrate that if
any single bond Q~ in {n}vanishes then the entire con-
tribution —PFI I vanishes with it. Dividing PF~ I—
into two parts, one of which has all terms containing
Q~ and the other of which has all terms not containing
Q~, gives

PF( )
= Z ( ) ln(exp(Q +Z ' Q '))

fo.'}Qy

fa}

+ 2 (—)" "ln(exp(Z"'Q-)) (46)
fa'

L l L L
The double sum P P ( ) is equivalent to P P ( ),

t=om=o m=ot=m
and replacing the summation index I by /'=L —/ this,

Z L —m

in turn, becomes equal to P P ( ). Correspondingly,
m=o i=O

Z L
—PF(-)l

f~}

m=0 t=o
I a'})

The summation P is the number of ways of
f n'}) L

choosing l objects out of L, or . The summa-

L te (g-
tion P (—1) '~ is the binomial expansion of (1—x)~,

$-0
with x=1; that is, it is equal to zero except for m=L,

'2 G. Horwitz and H. B. Callen, Bull. Am. Phys. Sac. 7, 218
(&962).' R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962).

2 L
—PF~-17=2(—1)'2 2(—1)

fn} ) m=o

X P in(exp(g Q. )). (43)
f~'}m Ck

where the prime on the summation in the exponent in-
dicates that y is not included in the summation. Letting
Q~ —+ 0 we see that the two summations are the same
except for an additional minus sign in the first, since
Ln'$ in the first summation exceeds In'7 in the second
summation by unity. Consequently, PFt ~

is the —con-
tribution of the pure cluster {n};from the diagrammatic
viewpoint it contains no diagram in which any link in
{a}is unoccupied

Whereas the cluster series (40) has not been made to
depend on the specific form of the average in Eq. (39),
we now demonstrate that under certain specific forms
of averaging the series (40) is restricted to linked or
connected clusters only. In particular, if the density
operator defining the average is factorieable into operators
for individual links, or for individual vertices (spins),
only linked clusters appear This is obviou. s, for any un-
connected cluster gives two additive and independent
contributions to PF~ ~. But since the tot—al contribu-
tion must vanish if any one bond in the cluster Q~
vanishes, each contribution separately must vanish.

Having now established the linked cluster series for
clusters of links we can easily rearrange this into a
cluster series for clusters of spins. For consider a cluster
of spins (5}.Let (n}q designate a set of links which
can be drawn among the spins of (5}, in such a way
that there exists some path from each spin to every
other spin in (5}.Thus, if (5} is a set of three spins,
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there are four sets of links (n}p. One set consists of three
links, in triangular configuration. The other three sets
each contain two links with a common vertex. Then the
cluster series for sets of spins is clearly

—PF'=Z(p) [Z(-),(—PF(-),)]=K&p) [—PF(p)] (47)

VII. FIRST APPROXIMATION: CONSTANT COUPLING

Successive approximations are made by taking pro-
gressively larger linked clusters. The 6rst approximation
consists of a pair of spins. We show that the result of
this approximation is identical to Kasteleijn and von
Kranendonk's constant coupling approximation. The
contribution to the free energy from all pairs is

—pF(2) =p( ) ln. (exp(2pJ, Q; )), (48)
where

Q,;= S; S;—8(S,,+S;,)+8. (49)

For definiteness we consider the case of nearest
neighbor exchange only. There are then —,'Ãs pairs, and

—pF(p) = ~&1Vs ln(exp(2pJQ))
=-',Xz ln tr exp(2PJQ) exp( —PXp)

——',1Vz ln tr exp( —PXp)
=-,'cVz in[+, exp( —p),)]

+EzPJS' Ns lnC, —(50)

where it will be recalled that C is defined in Eq. (32)
and where the v; are the eigenvalues of

X(p) = —2JSi' S~
—[gppH+2J(z —1)S](S;+Sg ). (51)

For the case of spin ~~ these eigenvalues v; are listed in
Table IV where the subscripts (1,2,3) refer to the triplet
state, while (4) refers to the singlet state of the two
spins in the cluster.

