
VELD C I T Y OF SOU N D I N M ETALS 1783

This eGect has been observed in bismuth by Mavroides
et al."However, the theory given here is not applicable
to semimetals in the present form.

~ J. G. Mavroides, B.Lax, K. J. Button, and Y. Shapira, Phys.
Rev. Letters 9, 451 (1962).
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Expressions for spin wave energies in normal and inverse spinel have been obtained which are exact to
all orders in the spin wave momentum. These dispersion curves have been compared with existing experi-
mental data on magnetite and good agreement found if the principal exchange interaction is taken to be
2.4&&10 3 eV. The surprisingly small range of validity of the usual k' approximation is pointed out and
possible effects of the deviation from k' behavior on the magnetic part of the heat capacity are discussed.
The small (like-like) exchange interactions have been included (also to all orders in the spin-wave momen-

tum) with the most important result that agreement with the experimental dispersion curves is improved.

INTRODUCTION
' AGNETITE (Fes04) is the simplest of the so-called

~ . ferrites, ' compounds of the form X'+(Fs+)s04
crystallizing in the spinel structure, (space-group
Iid3stt Os'). This-structure is basically cubic having in a
unit cell sixteen octahedral (8) sites and eight tetrahe-
dral (A) sites. At normal temperatures magnetite has
the inverse spinel structure in which the A sites are
occupied by ferric ions and the remaining ferric and
ferous ions are distributed over the 8 sites. As the
temperature is lowered below 120'K many magnetic
and thermal properties undergo a sudden change. There
is also a sharp drop in the electrical conductivity. This
transformation was ascribed by Vervey' to an ordering
of the ferric and ferrous ions on the 8 sites into alternate
planes perpendicular to the C axis producing net ortho-
rhombic symmetry. This proposal has been con6rmed

by neutron diGraction measurements' and recently by
Mossbauer absorption measurements. ' A sketch of the
unit cell below the transition temperature is shown in

Flg. 1.
There have been a number of calculations of the spin

wave spectra in the normal and inverse spinel struc-
ture. ' ' Most results indicate a quadratic acoustic

J. Smith and H. P. J. Wijn, Ferretes (John Wiley gr Sons, Inc. ,¹wYork, 1959).
~ E. J. W. Verney and E. L. Heilmann, J. Chem. Phys. 15, 174

(1947).
e W. C. Hamilton, Phys. Rev. 110, 1050 (1958).
4 R. Bauminger, S. G. Cohen, A. Marinn, and E. Segal, Phys.

Rev. 122, 1447 (1961).' H. Kaplan, Phys. Rev. 86, 121 (1952).
~ S. V. Vonsovski, Y. M. Seidov, Izv. Akad. Nauk. SSSR 18,

319 (1954) (translation available through Columbia Technical
translations).

7 T. A. Kaplan, Phys. Rev. 109, 782 (1958).
L. Kowalewski, Acta. Phys. Polon. 20, 675 (1961).

branch. A linear behavior was found by Vonsovskii and
and Seidov, but this work has been criticized by Kaplan
and Kowalewski. (The latter also points out an error in
Kaplan's calculation. ) Apparently the only calculation
for the ordered inverse spinel structure has been made

by Kouvel. '
The ordered structure may be considered to consist of

six interpenetrating face-centered cubic lattices, two
consisting of A sites and four of 8 sites. Thus, the spin
wave spectrum will have six branches. Kouvel assumed
that the s axis was the single anisotropy direction and
that at O'K the A spins were down and the 8 spins up.
Assuming only nearest-neighbor AA, BB, and AB ex-
change integrals he set up the (sixth degree) secular
equation for the frequencies and succeeded in ending the
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FIG. 1. One quarter of the unit cell for ordered inverse spinel.
One cation site of each variety is labeled. The open circles repre-
sent oxygen sites.

' J. S. Kouvel, Technical Report 210, Cruft Laboratory,
Harvard, 1955 (unpublished).
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infinite-wavelength (ferrimagnetic resonance) modes.

