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Theory of Quadratic Response Functions
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IBM 8'atson Laboratory, Columbia University, Sew York, Sew York

(Received 7 January 1963)

The general quantum theory of quadratic response functions, such as the optical-frequency quadratic
polarizability of dielectrics, is developed on the lines of Kubo s density matrix —Green s function theory of
linear response functions. Sum rule series are obtained, and applied to the quadratic polarizability. A
suitable form of Kramers-Kronig relations for quadratic response functions is developed.

' 'N experiments by Franken et al. ,' and others, they
~ ~ observed radiation from dielectrics due to polariza-
tion proportional to the square of the amplitude of an
incident optical Maxwell wave from a laser, or propor-
tional to the product of the wave amplitudes of two
laser beams, the radiation, therefore, being at the second-
harmonic frequency or at the sum and difference fre-
quencies. The quantum theory of this quadratic polari-
zation, as a generalization of the theory of the linear
optical-frequency polarization of matter, has been in-
vestigated by several people. ' 4 The present paper con-
cerns the general formulation of the theory in terms of
the response of the density matrix to "impulse" per-
turbations, on the lines of Kubo's treatment of linear
response functions, "and the derivation from this point
of view of sum-rule formulas and dispersion relations.

1. LINEAR THEORY

This section outlines the general linear theory, as a
preparation for the following sections. The density
matrix, p(t), satisfies

dp/dt= [H(t), pj.

where p1 is to be proportional to h~. Then

pi ——[hil ti—t), psj

where, for any operator A,

A
I
s)= ex—p(iHex/A)A exp( iH—or/h)

We will use the notation

(G)„—=Tr (p„G). (6)

Then from (4), (5), and the fact that ps ——ps(Hs), it
follows that

(7)

If G is the physical variable (polarization, current)
whose response to the perturbation h1 we are calculat-
ing, then

G(~lh)=—G ()=—([G h I
—~)j)o=([GI~), h j)o (8)

is the eRective "Green's function" for the linear
response. ' The relation

A (sly) =—J3(—sl A),

Now let the Hamiltonian, H(1), be given by

H=Hp+hib(1 —ti),

where IIO and k~ are independent of t,, and let

p= ps(Hs),

p ps+pi(/)+ ' ' '
(3)

G(~—
I h,)=—r„G(s I hi), (10)

which follows from (8), gives the Onsager relation corre-
sponding to A and 8 as driving force and response. s

The conventional susceptibility is the linear response
to a harmonically varying disturbance, not to an
impulse; so it is the Fourier transform of (8). Corre-
sponding to si positive in (7), we must take

' P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys.
Rev. Letters 7, 118 (1961).

2W. C. Henneberger (unpublished); Zoltan Fried and W. M.
Frank (to be published). J. A. Armstrong, N. Bloembergen, J.
Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); R.
Loudon, Proc. Phys. Soc. (London) 80, 952 (1962);P. S. Pershan,
Tech. Rept. No. 393, Cruft Laboratory, Harvard University,
1962 (unpublished); P. N. Butcher and T. P. McLean, Proc. Phys.
Soc. (London) 81, 219 (1963).' E. Adler (to be published).

4 Sh. M. Kogan, Zhur. Eksperim. i Teor. Fiz. 43, 304 (1962)
/translation: Soviet Phys. —JETP 16, 21'7 (1963)g; P. L. Kelley
(to be published).

sR. Kubo, J. Phys. Soc Japan 12, 570 (1.957); Leeelres ia
Theoretical Physics (Interscience Publishers, Inc. , New York,
1959), p. 120.

~ V. L. Bonch-Bruevich and S.V. Tyablikov, The Green Functio
Method in Statistical Mechanics (North-Holland Publishin
Company, Amsterdam, 1962).

T„ f(s)= lim e &~+"&'f(s—)ds. —

If the limit ) —+ 0 be written as a sum over poles,

f( )-=&-f()=Z. (12)

then we have to make the substitution

f(ee) -+ f((o—)=(Pf(ce)+in Q„R„5(u)—(o„) (13)

in order that integrals over ~, or over a continuum in
place of P„, should give the right answer. One such
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integral is in the Kramers-Kronig relations~: TABLE I. Derivation of the terms of the sum-rule
series for linear polarizability.