The two-spin cluster approximation to the free
energy is thus

p(Fo+F(p)')
=X(1—s) lnC+-,'Xz in[+; e—&"~]. (52)

Minimizing F(p) with respect to 8 we find that S is
determined by the solution of the equation

that the average value of S, is the same when computed
from either the one-particle density operator or from
the two-particle density operator. Or, stated equiva-
lently, the choice of S is such as to insure that the pro-
jection of the two-particle density operator onto the
space of one particle is equivalent to the one-particle
density operator; the equivalence referred to is that
each of the resultant one-particle density operators
must yield the same average value of S,.

The magnetization is computed by differentiating
F(» with respect to H. Invoking Eq. (55) we, thereby,
find

Mi/Xg)((p ——(S,)= —', tanh[-,'p(gppH+ 2Js8)]. (56)

This result is precisely of the same form as that found
for a single-spin cluster (the Weiss result) for spin p,
except that 8 replaces (S,) in the right-hand member.
Thus, 8 determines an effective internal field acting
on the spins of the cluster.

At this point we observe that we have, in fact,
derived the constant coupling approximation. For the
cluster Hamiltonian X(» [Eq. (51)]which determines
the two-particle density operator [Eq. (54)] is of the
form of E . (18) withq

2J(s—1)
A i=J, As=0, and A p H+ —— 8, (57)

gPO

which, incidentally, again demonstrates the role of 8 as
determining an effective internal field. Solving Eq. (56)
for S we find

gppH 1 (1+2(S,)8= — + 1n~— -. "" —.(..)) (58)

Substitution of this value into Eq. (57) for S, and
comparison with Eq. (19), then demonstrates that the
two-particle density operator is identical to that of the
constant coupling approximation.

In contrast, we recall that the values of A~, A2, and
A 3 which are predicted by the Oguchi two-spin cluster
approximation [Eq. (20)] are similar to those of Eq.
(57), except that 8 is replaced by (S,).

The Curie temperature is easily found' to be

trSgge t'~~&

=«p (Si*+Sp.)p(p),
tre—&~'&

(53)

( z

kz-4i
(59)

where

p(» ——exp( —PX(»)/tr exp( —PX(&)).

When written out explicitly this condition is

(54)

tanh[-,'P (gppH+2Js8))

e~ sinh(P[gppH+2J(z '1)S]}
=0. (55)

coshPJ+ee~ cosh(P[gppH+ 2J(z—1)S]}
In the form of Eq. (53) the condition is subject to a
physical interpretation; 8 is determined in such a way

and values are tabulated in Table I. It is to be noted
that the condition that a lattice be ferromagnetic is
that the number of nearest neighbors must exceed four-
an improvement on the Oguchi two-spin cluster pre-
diction that all lattices are ferromagnetic.

VIII. THREE-SPIN CLUSTERS

The next approximation represents clusters consisting
of three spins. The two types of pure diagram, or clusters
of links, which are associated with clusters of three
spins, are triangles and a joined pair of links.
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TABLE II. The contributions of various site con6gurations to
the free energy for the case of nearest neighbor interactions. Sites
(i, j, k) connected by links are nearest neighbors; those uncon-
nected are not nearest neighbors. z~ is the number of common
nearest neighbors that two sites have when they themselves are
nearest neighbors. —PF&3)'=

Ãssg
In(ese J«»+o»+o»))

3l

are nearest neighbors. Adding all three-vertex dia-
grams gives

Type of diagram
Number of
diagrams

Contribution to
free energy +-'2Xs(s —s,—1) In(e»J «»+o»))

(1) 2, j, k, each a n.n. of JVssi/3!
one another

In (32«&O»+&hs+Osi) )—3 In(es«o)
+2'Ãs(si —2s+2) In(ese Jo). (63)

(2) 3, k n.n. of j but not
of each other

(3) 2, j n.n. of each other
but k not an.n. of
either

(4) 3, j, k not n.n.

