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A general method is presented for determining the wave functions of the conduction electrons in noble
metals containing point defect complexes consisting of interstitials, vacancies, and impurities. The wave
functions are determined by an integral equation derived from the Hartree-Fock equation. An approximation
scheme is developed for solving the integral equation taking into account the multiple scattering arising
from the interacting point defects and the scattering by the lattice distortion associated with the point
defects. The conduction electron density is derived in general form. The derived wave functions and the
clectron density can be used for a calculation of the interaction energy of point defects and the electric field

resulting from the conduction electron redistribution.

I. INTRODUCTION

T is important in many studies of metals, in partic-

ular, nuclear magnetic resonance,! self-diffusion,?
and annealing,® to know the redistribution of the
conduction electrons due to impurities, interstitials,
vacancies, and the lattice distortion associated with
these point defects. The electron redistribution arises
from the scattering of the conduction electrons by the
point defects and the lattice distortion. The point
defects and the displaced lattice ions represent an
ensemble of scatterers which give rise to multiple
scattering. In particular, the multiple scattering due to
close lying point defects must be taken into account in
determining the redistribution of the conduction
electrons.

Knowing the redistribution of the conduction elec-
trons, the electronic contribution to the interaction
energy of point defects can be calculated. In the past
the electronic interaction energy of a vacancy-impurity
pair and two vacancies has been calculated.?4" How-
ever, in these previous calculations no attempt has been
made to determine the conduction electron scattering
by using a treatment as good as the Hartree-Fock
approximation. All previous calculations used wave
functions neglecting the effect of multiple scattering
due to the interacting point defects and the scattering
due to the displaced lattice ions. Therefore, the obtained
results for the interaction energy of point defects, in
particular, if these lie close together, cannot be regarded
as being very accurate.

It is the aim of the present paper to develop, in
general form, a method for determining the conduction
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electron redistribution due to an ensemble of interacting
point defects in noble metals including multiple scatter-
ing by the point defects and the scattering by the
lattice distortion associated with the point defects. The
Hartree-Fock equation is used to determine the wave
functions of the conduction electrons in the imperfect
metal. Converting the Hartree-Fock equation into an
integral equation and approximating the total perturb-
ing potential by a superposition of perturbing potentials
due tosinglescatterers a system of coupled integral equa-
tions is derived for determining the scattered waves due
to the various single scatterers. A suitable approximation
procedure is proposed for solving this system of coupled
integral equations. The wave functions are determined
in detailed form in first order in this approximation
scheme. Thereby, the scattering potentials associated
with the single point defects are approximated by
spherically symmetric self-consistent potentials and in
the integrals of the coupled system of integral equations
the scattered waves are replaced by the scattered waves
arising from single electron scattering by the noninter-
acting point defects and displaced lattice ions. Multiple
electron scattering due to the displaced lattice ions is
neglected. The scattering potentials act on conduction
electron states which are approximated by normalized
plane waves.

The conduction electron density resulting from these
approximate wave functions is derived in general form
suitable for numerical calculations.

II. CONDUCTION ELECTRON WAVE FUNCTIONS

The system of conduction electrons in the metal con-
taining M point defects is described by the Hamiltonian
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where ¢ and j are summed over all conduction electrons
and m is the electron mass. ¥ describes the interaction
between the distorted lattice, including the M point
defects, and the conduction electrons. The last term
describes the Coulomb interaction among the electrons.
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The wave functions of the conduction electrons are
determined by the Hartree-Fock equation®

(HM)B—F oM = g M (2.2)
where
72
(HM)P-F= "2—V2+ UM+CY+4M. (2.3)
m

e? 1
AM oM (1) = —— Z<¢k,M(r2) —_
2 ® 712
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CM is the Coulomb potential due to the conduction
electrons and is given by

1
— o™ (12) ). 2.4
o <r>> (2.4)

CM(r))=e? Zk:< oM (12)

The exchange operator Az is defined by

(2.5)

@kM(f2)><Pk'M(U)-

To obtain a local and eigenvalue-independent operator, 4, is replaced by

e2

AM(1;)= —3[/d372 oM (11, fz)PM(fz,l‘l)/”lz]/PM(IIJI)

with
P (1,0) =2k o (1) oM (1) (v, 0=1,2).