" f(Q—)dII
s.if(cp —)=(P (14)

The "sum rule" expansion, of the Fourier transform,
introduced by Kubo' is obtained as follows: Integration
by parts gives

0 0
0 1
0 2
1 (1/m) p 2
2 —(1/m)d V/dx 2

(n) )G(m) j'g (n)g

Xp 0
(1/m) pp (1/m)S, p—(1/m) d V/dx p 0

(1/m') d' V/dxQx p
0

T„Gt(s) = (ico—)
—'I Gt (0)+T„(dGt (s)/ds)). (15)

Therefore,

Therefore,

T--G (s)= r, (i —) '"+"G '"'(o)

+ (s~ )'~—'&T G,&r+'& (s) (16)

2q ceca

n(~)= Zc E p-x.cxc-l
0)g~

—07

Gt &"& (s) —=d"Gr (s)/ds "& Gtc l (s) =Gt (s).

Similarly defining

htc"&=—(d"htls)/ds"), s,

we have

Gt'"'(0)=(LG'"' hrj&s= (—) (I:G ht'"'l&s.

(17)
where p„=—ps(hco ). By (13),

g CO~+

(18) n(cp —)=——pc p„p„x„cx,„2(P
f1 CO

—
GO)71,

y~iS(~ ~,„)—++i3(~+'~,„) . (26)

T„Gt(s) (ice)
—(n+t)(LG(p) htj&s

Of course, one has, exactly,

(20)

The usefulness of this expansion is that in practice the
first few terms (say, ps=0, p—1) of (16) turn out
to be identically zero (irrespective of the details of
the system), and the high-frequency limit has the
simple form

The "sum rule" series (16) is developed as follows: If
the Hamiltonian of the system is

H p (1/2ppc) p'+——V(x), (27)

the variables to be substituted in the series (leaving out
the constants multiplying them) are as given in Table I.
The Green's function for n is —q'x(sl x), in the notation
of Eq. (8), and so we obtain from (16)

T. G.()=( -)- T- («",h I- )3&
=I-—'( —)j- T. G(slh, )

—=
I
—( —)j "G( —lh"') (21)

The foregoing results may be illustrated by the
electric polarizability of an atom or molecule. We have

n(~) =—q'

Rc(cp) =

I+ («V&a+R4,
nS(O2 nS2O)4

1 2 t'
-Z Z.p-(«)-(«). I

m~a

(28)

G=qx, hr ———qx E. (22)
= 0(co

—'). (29)

E= E e'"' q(x&t ——n(cp) .E„e'"' (24)

V See, for example, Quantum Theory, edited by D. R. Bates
(Academic Press Inc. , New York, 1961), Vol. 1, 372, 373; J. R.
Macdonald and M. K. Brachman, Rev. Mod. Phys. 28, 393
{1956).Strictly speaking, the Kramers-Kronig relations will not
hold if X' is allowed to tend to zero as in the right-hand form of
Eq. (13);due care must be had in summing over the levels of the
system, for example at a sharp "absorption edge. "These remarks
apply also, of course, to the discussion following Eq. (62). Not
letting )' become zero means, physically, that we have perturba-
tions of slowly increasing, rather than constant, amplitude.

If the stationary states of the unperturbed system have

energies Lo~, and co~—co„=—co~„, then

LG I s), h&)„„=(2q'/h)gc(x„cxc„) E sin(cpc„s). (23)

The polarizability is defined by

The reason for calling (16) the "sum rule" series is

illustrated by this case. Writing the summand on the
right of (25) as

41 2

f. —+ +
402 C04 N4 C02 —0)„2

and comparing the resulting three sums with the three
terms of (28), one obtains the formulas P„f„=l (the
familiar one), m g„f~„s=(VVV&s.