By making a long-wavelength expansion, he obtained
the quadratic behavior of the acoustic branch.

To investigate a proposal of Unruh and Milford, '
that deviation from the quadratic dispersion law may
seriously affect the temperature dependence of the low-

temperature specific heat and magnetization, we have
attempted to simplify Kouvel's" calculation enough to
obtain a more detailed description of the acoustic
branch of the spin wave spectrum. In the case of
vanishing exchange interactions between ions on the
same type sites exact (to all orders in k') expressions for
the spin wave energies for all directions of the wave
vector have been found for wave vectors in the k„k„
plane for ordered inverse spinel and for more general
wave vectors in normal spinel. These results have been
used to estimate the accuracy of Kouvel's k' approxi-
mation, to construct constant energy surfaces in k space
and for comparison with the neutron inelastic scattering
data of Watanabe and Brockhouse. "

FORMULATION OF THE SPIN WAVE PROBLEM

The basic approach to this problem was worked out
several years ago by Kouvel, '3 but since his work has
not been published we shall outline it brieRy. The spin
Hamiltonian may be written

5L'= 2Jgn p S " S n

(ij&

ing to the jtth A site and mth 8 site are

ASr"= i[5C,Sr"]=Sr"

X f 2JA—B Q S~ —2J~~ g S;~+g&pH}
(2)

AS =SmnX( —2JAB g S,"—2J~~ Q S n+g&yH}.

SA g Atf +g Atf 5' Ati

S~'= Sp'tf +S„~'a„+S.n'tt. .
(3)

In developing the equations of motion we make the
spin wave approximation of considering the z compo-
nents to be invariant in space and time and keeping only
linear terms in the transverse components. Finally, we
look for normal modes of the form:

The spinel structure consists of six interpenetrating
face centered cubic lattices: two consisting of A sites
and four of 8 sites."The twelve spin sums (over nearest
neighbors) which are, therefore, necessary in (2) may
easily be evaluated from the coordinates listed in the
Appendix. For generality, we assume that there are
three types of spins: 3 spins which occupy the 3 sites
and 8& and h2 spins each of which occupy half of the
8 sites. To fix ideas we shall consider the ordered
inverse spinel, (the structure of magnetite below 120'K)
in which layers of 8 sites normal to the z axis are
occupied alternately by Bj and 82 spins.

We express the spin vectors in rectangular coordinates
as

+2J„PS' S'+2Jss P S S
&ij)

o+(r, t) =S.+iS„=—o exp(iit r—ia&t). (4)

—H g ggpS;" —H P ggyS; . (1)

According to Neel" the quantities J», J», J» (the
negatives of the corresponding exchange integrals) are
positive. We assume only nearest-neighbor exchange
interactions and ignore anisotropy. The magnetic field

H will be taken along the z axis.
The equations of motion for the spin vectors belong-

This leads, in the usual way, to the secular equation

U» a~ a2 a3 b~

ag Ug a4 as b2

82 84 U2 86
83 Qg 86 U2 b4

U
bj b2 b3 b4 c

b
g'

b

b
bg =o.
c
U3

The oG-diagonal quantities are sums over nearest-
neighbor spins and are given by

a,= —4Jgg cos[(a/4)(k, —kv)], a4———4Jg/ cos[(a/4)(kv+k, )],
= —4J o L( /4)(k. +k*)], = —4J o L( /4)(k. —k.)],

as ———4Jnn cos[(a/4) (k„—k,)7, as —— 4Jgg cos[(a/4) (k—.+k„)],
b,= —2Jgn([311]+[131]+[113]),b, = —2Jgg([311]+[131]+[113)],
b,= —2 Jgg ([311]+[131]+[113]), b4 —2Jgg ([311]+[—1—31]+[113]),

c= —2J» ([222]+[222]+[222]+[222]),

(6)