AM is obtained by averaging 4™ over k.2 k and %’ are
summed over all conduction electrons. (HM)H-F
obtained from (H;M)E-F by replacing A:¥ by A,
is split into

2.7

(HMYE~F= FJ0{ AFJM, (2.8)

H® is the Hartree-Fock operator for the perfect crystal
and

AHY = AUM4-AUMHACY+-AAM (2.9)

represents the perturbing potential arising from the
M point defects and the displaced lattice ions. AU is
given by

AUM (D)= 3 u(r—1.), (2.10)

where ¢,(r—r,) describes the change in the lattice
potential due to the introduction of the point defect s
at r, in the perfect lattice neglecting the lattice distor-
tion and electron redistribution associated with this
point defect. The perturbing potential AU.M arises
from the lattice distortion associated with the M point
defects and is given by

AUM(1)=2 {V(r—1,M)—0V(r—1.)}, (2.11)

where the potential ‘O describes the interaction between
the ion u and the conduction electrons. r, and r”
denote the position of the ion x in the perfect lattice and
distorted lattice, respectively. The change in the
Coulomb potential AC* and the change in the exchange
potential A4 are defined by

ACH(r)=C¥— (0 (2.12)

and
AAM(r)=AM— A0, (2.13)
8F. Seitz, Modern Theory of Solids: (McGraw-Hill Book

Company, Inc New York, 1940).
°F. C. Slater, Phys. Rey. 81 385 (1951).

(2.6)

where the potentials C° and A° are referred to the
perfect crystal. Defining a Green’s function G by

{H'— }G(r,t k)=—8(r—1"), (2.14)

and the condition that G as a function of r has the same
behavior for » — 0 and » — « as the scattered wave
due to the perturbing potential AHY Eq. (2.2) is
rewritten as

()= () + / & G(r,r K AH(r) o (r'). (2.15)

The electron states ¢ on which the perturbation
potential AHM acts are determined by

(H'— &) p®=0 (2.16)

The integral in Eq. (2.15) describes the scattering of
the conduction electrons by the perturbing potential
AHM, 1t is required that the scattered wave

AsokM:/d"‘r'G(r,r’,k)AHM(r')<PkM(r') (2.17)

has the behavior

lif,% ApM(r) finite (2.18)
and
6ilc1'
lim Ag (r)~—. (2.19)
00

r

To solve the integral equation (2.15) the perturbing
potential AHM is expanded as

AHM=AH M+ (AHM— AH M)+ - - -
+ (AH M — AH M)+ (AHM— AHLM),  (2.20)

where the potential AH™ represents a close approxima-
tion of AH¥ and the potentials AHsM, ---, AH,M are
constructed from the wave functions ¢ obtained from
Eq. (2.15) approximating AHM by AHM, AHM, etc.
The corrections (AHM—AH M), etc., to AH¥ involve
only changes in the Coulomb and exchange potential.
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In order to get a rapid convergence of the expansion AC®and AA4° are the changes in the Coulomb potential
(2.20) AH™ must closely approximate AHM., It is and exchange potential due to the point defect s.
assumed that AH™ is closely approximated by A(HM)# is given by

M AHM =0 (r—1,")—0V(r—r1,0)
AHM(r)= é AH*(r—r1)+3 A(HM (r—1,0)), (2.21) +ACH (t—1,0))+ AU (t—10))  (2.23)

i’ M ;
where AH ¢ is the self-consistent perturbing potential due A(C )I.‘ and A(A¥)* are the che.mges in the CouIO{nb
to the single point defect s and A(HM)» is the self- potential and exchange potential of the conduction

: . L o
consistent perturbing potential due to the displaced electrons due to displacing the lattice fon y by v.=r,

. . . . —r,® from its regular lattice position. If the expansion
lattice ion u. A(HM)* arises from the displacement of Tu - o fyt
the ion u which results from the M point defects. AH® (2.20) cogverges rapidly, the term (AH —AH, )‘c.an
is given by be neglected for #n>no(M), where 7, is a small positive

integer depending on M. Then using Egs. (2.20) and
AH(t—1,)=¢,(t—1,)+AC*(t—1,)+AA*(r—r,). (2.22) (2.21) the integral equation (2.15) can be rewritten as