(Xs/2) (s—si —1) In(33«&o»+o»))
—2 In(est) Jo)

Adding this to the zero-order and two-vertex free
energy, PFp+—(Xs/2) In(ese J@),gives our three-vertex
approximation for the free energy

—PF&3) = —P1VJs8'+1V InC~+scVs(si —2s+3) In(e'eJo)

+sr Qs (s—si—1) In(ese J&Q13+Q33))

From Eqs. (40) and (41) the contribution of the pure
triangles to PF' is—

Lin(e2e! JciQ;i+Ji'3Qi'3+ Js;Q»)) in(e2p! Jii'Q;i+ Ji'3Q7'3) )
(inc)

—ln(ese &J13@7 3+J»@»&)—ln(ese &J»@3*'+J'i 9&i&)

+In(e' e' io&i) +I n(e' e '@ii")+In(ese»o»)7, (60)

where the summation is over all lattice triplets. The
contribution of the pure U-linked diagrams to —pF is

LIn(ese&J'io'i+Jisoi»)+In(e'e& is&)i~J»o»))
(i~a)

+In(e'e& "@"'+ '&'@'& )—2 In(e'e '&'&)'&')

—2 In(e'e J~'o ') i21n(e'—e»9")7. (61)

The total contribution of all pure three-vertex diagrams
is, therefore,

—pF&3)' ——p&,,3) I
In(e' e&'i@ii+ isoi"+ 3'o»))

—In(e e '~@'i)—ln(e'e i'oi")—In(e'e '*o'*)7. (62)

Assuming nearest neighbor interactions only we find.

that four types of triplets exist in the lattice. These are
listed in Table II along with the frequency of occurrence
of each type and the contribution to the free energy of
a single diagram of this type. The last two types give
no contribution to the free energy so that their weights
are not listed. s~ is the number of common nearest
neighbors that two sites have when they themselves

Essj
+ in(e'e &ois+923+9») ) (64)

3f

=Pep InC+Esci InLQ, e e"'7

+1Vscs InI P; e e"'7+Xscs InLP; e e"'7. (65)

The coeScients c; are listed in Table III, with their
values for various lattices. The v, are the eigenvalues
of H&» I.Eq. (51)7. The )&4 are the eigenvalues of

K&3)&')= —2J(Si S2+S2 Ss+Ss Si)
—

I gppH+ 21(s—2)87 (si,+s2.+ss.), (66)

and the X; are eigenvalues of

%&3)&'&= —2&(Si S2+ S2' S3)

)gis pEI+ 2J—(s 1)87 (si.+—ss.)
—Lgpp0'+2J(s —2)8752, (67)

The Is, arise from the first type of triplet (triangles of
nearest neighbors); the X; from the second type (U's
of nearest neighbors). The eigenstates of X&3)&') for
spin —,

' are well known"; four states (1 to 4) of S3,3=2
and four states (5 to 8) of Ss,2= 2. Four eigenstates of
BC(3) (') for spin ~~ can easily be guessed,

I
1)=n,nsns., I 4)=2—'!2(ninsP3 —Pinsns);

I8)=PEA I5)=2 "(n&@ PPn)—(68)

Their eigenvalues are easily found; the four others can
be found by diagonalizing the two-by-two matrices

TABLE III. The coefFicients c; I of Eq. (65)j for various lattices.

co

C1

C2

—,
' (z—1) (z—2)
—,
'

(z1—2z+3)
2 (z—z1—1)
Zl/6

Linear
chain

1
2
1
2

Square

3
—5/2

3/2
0

10
—'7/2

3/2
I/3

sc

10
—9/2

5/2
0

bcc

21
—13/2

7/2
0

fcc

5517/2—
7/2
2/3

'4 F. Mandl, QNuntum 3fechamcs (Butterworths Scientific Publications Ltd. , London, 1957).
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TAnLE IV. Eigenvaluez of effective cluster Han&iltonians. The v; are eigenvalues of K&» [Eq. (51)7;
p; are eigenvaluez of X&o&&'& [Eq. (66)];X; are eigenvaluez of X&»&» [Eq. (67)].