+ H. Unruh, Jr., and F.J.Milford, Phys. Rev. 125, 1619 (1961).
«J. S. Kouvel, Phys. Rev. 102, 1489 (1956).
«H. Watanabe and B. N. Brocirhouse, Phys. Letters 1, 189 (1962).
» J. S. Kouvel, Tech. Report 210, Cruft Laboratory, Harvard, 1955 (unpublished).
'4 L. ¹el,Ann. Phys. 3, 137 (1948).
rs E. W. Gorter, Philips Research 9, 295 (1954).
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where, for example,

and u is the lattice parameter. Also,
[mnl] = exp[i(a/8) (mk, —ek„+lb,)]

UrSg, ——Wt ——[Are 12J—ggSg+4J Jjg(Srr, +2Sg,) gaII—H],
UsSs, =Ws [A——~ 12—Jg~Sg+4Jps(S~, +2Sg,) grr—pH),

—UsSA= —
W, s —[Are+12JAB(SB~+Ssr) 8JAASA gAPH].

The approximations that have been made in obtaining
(5) are

(1) The linear spin wave approximation in which
second-order terms in S, and S„are neglected in the
equations of motion.

(2) Only nearest-neighbor interactions are included.
(3) The approximations inherent in the Hamil-

tonian (1).

It is perhaps worth noting that an alternative approach
is to transform the Hamiltonian to harmonic oscillator
form and identify the products of coeKcients of squares
of canonically conjugate variables as eigenfrequencies.
This procedure produces results which are identical with
the equation of motion approach wherever they can be

compared. Using the transformed Hamiltonian to
obtain equations of motion may, however, introduce
spurious factors of S/[S(S+1)J" due to the replace-
ment of S„'by S(S+1) unless great care is exercised.
This problem is well known and much discussed" "in
connection with the ground-state energy.

SPECIAL CASE Jgg= Jgg=O

It is generally felt that in magnetic materials with
the spinel structure J~~ and J~~ are much smaller than
J~~. Since quantitative experimental information on
the relative sizes of the exchange constants is extremely
difFicult to obtain it is common to approximate this
situation by J»=J»=0. In this case all of the a s
and c are zero and the secular equation reduces to"

This equation may be solved readily with no further approximation to give

1/28
Aa 1= 6JAB(SB,+S—as SA)+ 36JA—B'(SB,+SB, SA)'+ 144JAB'S—A(S'B,+SB,)+ +s (&'—4C)"'—

2

Wr Ws 2W1 Ws[S+sSQ (b3 bs+b4 b4)+SggSg (bt br+ bs bs)] —1'Vr S~'{S+g (b3 b4 b4 bs) +Sag (br bs brbs*)'

+SQ,S+1[(b&*b4—b4*b&)'+ (b&*bs—bs*b&)'+ (bs*b4—b4*bs)'+ (bs*bs —bs*bs)']}=-0. (9)

1/2

A(as = —6Jga(Sg, +Sg,—Sg)—36Jgg'(Sg, +S~,—Sg)'+144Jgg'Sg (Sg,+Spy, )+—+-', (8'—4C)"'
2

8
Ates= —6J+s (S+g+Ssr Sg)+ 36J&p'(Sp, +Sp,—Sp)'+ 144J&p'Sp (Sp,+S&,)+—', (8'—4C)"'—1/2 (1())

1/2

Ate4
—— 6Jgg(Sg, +Sg—, Sg) 36Jg~'—(S~,+—S~, Sg)'+144Jgrr'—Sg(Srr, +Srr,)+ ', (8'—4C)'I—'—-

2

~5——A~6 ——12JSg,

where

8= —2[S&,S&(bs*bs+b4*b4)+SQ,SQ(bl bl+bQ bs)])
C= —Sz'{Sp,'(bs s4 b4 bs) +Ss, (bt bs bs~bg)'

S@~SQ~[(br*b4—b4*bt)'+ (br*bs —bs*br)'+ (bs*b4—b4*bs)'+ (bs*bs bs bQ)']).