M

o (1)= o0 (r) + f &' G(r,r',k){ Y AHAY A(HM)A4-- - '+(AH,L0M—AHM_1M)}@cM(r’). (2.24)

s=1

Regarding AHM as a good approximation for AHM the integral equation is approximately solved by substituting
for ¢x™ into the integral the wave function resulting from approximating AHM by AH¥. The wave function
resulting from Eq. (2.24) by neglecting all corrections to the potentials AH* and A(HM)* can be written in the form

o ()= 000+ & Aoy E Ay, (2.25)

with
B(oy'= [0 GOLAT WO+ T A0+ A (=Lan), (29

and
A= [ GUr WA )+ E MDY (=120 (20

Equations (2.26) and (2.27) represent a system of coupled integral equations for the scattered waves A(g™)?, -+,
A( ™)™, A@rM)Y, etc., arising from the various potentials AH® and A(HM)#, The first term on the right in Egs.
(2.26) and (2.27) gives the contribution to the scattered wave A(¢x™)® and A(@YM)* as resulting from the Born
approximation. The additional terms arise from the subsequent scattering of the scattered waves A(gi)t and
A@sM)” by AH® and A(HM)x,

The system of coupled integral equations for the scattered waves is solved approximating A(¢x™)t and A’ by

M
Ale)t=Ag'+ 2 A(Aer®) 420 AlAgw) '+ -+, (2.28)
8 (t'54t) 3
and
AW =AM+ 2 A(AY) +2 A(Age )+ - -. (2.29)
wluso) 124

The scattered waves Agx! and Ay, are defined by

Apit= / @' G(r,r WAH' () { e (r)+ A (1)}, (2.30)

and

A= / &' Gr,t AEM () { 0 (r)+ A% (1) (2.31)
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A(Agrt") and A(Ayx#)t arise from the subsequent scatter-
ing of Agi* and Ayw* by AH*® and are determined by

A(A(pk")‘=/dsr’G(r,r',k)AH‘(r’)Apk"(r’) (2.32)
and

A(Agl/k“)‘=/d3r’ G(r,r' K) AH! (r") A (1))  (2.33)

A(Agt)* and A(Ayy*)® arise from the subsequent
scattering of At and AYy* by A(HM)? and are obtained
from Egs. (2.32) and (2.33), respectively, by replacing
AH* by A(HM)°. The higher terms in the expansions
(2.28) and (2.29) arise from higher multiple scattering
of the conduction electrons by the perturbing potentials.
The number of terms which have to be taken into
account in these expansions depends mainly on the
separations among the point defects and decrease with
increasing separations.

With the help of the expansions (2.28) and (2.29) the
system of coupled integral equations (2.26) and (2.27)
can be reduced to the set of uncoupled equations

M
Al =Ag*+ 2 A(Agt)®
t(t#%s)
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and

AW =AM+ 2. AlAd)”

o (05%u)
M
+ Z A(A¢kt)u+ T (/“‘:1:2)' ) ')' (235)
t=1

In order to get explicit expressions for the scattered
waves Agi®, AYt, etc., the Green’s function G defined
by Eq. (2.14) need be determined.

Approximating in H° the lattice potential by the
potential resulting from an uniform distribution of the
ion charges; e.g., neglecting in H° the structure of the
lattice potential, Eq. (2.14) is reduced to

2m
(V2+k2)G(r,r’,k)=22—6(r—r’), (2.36)
and then solved by'®
m ez‘k{x’—-r’[
G(t,t' k)= ——— . (2.37)
2rh? | r—1'|

which yields the required behavior of the scattered
wave A for r — 0 and 7 — o,

In the following, explicit expressions are derived for
the scattered waves Agi®, A(Agit)®, and AYy#. Assuming
spherically symmetric potentials AH* and approximat-