p&
————,'gpoH —-',J—3JS(s—2)

po
———-', gpoH —-',J—JS(s—2)

ps ,'gp——oH-',J—+-JS(z 2)—

p4
——-zgpoH ——,'J'+3J'8(s —2)

po,pz= zzgpoH—+soJ JS(s—2)—
po,po= zgpoH jzJ+J8(z 2)—

&&& = —zgpoH —J—J8(3s—4)

&&o= ——,'gpoH+ ,'J—J8-(s—1)——,'JI'oo

&&a= ,'gpoH+—',—J J8(-s —1)+-',J—I',
&&4

—— zzgpoH —JS(s —2)—
&&o

———,'gpoH+ J8(z—2)

&&o = zogpoH+ zJ+JS(s 1)+-,'J—I'&

Iz= ',gpoH+ ',-J+JS(-s '1)——',J—I'&

&&a = zgpoH J+JS—(3s 4)—

» = —gpoH —$J—2J8(s—1)

v2= &J

vs =gpoH —zJ+2JS(s—1)

P4=$J

a pf) —
t 4+2 4++9jl/2

b P& =
t 452+45+9 jI/2.

formed by taking X', (3)"' between pairs of the basis
states

~
2)= 2 '"(~&nzpz+ p&nz&zz),

~
3)=n,Pzn„

l 6)=p&o&zpz,

I 7)= 2 '/z(~&Pz8z+P&Pz~z).

(69)

The eigenvalues p; and 'A; thus found are listed in
Table IV.

Again 8 is determined by setting BF&z&/&)8=0. This
gives the following expression for S as a function of
temperature and field:

The magnetization is found by differentiation of F(3)
with respect to H, whence,

M = -', /Vg/zpcp tanh(-,'pgppH+ pJs8)

—Ezc& ln P e-e"'-/Vzcz ln P e e"'-
dII dH

—/Vzcz ln Q e»'. (74)
dH

The Curie temperature is defined as the temperature
at which, for zero applied 6eld, the susceptibility
diverges

Jco tanh('zpg/zoH+pJz8) —c&—ln p e e"'

—cz—ln P e e"* cz ln—g—e»'=0, (70)
dS dS

x '=0
The susceptibility x is given by

1 dM 1 &)M c/M 88
x=— =— +

XdH X aH 88 aH

(75)

(76)

P, e—e"'= 2ee~ cosh)zPg&uoH+PJ8(3z —4)]
+2 coshLzzPgpoH+PJS(z —2)j
+2 exp(z'Pgp(H ——,'PJ8(s—1)j
XcoshL —PJ(48 —48+9) / j
+2 exp/ —-', PgpoH ——',PJ—PJ8(z—1)7

XcoshLz'P J(4S'+48+9)'"$ (72) (77)g(P,H,8)=0.

Now we note that for zero external field 8=0 is a solu-

P; e e"'=2ee "coshLPgpoH+2PJS(z —1)) tion of Eq. (70), and correspondingly M=O. Thus, in

+2 //qIz hpJ (71) evaluating the right-hand member of (76) at T, we put,
8=0. Examination of the derivatives (r)M/&)H)e=s=o
and (&)M/&3S) a =s =o shows that they are always
bounded. Hence, the divergence of x must result from
the divergence of the derivative (r)8/'&)H)rr=s-o. In
order to investigate this derivative we note that Eq.
(70) which determines 8 is of the form

P e»&=2ezz~/z cosh[zzPgpoH+3PJS(z —2)j
+2 (ez/& J/2+ 2e—3/& J/2)

Xcosh)'zPgpoH+P J8(s—2)$. (73)
(78)

Taking the total derivative with respect to H we get

dg &)g c&g &)S
+— =0.

dIJ BB BSBB
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TAsr. E V. The coeScients o,&&'& Lof Eq. (88)g for various lattices.

g2(o)

g2(2)

g~(3)

g~(4)

—,'z(z —1) (z—2)
2 (z—1)'(zi—2z+3)
-'(z- 3)'(z-»- 1)
—,
' (z—2)'(z —z& —1)
z (z—z)z(z —zi —1)
(4/27) (z—z, —1)
(1/12)z, (z—2)z

Linear
chain

0
—2

4/9
0

10/9
4/27
0

Square

6
90
25/3
3

160/3
4/9
0

30
—350

64/3
12

490/3
4/9
8/3

sc

30
—450

320/9
20

2450/9
20/27
0

bcc

84
—1274

847/9
63

7000/9
28/27
0

fcc

330
—4114

2026/9
175

17920/9
28/27

100/3

Solving for r)8/r)H we find that the pole of the sus-
ceptibility occurs at the root of c)g/c)8. Therefore, the
equation for the Curie temperature is

(c)gjc)8)p=p. ,e=s=o=0.