A similar set of solutions has been found by Kaplan'for
normal spinel. The energies are easily evaluated for
interesting values of the spins and arbitrary momenta.
The important thing, of course, is that no restriction to
small momenta is involved.

One of the most interesting structures to which (10)
can be applied is magnetite which is an ordered inverse

spinel below 119'K and an inverse spinel with a
random distribution of equal numbers of ferrous and
ferric ions between the two kinds of 8 sites above this

"R.S. Smith and M. J. Klein, Phys. Rev. 80, 111 (1950)."P.W. Anderson, Phys. Rev. 88, 1260 (1951)."R. Kubo, Phys. Rev. 87, 568 (1952)."P. J. Milford and M. L. Glasser, Phys. Letters 2, 248 (1962).
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FIG. 4. Constant
energy contours in
k, k„plane. Energies
are labeled in units
of 12Jgg. Broken
curve is for normal
spinel and energy
Ace/12Jzg=2. 25 and
illustrates fourfold
symmetry in that
case.
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temperature. For the ordered configuration, (10) and
(11) apply with S&=S&,=2.5, Ss,=2. Using these
values of the spins one obtains the dispersion curves
shown in Fig. 2 for the spin wave momentum k in the
z direction. The lowest mode for several other directions
all of which are in the k„—k„plane are shown in Fig. 3.

It may be noted again" "that the dispersion curve in
the z direction agrees quite well with the neutron scatter-
ing work of Watanabe and Brockhouse as may be seen
from the experimental points which are plotted assum-
ing Jg~=2.4X10 ' eV. As Kaplan"" has shown and as
is further discussed later in this work, including the

Jg~ interaction improves the agreement. Even without
this refinement, however, the agreement is sufficiently
good to encourage further study of the model.

The dispersion curves for momenta perpendicular to
the z direction also provide interesting information.
KouveP' has shown that to order k' the constant energy
surfaces are ellipsoids with principal axes in the $001j,
[110$ and $110$ directions in k space but has not esti-
mated the range of k for which the approximation is
valid. The range of validity of the k' approximation is
surprisingly small and may be conveniently estimated
by taking k in the x direction. In this case to order k'

I I I j I I I I
11 ~ABSA (SBg+SB2)

AGOR =— A'a'.
16 S~,+S~,—S~

(12)

2.0

Cd

3
I.O

FIG. 3. Dispersion
curves for three di-
rections in the k, k„
plane.

0
0 0.5

ka/27r
I,o

~OT. A. Kaplan, Lincoln Laboratory, Solid State Research
Report, 1962 (unpublished)."B. N. Brockhouse and H. Watanabe, Atomic Energy of
Canada Report AKCL 1575, and IAEA Symposium on Inelastic
Scattering of Neutrons (to be published).

This is a special case of Kouvel's more general k' ap-
proximation and is also easily obtained by approximat-
ing (10) to order k'. If ka/2n. =0.1 the k' approximation
gives A~3/127~~ ——0.127 while the exact value is 0.119,
an error of 6/o. The error increases rapidly with increas-
ing k and is about 25% at ka/2m =0.2. The k' approxi-
mation is shown as a broken line in Fig. 2. The deviation
of the exact result from the k' approximation is such
that the constant energy surfaces do not have ellipsoidal
shapes for ka/2m&0. 1. The point is made clear for
rather large values of ka/2~ by Fig. 4 which shows
actual cross sections of constant energy surfaces. It
should be noted that the total deviation from sphericity
is not great for ka/2~=0. 8. In fact, the 3% spread in k
reported by Brockhouse and Watanabe" for five direc-
tions with Ace=0.0493 eV is essentially sufficient to
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FIG. 5. Nearest
neighbors of an A
ion. Solid circles are
A ions, squares 8&
ions, and triangles
82 ions. Numbers
next .to symbols are
s coordinates in units
of the lattice param-
eter. Scale in projec-
tion plane is indi-
cated also in units of
the lattice param-
eter.
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accommodate thedi6erences among the dispersion curves
of Fig. 3. Experiments for larger energy momentum
transfers should show deviations from sphericity at
least at temperatures below the ordering temperature.