43 Alay)s+----, (s=1,---, M), (2.34) ing ¢° by a normalized plane wave, one obtains, as
# shown in detail in Appendixes A and B,
dr o 21N\
Ag*(R,)= ekTe Y] zl( ) V104, r,,0)2:° (k,R,), (2.38)
V1/2 1=0 4
and
dr .
A(A ‘pkl(Rs))s:: V1/231k'” Z Z 'Llahlmx Ylm* (0k,r¢,;¢k,r¢,) Yhm(lyR,,r‘,, S"R,,r,,)I{hlm8 (7“,k,R3). (239)
Lh m
V is the volume of the crystal. Y19, ¥im, and ¥, are spherical harmonics. 9 r,, and ¢x r,, are defined by
ﬁk:'tazﬁk —ﬂfm k.13 P Pry (240)
where the polar angles ¢y and ¢, and the azimuthal angles ¢ and ¢.,, are defined by
k= (k0% 0x) and r,=(r5,04,,,¢r,,)-
Correspondingly, the angles Jx r,, ¥r,.r,,, and eg,.r, are given. R, and 7, are defined by
Ri=|r—r1,|, ry=|r,—1,|. (2.41)

The functions ;° and Hj;.* and the coefficients oy are given bvaqs. (A8) and (B6) and (B4). Assuming that
AH*(R,’) tends rapidly to zero with increasing R/, it follows from Eq. (A4) that for large R, the scattered waves

Agr® and A(Aex?)® can be written in the form

ik -rs eikRs
Agi*(R,) R:M puz fr ) R, ’ -
and
eik Tt Rs gtk Es
AAgit(Ry))s = ol k,— g .
( gO]( )) Rsg—0 V1/2f< Rs> RS ( 3)

OL. 1. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955).
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where the scattering amplitudes f1° and f*s are given by

8Tm » f2+41\12
fr®=—— 5 (=) Valun,Oor®) (2.44)
h? =0\ 47

with

wit (k)= / dR, R/?j,(kR,/)AH*(R,)F*(k,R,'), (2.45)
and ’
R, 8rm »
f“(kyg)= —;‘ 2 2 anm Y in® Okor i Okor 1) Viem @ Ryur 0 PR 10) B0 (BT 22), (2.46)
& Lh m

with

‘Bha(k;rls)=/ dRsl2Rsljh (kRsl)AHs (Rsl)ahlm‘(rts,k,Rs’)- (2.47)
0

F® and anint are given by the Eqgs. (A6) and (B3).
As shown in detail in Appendix C, the scattered wave Ayy* arising from the displaced lattice ion u is given by

4ar ®
ek Y 3 Vy (ﬂR#-vM)SDRIMVV) Ynm*(ﬂk.Vm‘Pk,Vu)Ktanmn(vmk>Ru)7 (2~48)

Vl/2 t,n g,m

Ayt (Rn) =

where the function K;;.* is given by Eq. (C8). R, and the displacement v, are defined by
R,=r—r0 v,=rM—r0 (2.49)

Assuming that with increasing R, A(H* (R,/))* tends rapidly to zero Ay* can be written for large R, in the form

ik Tu R,\ ei*Rs
A\l’/c“(Rﬂ) Riw — fz“(v,,,k,;) 2 , (2,50)
# m "
where the scattering amplitude is given by
R, 8rm
f2“(vll;k7E) = —hT Z Z Ytq* (0k.vm ﬂok,Vu) Ynm(t‘/‘n,.,vm ‘PRu.Vu)'Ytgnm“ (‘Uy,k). (251)
t,ng,m

I

Yignmt 1s defined by
Yignm" ('”mk) =2 it (4m)'? (2?+ l)llzd(ﬁlt; (g" m)mg)/ dR,’ Ru,2Up(a—M)“('”mRu’)Flnm"(ky'”mRnl)jt(kR#l)- (2-52)
Lp 0

a(plt; (g—m)mg), U pg—my*, and Fi.,* are defined by Egs. (E3), (C5), and (C9), respectively.
The scattered waves A(Ay#)s, A(A(Agit)?)?, etc., can in principle be determined using the same mathematical
treatment as for the evaluation of Agi®, A(Agt)®, and Ayt
III. THE DENSITY OF THE CONDUCTION ELECTRONS
The density of the conduction electrons in the distorted metal containing M point defects is given by
pM (1) =2k o™ @i, @.1)

where % is summed over all conduction electrons. Approximating ¢ by

M
o=+ 2 Agt+ 2 A(A@)* 2 Ad# (3.2)
s=1 8,t(87#t) n
oM can be rewritten as
pM(l’)=p0+Aps's'+Apm's‘. . (33)

p° is the conduction electron density in the perfect metal. Ap**- arises from the single electron scattering by the
point defects and the displaced lattice ions. Ap™ - arises from the multiple electron scattering by the point defects.
Apss- is split into