The example represented by Eqs. (22) to (29) was

for a single active particle with charge q. For many
particles, one would replace the first term of (27), x,
and. (t' by sums over particles, and V(x) by the many-

particle potential. It is an interesting fact that central
forces between the particles make no contribution to the
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2. THE QUADRATIC THEORY

We replace (2) by

H(t) =Hp+hl()(t —tl)+hph(t —t2),

and (3) by

(3o)

quantity which then replaces (7'V) p (the trace of (V'V'U) p,

which gives the sum rule for cubic symmetry). In fact,
for an atom or molecule with fixed nuclei the many-
electron result has Tr(V'V'V&p ~ 42re' Q,Z,n(X,), where
the sum is over the nuclei, at positions X; with charges
Z;e, and where n(x) is the electron density.

Results equivalent to the foregoing have been given
by Kubo, ' by Kogan4 and by Kelley4 (see also Butcher
and McLean, reference 2).

The sum rule expansion has to be derived from (36)
rather than (35), because of the discontinuity in the
integrand of (35). The general formula corresponding
to (16) looks complicated, because one may expand the
integral over one variable to an arbitrary number of
terms, with their remainder, and then expand each
term, as an integral over the other variable, to an
arbitrary number of terms. Formulas like (21) rather
than (20) may be obtained if required, for example,
Eq. (43) below. The infinite series is'

p(t) = pp(HO)

—to+Pl(t) ~

Po+P2(t),
PO+Pl—+P2+P21 (t)p

Po+—Pi+P2+P12(t),

t(t~, t2,

t~ &t(t2,.
t2(t(t~,.
t&(t2(t;
t2(t&&t. (31)

G(», (oplhl, h2)

l 0 n 0

$(n—l)

Then the quadratic effect linear in h& and in h2 is given
by

G21(l,p, n)+ Gl (l,o, n) (39)
~ n+l ~ n+1

p21(t) = [h2 I
t2 t), [hl —I tl t), pp77, —

«&»=([[G, hp I
—$2)7, hl I

—»)7&o,

(32) where

(33)
G (l, m, n) —([[G(l) h (tn)7 h (n)7)

where sl —=t—tl, s2 =—t—t2. In analogy with (8), we may and G'", etc. , are given by (18).
use the notation

(G)21=G21($2@i)=G($21 $1 I h2y hl) ~ (34) 3. APPLICATION OP THE SUM-RULE EXPANSION

One should remember that the right-hand symbols
(sl and hl in this case) represent the earlier time
(tl(t2, or sl)s2).

The Fourier transform is

G(~1—~2—lhl h2)

Tnr ($1)Tnp (S2)(G—12 ($1—($2) +G21($2(Sl)). (35)

[On the left-hand side of (35), the order of factors
merely signifies that co& goes with h& and cu2 with h&,

.
both») (o2 and (d2) (dr are permissible, of course. 7 The
transformed function (G12+G21) has discontinuous
derivatives at s&=s2. One may, however, remove this
feature by writing

G((ol—,(o2—Ihl, h2)

=T(„,+„,) ($)(T„, (s')G(s, s+s') lh2, hl)

+T„, (s')G(s, s+s'I hl, h2)). (36)

Equations (35) and (36) give the Fourier component,
(G),+„„resulting from a "perturbed part of the Hamil-
tonian" hl exp(i(pit)+h2 exp(i(opt), the addition of the
other terms from h~~ and h2t being understood. Since

The nonlinear polarizability first observed was in
quartz, a crystal lacking inversion symmetry. One can
think of this polarization as proportional to the local
value of E1E2. A model for the effectp is a localized
electron with Hamiltonian (27) and perturbation
—qx. E(t). If the potential V(x) lacks a center of sym-
metry, a polarization proportional to E' results. With
G= x, h~= x, h2= x, one finds that G(' n' =0 for
i+22(4. The two nonzero ones with /+22=4 are

1
G„(3o »= — VVVV,

tS

2
G12

(4 o o) = +—VV'V'U.
523

Combining the resulting terms as in (39) gives

(
(x&„„„,=—(V VV U), :E.,E„,I (42)

5$ k (Pt)i+442)(ol(O2)

G($, $+$'lhl, h2) =([LGIS) h17, h2I —$')7&o (37)
where E„is a Fourier component of E(t). Equation (42)
agrees with the result for the "anharmonic oscillator, "
with potential ax2+bxp; but it is, of course, more

we have

G((ol —,(O2—I hi, h2)
= T(„,+„,) (s)(T, (s')([[Gls), h27, hll —s')7)p

+T- -(")(LLGIS),h 7, h
I
—s')7&o)