In view of the unusual shapes of the constant energy
surfaces it is perhaps worth commenting on the sym-
metry of magnetite. The symmetry of ordinary spinel is
that of the space-group Os7(Fd3m) Inverse. spinel may
be reasonably expected to have the same symmetry in
some average sense as long as it is not ordered. Ordering,
however, seems to reduce the symmetry, perhaps to Td, ,
but no detailed crystallographic investigation of this
point is known to us. (Lyons et al.ss have discussed the
question in a certain framework but this may not be
adequate for determining the symmetry of the energy
surfaces. ) No serious convicts arise except possibly as to
whether the k, axis is one of twofold or fourfold sym-
metry. It is clearly twofold for ordered inverse spinel,
fourfold for normal and probably effectively fourfold for
disordered inverse spinel as may be seen from Fig. 5. In
this figure the 16 nearest neighbors of a tetrahedral site
are shown. The fact that a rotation through sr/2 does
not produce the same structure is evident as is the fact
that the s axis is not a fourfold screw axis. If the distinc-
tion between 81 and 82 spins disappears the s axis
becomes a fourfold screw axis and this in turn leads to

04
0 0.5

ka12w
}.0

FIG. 6. Acoustic spin wave dispersion curve for Jgg~ = —0.1JAB
together with Watanabe and Brockhouse experimental points and
acoustic mode from Fig. 2. Sg, =Sg, =2.25.

fourfold symmetry in the constant energy surfaces.
One section of a surface with fourfold symmetry and
Aa&/12 J~~= 2.25 and S~= 2.5, S~, S~,= 2.2——5 is shown

in Fig. 4.
It should also be noted that the difference between

the results for S~,——S~,——2.25 and those for S~,=2.5,
S&,=2.0 is quite small in the principle crystallographic
directions. This is particularly evident from a com-

parison of Figs. 2 and 6.

EXACT SOLUTION' FOR JAg~ Jgg go

Another approach to the solution of the secular
equation is required if the exchange interactions be-
tween like spins are not negligible. For k, =0 the secular
equation may be factored into two cubics. To do this we

note that by adding successive rows and columns in
pairs the secular equation may be put in the form

2 (Us+ as)

Pss
2 (U&+ as)
2(as+as)
2(bi+bs)

2 (Us+as)
Pss

2 (a4+as)
2 (Us+a, )
2 (bs+b4)

Pu
Pss

2Us+c+c*
2(bs+bs*)
2 (b4+b4*)
2Us+2c

Ug+ ag

a4+ as
bs+bs*

2V1
285
2b2

as+ as
Us+as
b4+b4~

2Qg

2V2
2b4

s'+ b
Q+ b

Us+ c 611 612

2b

2V3

(13)

where P y= b'+bi+b'*+b;*, ~= as+as+a&+as, and the
6's are 3&3 matrices.

When k, =0, a2=a5, aa=u4, b3=b4*, b1=b2*, and
c=c*. In this case (13) clearly has the form

U~+ai as+as bi+bs
as+as U,+a, b,+b, =O
bg+ bs bs+ b4 Us+ c

(15)
~11 ~12 ~11 ~12
~11 ~22 O ~22

(14)
and

roots in this case are given by the solutions of the two
cubic equations

and consequently factors into
~
6»)

~

6»'). Thus, the

"D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk,
Phys. Rev. 126, 540 (1962).

V1 ~l ~2 ~8 b1 b2

g2 —ua V2—a8 bs —b4 ——0.
b2 —b1 b4—b3 V3—c
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These equations may be solved analytically without
making any further approximations to yield the dis-
persion curves in the central plane of the Brillouin zone.
For example, when k=0:

8]=82= 83=84= 85= 86= —4J~gg,

b2= be= b4= —6Jg~,
c=c =—8Jg~, P;;=2bi, gspH=Za, gaIsH=Z~.