Aps.s.= Apls.s.+ Apzs's'+Apas's'+Ap4s‘s'+Apas's', (34)
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with
M
Apyss-= Z {gokO*Agok“—}—C.C.'*‘Aﬂoks*A(Pks}1 (35)
s=1 k
Apzs..= Z Z {¢k0*Alpk”+C.C.+A‘l/kﬂ*A¢k"}) (3.6)
vk
Apgs's‘= Z Z Aﬁ@ka*A(ok‘, (37)
8,t(s#%t) k
Ap4s~5'= Z Z A\ﬁk“*A\[/ky, (3.8)
wv(u#v) k
and
Apas.s.= Z Z {Agok’*Alﬁk""*'C-C-}- (3.9)
s,k

Aps*s- represents the sum of the density changes Ap® due to the point defects. Aps*S- represents the sum of the
density changes Ap* due to the displaced lattice ions u. Aps®*, Aps*-, and Apss-S- arise from the interference of the
different scattered waves. Ap™ is split into

Ap™s-= Aplm.s.+Ap2m.s.+Apam.s.+Ap4m.s.’ (310)
with
Apime= 30 X {eA(Aei)tccl, (3.11)
8,t(s5%t) k
Aot = Y T {AarA(Aed)Hc.c), (3.12)
8,8 ,t(t%s) k
Moo= Y T {AWFA(Ae) e, (3.13)
u,8,t(t%s) &k
and
Apgms= > > A(AeH)TA(A ). (3.14)

8,t,87,t" (t4s,t'#s’) k

The various terms into which p™ is split are now evaluated by replacing the summation over k by an integration.
Using Eqgs. (2.38), (2.39), (2.48), and (E8) the following results are obtained:

4 M o 2041 rkF
Aoes=— % % [ dk BRI (kR et (BRI (R RL), (3.15)

Te=11=0 4w Jo

4 kF
ApgsS-=— Z . Z ('_ 1)"0("143 m(-g) (m_g)){inYQ(m—a) (0RM.VM:¢RuVu)f dk k2j”(kR“)Klg"m“*(v""k’R“)
T B tg,n,m,
q . 0
+C-C-+ I/vq(m—a) (0R,,,v,u §0Ru.Vy> Z dk szlal’y’”* (vﬂykrRu)Kﬂml’o’“(vnykyku) }; (316)

.9 Jo

» 1/2
Apgs= 3 > 16(__1)lil+ll+a( ; > o(la; m(—m)0)Y 1,* (FR,, 110y PR, 1es)

8,t(s#t) 1l ,a,m T

kF
XYy (—=m) (0Rt.r:,;¢Rz,r¢,)/ dk k2gls* (k:RS)Ql’t(kiRt)ja (khg), (317)
0

Ap4s.s.._-_— Z Z 16iﬂ7(ﬂﬂnl yay (a+7))Dam"(¢Vu-vv70vav) Yﬂ’Y* (ﬁrmyvn ¢l'wnvv)

wy ) 1,g,n,ml, g’ ,n' ,a,B,y

k7
X ng* (ﬂR#-Vm ¢R“,V,,) yl’ﬂ’ meVn ¢Rv,Vv)/ dk kZKlﬂnm“* (vﬂik7Rﬂ)Kl'0'"' (a+7)y(vwk;Rl')jﬁ (krwz); (3- 18)
0

and

Apss= 3 ( > 16(_>1)zil+ﬂg(ﬁln 5 Y (Y)Y o™ (P e, iy 1o, Vi) Vo (FRp, Vi OR V)