~ Such series are evidently asymptotic; they need not be con-
(38) vergent, in applications.
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general. The result derived from (16) is

T + (s) /T (s') T (s'))
(x)-+-,=—(E- E-.:),I +

Q)y C02 GDy Q)2
Term C

TABLE II.The contributions to the "sum frequency" quadratic-
polarization current, due to the field given by Eq. (45), in the
notation of Eqs. (8) and (33). x=@&+xz.

x([[((«v) y) I.), x7, yl —")7),

(T (s')+T, (s'))
+l l([[(~(«v) (vv)

pit G
(q/c)A, exp[i(rc x—„) xj—|'q/mc) p "'A-.„
(g/mc')A „, A „,exp( —x x) ti

G(v=I or 2)
h2 or h1 h1 and hg

&i+ccz

—(((«vv) y) p))ls), x7, xl —s')7), , (43)

the scalar products (EiE2.) being taken in the order
Ti[[, Es7, Ei7 and Ts[[, Ei7, Es7. The next
integrations by parts give the leading term (42).

If the system has inversion symmetry, there remains
an effect 10 ' smaller which can be represented as
the sum of "Faraday" and "quadrupole" contributions.
These have been calculated by Adler' (for a model of
the dielectric in which it is divided into a periodic
lattice of separate localized systems) by taking into
account the "plane wave" dependence, on position, of
the perturbing fields and the component of polarization
which is calculated. One obtains contributions to the
polarization, additional to the "anharmonic" part to
which (42) and (43) apply, which are not zero when the
system has inversion symmetry. The sum rule series
may be applied to these. However, it will be applied
below to a somewhat different formulation of nonlinear
polarization.

An appropriate Hamiltonian for an electron in the
dielectric is

g
2

p—A +V(x).
C

(44)

In this gauge, in which its scalar potential is zero, the
laser electric 6eld is'

E(x,t) = —(1/c)r)A/r)t= —(1/c)g„sic„A .„
Xexp (ice„t—inc„x). (45)

J"=——y"—-A"
l

m c
(46)

~ We are leaving out the spin term here, and the corresponding
term (Ref. 3) in Eq. (46). It is shown by Adler, (Ref. 3) for his
model and neglecting spin-orbit coupling, that if the system has zero
spin polarization in its unperturbed state then the contribution
from spin terms to the quadratic polarizability is negligible.

"The superscript and subscript ~, X, 114 occurring throughout the
rest of this section should be read as vectors.

(It is convenient to label components by wave vector
x rather than angular frequency co, so long as one
remembers to pair these correctly in sums. ) The
component of the current density with wave vector
—x is the expectation of

where, for any quantum operator U,

U"—= (U, exp(irc x)). (47)

The linear polarization is usually calculated, from (44)
and (46), letting x ~ 0. One may, of course, expand the
linear polarization in ascending powers of x. However,
the second term (proportional to x) vanishes if the
system has inversion symmetry. Otherwise, its order
of magnitude relative to the first term is (lattice
constant)/(optical wavelength), so it should not become
important until x-ray frequencies are reached. For the
quadratic polarization, we may make the same expan-
sion in the wave vectors x&, x2, but the parity situation
is now reversed. The first term (independent of the x's)
vanishes if the system has inversion symmetry, but the
term proportional to the x's doesn' t. [Again, its
estimated order of magnitude is smaller than that of
the (nonvanishing) first term by the factor (lattice
constant)/(optical wavelength). 7 As with the linear
case, the polarization proportional to the x's is out of
phase with the polarization independent of the x's by
w/2. It has recently been detected, in a crystal with
inversion symmetry. "