Making these substitutions in (16) we find (Ui+4Jiiii)
X (&s+4Jss)(Vs+8Jzg) =0& so that

&"s= I12J~n(Ss,+Sii,)—16A~S~—Z~ l)

Atpi=k&p= l12J~ss~ 8Jiis(SIi~+SIis)+ZIil.

(18)

If the second two rows of (15) are added to the first row
and the 6rst column subtracted from the second column
(15) takes on the form

Ao)—Z~ 0 AG) —Zg
2atss, App+2bis~ —Zn+2at(sa, +Sii,) 2bgS~,

2bl(SBg+SB2) ZA

This is immediately solved to give

ftcps
l
12J~—as~ —8 Jsa(sa, +Ski,)+Zii l )

&«= s I Z&+Zs+2bi(sa, +Sap S&)+(EZ& Zis+2b—t(ss,+Ss,—Sg)j'+8b„sg(Z„—Zii))'is l, (2())
&~s= s I Z~+Z~+2bi(S~, +». S~) {—5&A —ZB+2bi(sg, +Sg,—Sg)js+8bisg(Zg —Zg))'~'l.

(These values are in disagreement with those of Kouvel's which may easily be seen to be in error by taking all of the
exchange constants equal to zero. ) If the Zeeman terms are disregarded or& vanishes, and therefore, represents the
acoustic mode. In the case that Sa,+Sr, is less than 2S~, (15) will give the lowest three branches of the dispersion
relation (if in addition Jgg, Jiiii are much smaller than Jgii, which is usually the case).

Qne of the most useful applications of this procedure is the investigation of the influence of finite exchange
interactions between like spins on the acoustic branch of the dispersion curve. To illustrate the effect we have
calculated the acoustic branch for k in the x direction and Jiin =0 and Jiiii= —Jgii/10. For this direction of k and0=0 the acoustic mode energies are given by

S~—2sit 1 (Jam

2 3&Jan

Jg~ ) S~+2sii 1 (Jiiii Jgg ) ' 2
S~ ly+ ——

l Sii+ S~ ly
—-SgsisP'

J~a 2 2 3u, s J„)
1/2

~here y= (1—coska/4), p=2 cos(ka/8)+cos(3ka/8)
and for simplicity Sn, =Ss,=Ss)S~/2. The numerical
results for Sg=2.50, 5~=2.25 in the two cases noted
above are shown in Fig. 6. These results agree exactly
with those obtained by Kaplan'P s' and for Jiin/Jz& (0
clearly tend to improve the agreement with the Wata-
nabe and Brockhouse"" measurements. It should be
noted that if 5+1 S+2 the factorization of the sixth-
order secular equation into two cubics can also be
accomplished for k in the s direction. Furthermore, the
roots are the same as those found for k in x direction
as indeed must be the case from symmetry considera-
tions. Thus, the comparison with the Watanabe and
Srockhouse experimental data is appropriate. A small
Jzz does not acct the dispersion curves appreciably
because of the sign alternation between the two places
where it appears in (21).

importantly on the heat capacity question. The original
difhculty was that heat capacity measurements on
magnetite" when interpreted on the basis of spin wave
theory gave exchange constants which were smaller by
a factor of about four than those obtained from the
Curie temperature on the basis of molecular field theory.
Similar discrepancies in other ferrites including the
system Xi~,Fe2+ 04 were observed by Pollack and
Atkins. " The latter results together with those of
Kouvel" for magnetite lie on a smooth curve when
plotted versus composition but this is not a stringent
test of Kouvel's measurements. The situation is now
somewhat worse since spin wave theory has been shown
to account in detail for the directly observed dispersion
curves using an exchange interaction much larger than
that required by the heat capacity data. This situation
is summarized in Table I. It has been suggested that

DISCUSSION

As a result of this careful study of the dispersion
curves in spinel structures a number of interesting points
have emerged. In accord with the original motivation
for this work major deviations of the acoustic mode dis-
persion curve from a k2 behavior are found. The actual
curves are in good agreement with the experimental
results of YVatanabe and Brockhouse"" and may bear

TABLE I. VaIues of the exchange constant.