Performing the indicated operations and setting y= ej'~
gives the following equation for the Curie temperature:

y'
+L2yz+y'+1g-'

1+3y'

(y' —1)
X ~z"'+~z"'y'+~s'"y'+~z"'

lny

1+Sy'
+as ——0, (80)

1+ys

where the coefficients a;(&) are given in Table V for six
representative lattices: linear chain, square layer, hex-
agonal layer, simple cubic, body-centered cubic, and
face-centered cubic. Equation (80) has been solved
numerically for the Curie point, and the values of T,
are listed in Table I. Only one critical temperature is
found for each lattice so that there are no anti-Curie
temperatures such as those found in the Bethe-Peierls-
V/eiss approximation.

For the face-centered cubic lattice the Curie tempera-
ture predicted by successive approximations (zero-
order, two-spin, and three-spin clusters) decreases
monotonically, but the predicted Curie temperatures
for both the simple cubic and body-centered cubic
lattices oscillate. As indicated in the introduction, suc-
cessive cluster approximations should not be expected
to converge rapidly for the dense ferromagnet, and in
fact they do not appear to do so.

The high-temperature susceptibility can be expressed
in the form

3Er=s zNglzo (co+2zci+ 3zcz+ 3zc3) . (82)

As can be corroborated by reference to Table III, the
bracketed quantity is identically equal to unity for all
lattices, so that the magnetization reaches its absolute
saturation value at T= 0. If H goes to zero more rapidly
than T, however, the limiting magnetization is slightly
less than the absolute saturation value.

Ymr, E VI. Coefficients in the high-temperature expansion of the
susceptibility x = —,'p (gpz)' Z A „(pJ )".

sc MF'
exact
2-spin
3-spin

bcc: MF
exact
2-spin
3-spin

A0 Ag A2

16
12
12
12

A3

27
11
11
11

64
34.67
34.67
34.67

81
20.63
20
23.13

256
95.83

100
105.83

to order p', whereas the constant coupling results are
exact only to order p'. However, the two-spin cluster
results are correct for p' for those lattices which have
no triangular configurations of nearest neighbors. It is
also of interest to note that for the fcc lattice the three-
spin cluster results are an improvement over the two-
spin cluster results for the coeKcient of p', but that
the accuracy becomes slightly worse for sc and bcc
lattices.

Finally, the zero-temperature behavior of the mag-
netization is of interest. As in the constant coupling
approximation, the magnetization curve undergoes a
small but definite increase as the temperature de-
creases through the region kT ycoH. Consequently,
the limiting 7=0 value depends upon the relative order
in which T and H approach zero. If T goes to zero more
rapidly than II, then

x=-'p(g~o)' Z ~ (p~)"

The coefficients A,„are listed in Table VI, up to n=4,
for sc, bcc, and fcc lattices. The exact values, and the
values predicted by other approximation methods, are
also given. Our results for three-spin clusters are exact

fcc: MF
exact
2-spin
3-spin

a MO1eCular Geld.

36
30
30
30

216
138
148
138

1296
608.25
730
638.75
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and
p =

pp exp—(—P (,,& p,"X,"),

D;;=B/By,;.