Table II indicates the different contributions to the
quadratic polarization as calculated in terms of (44)
and (46). The contributions A and B are given by the
theory of Sec. 1; contribution C is to be calculated as
in Sec. 2. The component of current represented in
Table II is that at angular frequency cci+ce&. In the
Bloch scheme, contribution A is proportional to x (plus
higher powers, of course) because it is given by inter-
band matrix elements of exp( —ix x) and, hence, of
v. p+0(x'). Similarly, the contributions B are propor-
tional to sc& or to x&. (More generally, it is obvious that
the contributions A and B are zero in the limit x's —+ 0.)
The contribution from C consists of sums over triples
of matrix elements (nip"

lm)(eely"

ll){tl y le), with
x+2+@=0.On expanding in the wave vectors, one has
a part independent of the x's (vanishing if the system has
inversion symmetry) c,rsd a part proportional to the x's.
An expression for the former (the part of the polariza-
tion independent of the x's) will be found in the forth-
coming paper by Kelley. 4 From all the foregoing contri-
butions, in the Bloch scheme one has a sum over the
Srillouin zone of functions of interband matrix elements
of y. It should be noted that the triples of matrix

' R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev.
Letters 8, 404 (1962).
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elements include matrix elements between occupied
one-electron states as well as between unoccupied
one-electron states.

The sum rule series is obtained by the procedure of
Sec. 2, applied to the 6's and h's of Table II, using
the formulas

Lf(x),I "l= (V/)"

$p
a

p ),j—
&(& p x+), l( p a+)) (49)

It is useful to express the results in terms of P (polariza-
tion density) and the E's, rather than J and the A' s.
We And that the series begins

P P(4,1)+P(6,6)+P(6,1)+.. . (50)

where P( ") means the terms of order M ((" (i.e., a
sum of terms of this order in the M's and 24's). There is
no (m=4, 22=0) term, and no term with 2)2&4. The
first term of (50) comes from the A and 8 contributions
in Table II; the second term comes from the C contribu-
tion; the third term comes from A, B, and C. The
expressions for these are

2 241+242
P„+„(4') =q22- Ei E2

2)2 MiM2(M1+M2) Mi+M2

(42), although the calculations were in quite different
terms, as it should be.

The term given by (53) introduces the crystal leld
and symmetry into the part of P proportional to the 24's.

It is evident from this term that the relation between
the direction of P and the directions of the E's and 24's

is not simple, even for a cubic crystal. For ~1=~2=—co,

and a cubic crystal, we have

g
P2„(' ') = q)2— (V' V)6{241.E2E1+242 E1E2

2N2 (2M)2M2

+-,', (241+242) Ri E2). (54)

The replacement of (VVV)p and (VVVV)p by their many-
body equivalents is on the same lines as explained at
the end of Sec. 1.

4. DISPERSION RELATIONS

The Kramers-Kronig relations apply in a normal way
to (35). That is,

pr6G(M1 —,M2 —lhi, h2)

dQ
G(Q—,M2 —lhi, h2), (55)

M1—0

where

Z

2)2 M)M2(M1+M2)

X (S:(vvV)()+T (VVV)p),

~2~ E,E,
+

l
+

+2 1 1 &2

R,242E2+ E22(,E,

07] M2

1 $241 242 ) 1
1 2 2 1

6016)2 (02 Mi 1 (Mi+M2)

t'M)1 2M2 M2+ 2M 1

XI ~2'R1R2+ Kl R2E1,

1
+—xi E)E2+—242 E,E1,

M] 402

g2

P„,+„,(' "=ql- (vvvv), :E,E,,
&12 +1 2

(51)

(52)

(53)

(53')

and similarly for M2. However, the usefulness of (14),
for the linear response function G(M —), depends on
the facts that it may be rewritten as two integral
relations connecting the parts of G which are even and
odd in co, with the integrals going from 0 to oo, and
that these parts are separately of physical interest.
With the quadratic response function, the parts of
physical interest will be even or odd in co1 and co2

together, but not separately; and so the separation of
(55) into integrals over even and odd parts does not
have the same usefulness as for the linear case.

However, if we treat G as a function of

M =Mi+M2, M =Mi —M2,

then the relation (14) will apply to the variable M+,

2()ith M held axed. Furthermore, we may define functions
which are even, or odd, in M+ as follows: Let C(M),M2)

be a quadratic response function or part of one, and
let 512 be the operator which interchanges A&1 and co2.