.0 \l,t,g,n,a,B8,7

kF
X Yla* (19R..Vu7¢Rs.Vu)/ dk kzﬂls* (k;Rs)KtM(A+7)” (‘Umk;Ru)jB (k7ns)+c-c~)- (3-19)
0
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The terms arising from multiple scattering are given by

Apy™s = 3 ( > 16(—1)”+"‘il+"+°‘< i (nol; mOm)o (hng ; m(—m)0)
8,t(s7#t)

l,mh,n,e,q

2a+1)1/2

47

kF
XYqo(ﬂRs,r,,,O)/ dk k"’Hm,ns(rts,k,Rs)j,.(kRs)ja(kr,s)-l—c.c.), (3.20)
0

Apym o= 3 ( > 16(=1)ritmrean e (nal; (m—B)Bm)Yag* Griw xior Prier i)

8,t,8" (s#t) \l,m,h,n,a,8

kF
XY n(m-p* ORyr 110 PR 11s) Yhm(l’Ra,l‘ta"oRav”c)/ dk kZthm’(’tsyk’Rs)Qn“'*(k,Rs')ja(kfts')+C-C-)’ 3.21)
0

Apgms = Z ( Z 16if+ﬁahf (y+a)0(ﬁ”f; v ('y-l—a))Dam" (ﬁDVu,nsﬂ’Vp,rmO)

B8, t(s#t) \l,g,n,m,f,h,e,B,y

X Yﬁ‘r* (01'”4,1'1«; ¢rw.rts) Yi,* (&Ru.vm ¢Ru,Vu) Vit (0Rg,rm §0Ra.n:)

kF
X/ dk k2th(‘Y+ﬂ)a(rt-?:kaRs)Klgnmﬂ* ('I),,,k,R“)jﬁ(krt“)'*‘C.C.), (3'22)
0

and finally

Apy™-s-= 2 16 (— 1)1 apman v mo (B (a_m)W)Dam’ll*(‘Prt’a',rmﬂr:’a'.rtsyo)

a,t,s’,t'(s#t,s’?fl')(l,m.h.l'.m'.h',a,ﬁ

* *
X YB(“—"L) (0ft'hfts7¢ft’l-”a) . Yh’m (ﬁRav"tu ng.nrts) Yh'm’ (0R3’|T2'.v’)¢Ra’-fl’s')

kp
X/ dk k2thma* (ns,k,Rs)Hhrym»*'(rys: ,k,Rsl)]'ﬁ(kh/ t)—}—C.C.). (323)
0

To determine the interaction energy of point defects and the electric field resulting from the conduction electron
redistribution, it is necessary to rewrite in p™ all expressions involving two coordinate systems in a form referring
only to one coordinate system. This can be achieved with the help of the transformations (D2) and (E4). The
obtained expressions are given in Appendix F.

IV. THE CONDUCTION ELECTRON DENSITY AT LARGE DISTANCES FROM THE SCATTERERS

The integrations over % in the formulas of the previous section need, in general, to be performed by numerical
methods. However, at large distances from the scatterers, e.g., the point defects and the displaced lattice ions, all
integrals over k can be evaluated analytically as follows. It follows from Egs. (2.42), (2.43), and (2.50) that the
wave function ¢ which is given by Eq. (3.2) can be written at large distances from the scatters in the form

. R 1 R MeikRu
e G &

where the scattering amplitude f™ is given by

=3 3 i (4m) " 20+ 1)"2Y 00 @ke.r0) fn(Rrar)e™ To{ fr+ fo'+ 2 )e"k'”’f“’}- (4.2)

t(t%s
Equation (4.1) yields the conduction electron density

1 exp[ — kR, (cosdx,r,—1)] M| 2
PMR) = o | dok] oA sl 4.3)
Ro—e0 41I"3 k<kp Ra Ruz

Now for large R, the first term in the integral contributes essentially only for cosdx,r,~1, e.g., k/k~R,/R,. One
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gets, therefore,

1
" (R,) it p°+2 -
Y3

4

Using the well-known optical theorem,

[ o=

one obtains

1
M — 0
PRy = +27r2R :

kP
N / dk k(M) x/pmroy R *Fe+C.C.—
0

kF
/ 0 B sy mat ot .
o 0
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1 kr
; f dk E Im (™) /k=Ro/R0
0