(A3)

(A4)

The identity (A2) is evident when we recall that e ('n'~'

is the operator which replaces y;; by P. Expansion of the
operator exp( —P P(,;) D,;) in a power series leads to
powers of (Q(;;) D;;), which can be expanded in turn
by the multinomial expansion

1

(ij) ]Pig'} (ij) Pij~
(A5)

where the sunlmation is over all sets of non-negative
integers I',; satisfying P(,,) P,;=I. Inserting the re-

APPENDIX

In this Appendix we brieAy indicate the direct dia-
grammatic derivation of the cluster expansion [Eq.
(41)j, as given by Horwitz and Callen. "

The perturbative free energy PF' —is [Eq. (33)7
—PF'=ln(exp( —P P(;;)X,,))

= ln trp() exp( —P Q(;;) X;;). (A1)

It is convenient to rewrite this in the form

PF'=—lim exp( —P g D") ln trp~, (A2)
(ij)

where

sultant series in (A2) gives

PF—'= lim g g (—PD;) '&'ln trp~, (A6)

=Iim(~) 0 P(,;) exp( —PD@) ln trp„

=Q(g) ln. trpo exp( —PX@)

=P,;;, 1 ( p(—PX,;)). (A7)

The sum of all diagrams on three-spin clusters con-
taining at least one bond on each link (i.e., pure tri-
angles) is

where the summation is now over all sets of non-
negative integers p'i;; the restriction on the sum of the
I';; implicit in (A5) has disappeared in (A6) by virtue
of summing over e.

The expansion (A6) can be represented diagram-
matically. To do so for a particular term we simply
draw P,;bonds between vertices i and j for each integer
I';; in the set (F,;) corresponding to that term.

The diagrams can be arranged to pertain to clusters.
Thus, the sum of all two-spin cluster diagrams clearly is

- (—PD)'—PF(2)' ——lim g P ln trp„
0 (ij) Pig'=0 P-j t,

lim
(~} 0 (ijk) P;;,P;k, Pki=j Pk;!pi j ~

(—PD . .)&~( (—PD .p)
&jk (—PDy

.)&hi

ln trp~

= lim
fy}~O (ijk) P;;,P;r„PIi O

(—PD*)"' ( P» )"—' ( PD ')"—' - ( PD'i)'*" —( PD ) "—
ln trp, — ln trp„

p;;t Pjk' Pk;! k=0 P',.j 1 Pjk!

(-PD') ' (-PD')"' (-PD')"'(-PD ) ' - (-PD;) '
ln trp„— ln trp&+ g ln trp„

P7~, P~i=O P;k t PkiePij~ Pki t Pi;=0 P -t

- (-PD;.)" - (-PD.;)"'
+ g ln trp„+ P ln trp, (AS)

PP,=O Pk t Pg„=o Pki t

g [ln(exp[ —P(X;,+X;),+X)„)])—ln(exp[ —P(X;;+X;))])—ln(exp[ —P(X;~+X)„)])

p,, lPki ~

(ijk)

Pjk!p. 't(ijk) Pij, Pjk 1

—ln(exp[ —P (X),~+X;;)j)+ln(exp( —PX;;))+ln(exp( —PX;q))+ ln(exp( —PXq;))]. (A9)

This is the result given in the text for pure triangles and has the form of a basic term plus others which subtract
off "imbedded" clusters.

By adding and subtracting appropriate terms to reduce summations of p';; s from 1 to ~ to 0 to ~, as done in
Eq. (AS), pure diagrams are written as sums and differences of impure diagrams, as in Eq. (A9).

The U-linked diagrams on three spins are easily written in the appropriate form

( PD")"' ( P»—~)"' — - (—PD ~)"' (—PD~~)""'
Z ln trp&, + ln trp~

= P [ln(exp[ —P(X;;+X;))])+1n(exp[—P(X;&,+Xq;)])
(ij.k)

Pki Pig p;;!Pki ~

(-PD.')"' (-PD-) '
ln trp~

+ln(exp[ —P(X(,;+X;;)$)—2 ln(exp( —PX;;))—2 ln(exp( —PX;)))—2 ln(exp( —PXq;))$. (A10)
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Extension of the relationship to larger clusters is
obvious, demonstrating the expansion (41).