Then

E, E,
+ (241+242). (53")

2 (M 1+M2)'

Here n is the electron density, and Ei, E2 stand for
E „, (i.e., E„,) and R „,. The quadratic polarization of
free carriers is given by (51) alone. (In this case, 241 Ei
and x2 E2 will of course be zero; we then require only
the first term in the brace. ) The coefficient of ql on
the right of (52) is identical with the right-hand side of

R+C'= R1R2C; R+O'= —R1R2C~, (58)

R C'=C' R—O'= —C (59)

2C'(M+, M )—= (1+S12)C(M1,M2),

2C'(M+P) )—= (1—S12)C(M1)M2).

If R1 is the operator changing co1 to —co1, and similarly
for E2, and if E+ changes M+ to —M+ (but leaving M

unchanged), and similarly R changes M to
we have
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R1R2C= crC, 0 =~1.. (60)

(o =+1 gives the even part of C' and the odd part
of C'.) When (as in the next paragraph) R1R2C=C*,
we have

2ri C'(or+, re
—

)

On account of (59), the relation (14) for o&+ as variable,
with co fixed, holds for C' and C separately. We then
have four relations of the usual form, with integrals
over M+ from 0 to ~: two connecting the even and odd
(in o1+) parts of C' and two connecting the even and
odd parts of C'. By (58), these even and odd parts are
given by the operations on the right of (57) applied to
the two parts of C satisfying

When we make the substitution (13) for each pole, the
products of principal values L(P(a&1—at~) '(P(o12—o1e) ',
etc.j, and the products of delta functions, will together
give the real part of C, with o =+1, in the present case
(in the absence of a static magnetic field), while the
products of principal values and delta functions
L(P(101—o&„) 'b(o&2 —a&„), etc.j will together give the
imaginary part, with 0.=—1. These two parts of C
may appropriately be called the "reversible" and
"irreversible" parts, respectively. Writing

C(O11 ) te2 ) —Crev(O11~~2)+2Cirrev(&1)O12)) (63)

a representative dispersion relation is

=2(P ((0+ Re+iQ Im)C'(0 or )
(10+)'—0'

2rCe (O1+ ce )=2(P
00 dQ

QC';„.,(0, es-) . (64)
(o1+)'—0'

triCe(or+, or )

=2(P (0 Re+ior+ Im)C (Q,o1 )
((0+)'—0'

)To avoid confusion the minus signs attached to the
o1's in (55), etc. , which indicate the "time sense" in
(11) and correspond to the sign of the denominator in
(14) and (55), are omitted in (61).j

For an illustration, " let C be the constant in the
relation I'„, +„,=C p~E„,~E„,&, for the "anharmonic"
part of the polarization independent of the x's. Of course,

~»C ~&=~-v~

so C' and C are the symmetric and antisymmetric
parts of the tensor whose P, y component is C sv. Now,
C(&di, o12) may be expanded like Eq. (12), in a (double)
series of poles, the terms having denominators of form

The relations, such as (64), for C' are the analogs of
those for the linear electric susceptibility. The relations
for C have the roles of reversible and irreversible parts
interchanged.

For the part of the quadratic polarizibility linear in
the 22s, dispersion relations similar to (64), etc. , will
hold with x1 and x2 held constant and, hence, will
hold for the coeKcients of x& and x2 separately or in
any linear combination. (In this case the reversible
part is imaginary and the irreversible part real, in the
absence of a static magnetic field. ) The relations with
x1 taken as proportional to A&1, x2 to co2, should also be
valid, since (50) indicates that the response function
will still fall off fast enough as (o&1), )o12) —+ eo. One
may conjecture that the dispersion. relations (55), etc. ,
hold also for the complete quadratic polarizability, with
the x's on which it depends governed by the actual
te (2t) functions.

&1 +m 2 n y +1 &m 1 &2 n q

and ((d2—rd ) (rdi+te2 —te„).

"A more complete discussion, than is contained in these two
final paragraphs, of the division of a response function into real
and imaginary parts and into parts satisfying (60), on the basis
of parity rules will be found in P. J. Price, in Proceedings of the
Ohio State University Symposium on Lasers and Applications
(Ohio State University Press, to be published).
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