2R,
1
+ / P | (44)
41!'3R,2 k<kp
Im (™) k=Ro/ Ry (4.5)
(4.6)

Again, for large R,, €?¥*E< varies quite more rapidly than (f™)ix—r,/ r,. Therefore, the integral can be readily

evaluated. The result is

M — 0__
PMR) = o R
with

(M (k=kr))x/m=rore=—

32m2m

ﬁ2

=0

{(f (k= Fkr))x/e=ro R,* " Fot-c.C.},

4.7)

2 2 i (2nt+1)V2(2g+1)20 (ngq'; 000) ju (Rt o) jo(Rr750) Y 00 Re,106,0)
8 n,q,q

w f2]+1\1/2
X' Z (——‘—‘4 ) wl’(kF)Yzo(l?R,,R,,O)"}‘ Z ’yw,.ms(‘vs,kp)ng*(I’R,,V,,<PRa,V,)

™

X Ynm(ﬂR,,V,, ‘panl)+ Z Z

tg,m,m

i?(4m) "2 (2p+1) Panmo (Ipp'; (—m)0(—m))

t(t>8) L,h,m,p,p’

XBut(kryts) o (keres) Y pr m* @ Ra,ri0 PRor1) Vi (ORypur16y @R 1r10) [

(4.8)

For R, >r,, this expression can be simplified by putting R,=R,.

V. CONCLUDING REMARKS

The scattering of the conduction electrons due to
point defect complexes in noble metals has been
treated in general form by using the Hartree-Fock
approximation. The scattering potentials act on electron
states approximated by plane waves. The electron
scattering due to the lattice distortion associated with
the point defects is taken into account in determining
the wave functions of the conduction electrons. The
multiple electron scattering due to the point defects is
determined in first order. However, using the same
mathematical treatment multiple electron scattering
can be determined in higher order. To what extent
multiple scattering need be taken into account in
determining the electron wave functions depends on
the strength of the scattering potentials and on the
separations between the interacting scatterers. If the
scattering potentials overlap or lie very close together,
multiple scattering will play an important role. Also,
for example, multiple scattering has to be taken into
account in determining the conduction electron redis-
tribution resulting from a split interstitial when re-
garded as an extended defect consisting of a vacancy
and two interstitials lying symmetrically with respect
to the vacancy.

In the past it was thought that only the lattice
distortion associated with interstitials must be taken
into account in determining the electron redistribution
due to point defects. However, there exists now some
experimental evidence!s that the relaxation of the lattice
around vacancies is much stronger than expected
and, therefore, will have some effect on the electron
redistribution.

The perturbing potentials due to the point defects
have been assumed to be spherically symmetric. This
is no main limitation of the outlined method. It has
been shown in the case of scattering due to the lattice
distortion how the scattering by arbitrarily shaped
potentials can be treated.

The essential limitation of the expressions derived in
this paper arises from the neglection of correlation
among the conduction electrons and from the neglection
of the lattice potential in H° e.g., from using plane

11 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Parts I
and II.

2 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

18 Suggested by Professor D. Lazarus by means of recent
experimental results obtained by his collaborators at the Univer-
sity of Illinois.
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waves instead of Bloch waves for the unperturbed
electron wave functions.

It is possible to include in ¢™ or p™, respectively, the
effect of electron correlation by using many body
techniques. Also, it seems that the proposed treatment
of the electron scattering can be extended to Bloch
electrons. The scattering of plane waves can be regarded
as a good approximation if the scattering potentials
cover essentially lattice regions where the Bloch waves
can be fairly well approximated by plane waves.

1771

The wave functions and electron density which have
been derived in this paper will be used in a continuing
paper to calculate the interaction energy of point
defects.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor J. S. Koehler,
Professor F. Seitz, Professor L. Tewordt, and Professor
A. Kratzer for their support. The author is very much
indebted to K. Kliewer for many helpful discussions and
a critical reading of the manuscript.