It is easily seen that any term in (A6) corresponding
to a choice of integers (I'„}vanishes if the nonzero
integers I';; can be divided into two sets with no indices
in common. That is, all "unlinked diagrams" vanish.
This follows from the fact that, in generating the term
by operating with the D's we can first apply all the DI, &

in one set. When we then apply a D,; from the second
(nonoverlapping) set, the quantity immediately van-
ishes. To see this we let Q) be one of the averages
generated by the Dsi of the first set so that p involves

only the KI,& in this set. We can let all the yI, ; which
join the two sets vanish, and p~ factors into pip2 where

pi involves the spins of the first set and p2 involves the
spins of the second set. Then

Qi) = trPpips/trpips ——(topi) (trps)/(trp, ) (trp, )
= tr(&pi)/trpi, (A11)

and this quantity is independent of the indices of the
second set. Hence, if D,, belongs in the second set,
D;,(p)=0, proving that all such unlinked diagrams
vanish.
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Critical Fields of Thin Suyerconducting Films. II. Mean Free Path
Effects in Indium-Tin Alloy Films
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In a previous paper, a theoretical model was presented from which the critical magnetic fields of thin
superconducting films could be calculated. The model was worked out for the nonlocal model of Pippard,
but only thickness effects were discussed in detail and compared to experimental data on pure indium films.
In this paper, mean free path effects as well as thickness eBects are discussed, and the results are found
to be in good agreement with critical field measurements on thin alloy films of indium containing 0-4.6 at.%
tin, if one assumes that PsXz,' is equal to 1.62X10' (A)' at 0.9T„$0 is equal to 2600 A, and pl is approxi-
mately 2.0X10 "0-cm'. For these values of $0 and pl, the coherence length, P, has been calculated for each
film from measurements of resistivity and thickness, and is found to vary from 2600 A at 0 at %Sn to .1000 A
at 4.6 at.% Sn. Also, the question of whether size effects in thin films are equivalent to mean free path
eG'ects is discussed in detail. It is concluded that size eGects are not equivalent to mean free path sects, or
more precisely, boundary scattering is not equivalent to scattering by randomly distributed defects. In fact,
it is demonstrated that whereas the London or "local" limit obtains in the presence of high concentrations
of randomly distributed defects, the Pippard or "nonlocal" limit obtains in very thin films, where boundary
scat tering predominates.

1. INTRODUCTION
' 'N a previous paper, ' hereafter referred to as I, a
~ ~ theoretical model was presented which relates the
critical magnetic fields of thin superconducting films

to the kernel of the current-vector-potential relationship
for any theory of superconductivity. The model was
worked out for the nonlocal theory of Pippard, ' but
only thickness effects were discussed in detail and com-
pared to experimental data. In this paper, mean free
path effects, as well as thickness effects, will be discussed
and compared to critical field data obtained for indium-
tin alloy films. The theoretical discussion will be limited
to the nonlocal theory of Pippard with specular bound-
ary conditions. Because of the similarity between the
kernels of the Pippard and BCS' theories, it is expected
that the results are substantially the same that would
be obtained from the BCS kernel. In addition, the ques-

' A. M. Toxen, Phys. Rev. 127, 382 (1962).
2A. B. Pippard, Proc. Roy. Soc. (London) A216, 547 (1953).
3 J. Bardeen, L. ¹ Cooper, and J. R. Schrie6er, Phys. Rev.

108, 1175 (1957).

tion of whether size effects in thin films are equivalent
to mean free path effects is discussed in detail.

2. THEORETICAL

For the case of the Pippard kernel with specular
boundary conditions, an expression for the critical field
is derived in I which is of the form

h./a, =g(~,),'/a', ~/~), (1)
where h, is the critical field of the film, H. is the bulk
critical field, $ is the coherence distance, $s is the co-
herence distance in pure material, ) I, is the London
penetration depth, c is the half-thickness of the film,
and g is a function which can be numerically evaluated.
The evaluation is carried out most conveniently in two
steps. First, the film susceptibility is calculated from
the results of Schrieffer, 4

(ir 2
=1—g P:+E(u„)j-i, (2)

i Ks spec g m=s2

4 J. R. Schrieffer, Phys. Rev. 106, 47 (1957).