Source

Curie temperature
Heat capacity
Dispersion curve

Exchange constant (eV)

1-6 X10 3

0.44X10 3

2.4 X10 3

s' S. R. Pollack and K. R. Atkins, Phys. Rev. 125, 1248 (1962).
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improvements in the interpretation of T, might give
better agreement" with the heat capacity result but
this would leave a serious discrepancy when compared
with the dispersion curve result. It seems more likely
that the heat capacity result is in error. This could be
due to errors in the measurement but this seems unlikely
especially in light of the work of Pollack and Atkins.
A second possibility is that the ordering which takes
place in magnetite below 119'K makes the comparison
of heat capacity results with those obtained from Curie
temperature measurements and neutron inelastic scat-
tering inappropriate. Such a difference can only be due
to a major change in the exchange interaction caused by
the crystallographic distortion below 119'K since it has
been shown in this work that the ordering has little
effect on functional form of the dispersion curves which

play the central role in the heat capacity calculation.
This point could be decided by means of low tempera-
ture neutron inelastic scattering experiments. Another
possibility which we believe has considerable promise is
that the laborious calculations of the heat capacity from
the dispersion curves have not been done suKciently
accurately. This point has been discussed in an earlier
paper" but for simpler cubic lattices. It is now being
investigated for the spinel structure on the basis of the
dispersion curves presented here.

The lack of fourfold symmetry in the constant spin
wave energy surfaces in ordered magnitite has also been
noted. It would be interesting, although perhaps very
diKcult, to verify the twofold symmetry experimentally
by means of inelastic scattering experiments at tempera-
tures below 119'K. Such low-temperature experiments
would also, as noted earlier, establish an exchange con-
stant of unequivocable appropriatness for comparison
with the low-temperature heat capacity result.

Finally, the effect of small exchange interactions
between like ions has been computed and shown to
improve the agreement with the inelastic scattering
data. The inclusion of J~~———0.1J~~ seems to be all
that is required. This is not expected to modify the heat
capacity results in a signi6cant way. Values of Jz&
smaller than 0.1J~~ do not produce significant changes
in the dispersion curves.
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A sites

82 sites

(1,3,1)
(3,1,1)
(3,1,1)
(2,2,2)
(2,2,2)
(1,1,3)
(1,1,3)
(3,1,1)

(1,3,1)
(1,1,3)
(1,1,3)
(2,2,2)
(2,2,2)
(1,3,1)
(1,3,1)
(3,1,1)

iVearest neighbors to a B~ site at (0,0,0)

A sites Set I (3,1,1) (1,1,3)
(1,3,1) (3,1,1)

Set II (3,1,1) (1,1,3)
(1,3,1) (3,i, i)

B~ sites (2,2,0)
(2,2,0)

B2 sites Set I (2,0,2) (0,2,2)
(2,0,2) (0,2,2)

Set II (2,0,2) (0,2,2)
(2,0,2) (0,2,2)

1Vearest neighbors to a B2 site at (0,0,0)

(1,3,1)
(1,1,3)
(1,3,1)
(1,1,3)

A sites Set I (3,1,1)
(1,3,1)

Set II (3,1,1)
(1,3,1)

B sites Set I (2,0,2)
(2,0,2)

Set II (2,0,2)
(2,0,2)
(2,2,0)
(2,2,0)

(1,1,3)
(3,1,1)
(1,1,3)
(3,1,1)
(0,2,2)
(0,2,2)
(0,2,2)
(0,2,2)

(1,3,1)
(1,1,3)
(1,3,1)
(1,1,3)

APPENDIX

Lists of nearest neighbors for computing spin sums.
The coordinates are given in units of a/8; the bar de-
notes a negative value. Where only one set is listed, the
second consists of the negatives of the 6rst set.

Nearest neighbors to an 2 site at (0,0,0)