APPENDIX A: DERIVATION OF Ay

The scattered wave Ag;® arising from the single scattering of the conduction electrons by the potential AH®
is given by

Am%Rg=/ﬁu@%xR”RgMAH«R0¢fagq (A1)
with

o= o’ A’ (A2)
Equation (A1) is derived in the same way as Eq. (2.17). The Green’s function G is determined by Eq. (2.14). It
is now assumed that AH® is spherically symmetric. To perform the angular integrations in Eq. (A1) G, as given by
Eq. (2.37), and ¢3® are expanded as

© 2” 1/2
G(R,R/ k)= z( ) Vo @nm,0)Ga (R R E), (A3)
n=0 47r
with
2imk  ( jn(BR)InD (kR,), R,<R/
Gu(Ry,Ry B) = ——X { (A4)
n* Jn(kRVha W (kR,), R,>R/
and
ek T o 201\ 12
o’ (Ry)=4r le( ) V100, r,,0)Fit (k,R;). (AS5)
yur izo \ 4r

The functions j, and 4,® are the nth spherical Bessel function and the nth spherical Hankel function of the first
kind, respectively. r, gives the lattice position of the point defect s. V is the volume of the crystal. The function
Fy2 is determined by
Ff(k,Rs)=jl(kRs)+/ dR,’ R,/*G;(R:,R,/,k)AH*(R,/)F*(k,R,") (A6)
0

which results from Eq. (A2) by using Egs. (A1) and (AS) and expanding ¢, approximated by a normalized
plane wave, into spherical harmonics. It follows from Eq. (A1) using the expansions (A3) and (A5) and Eq. (A6)

S etk o 2141\ 1/2
Ag*(Ry)=4m ) il( ) V1o (04,r,,0) 2% (,R;) (A7)
V1/2 1=0 4
with
le (k7RS) = Fl& (kyRs) - jl(kRs)' (AS)
To determine F;°, the Coulomb potential
s Rs/ — 0 Rs'
ACs(R)= eZ/d"Rs' "_Q_’f_(__), (A9)
l Rs“ Rs,l
and the exchange potential
e ‘p“(Rs,Rs') ] 2 lp()(Rs’Rsl) I ?
AH(R)= ——{ / PR (R R / R ] p°<Rs,Rs)} (A10)
2 |R—R/| IR,—R/|

need be evaluated by using Eq. (AS5). The density matrix p*(R,,R,’) is given by Eq. (27) replacing ¢z by ¢’
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p°(R,) is given by p*(R/,R,’). Using
1 »
p*(R,R)=—2 (2i+1)pi(cosdr,,r,)oi(Rs,RS), (A11)

72 1=0
with

kF
Pl (RS:R‘I)—_-/ dk kz{jl(kRS)jl(kRe’)'*'jl(kRS)ﬂla(k;Ra/)+916*(kyR8)jl(kRs')+ﬂla*(k,Ra)ﬂl‘(k;Ra’)}; (A12)
0
and expanding | R,—R,’|~! in Legendre polynomials, one obtains

4e? » kF L
AC*(R)=— 3 214+1)| dk k2 f dR,’ Ry>vo(Ro,R) (1 (ERS)* (k,R)) o4 (B, R (B,R.)}, (A13)
m =0 0 0
and
2¢?

Ad*(R)=—— X (21’+1)62(l’l"l;000)| / dRy'R,*yv+ (Rs,R)pr* (R, RS )pr (R, Ry) / i (2t+1)p:(R,,R,)
t=0

T Ly

—/ dRs,Rs’2'Yl”(RS)Rs,)Plo*(RnRsI)Pl'O (Rs:Rs,)/ Z (2t+1)pt0(RsyR8) }- (A14)
0 t=0
The function v, is given by

1 R3 v
71"(R51Rai)=—('—) ) R8<R8"
RS\R/

1 Ral 1
=_(_._) , R>R/. (A15)
R\ R,

ks is the Fermi wave number. The ¢(!')’l; 000) are Clebsch-Gordan coefficients.? p(R,,R,’) is obtained from
Eq. (A12) putting 2;°=0.
Fy* can now be determined self-consistently by expanding AC® and AA4¢ as

ACs= AC1’+ (ACz’—ACf')‘i‘ ceey (A16)
and

AA“=AA18+(AA28—AA1’)+' * . (A17)

ACy® and AA,® are determined from Egs. (A13) and (A14) by using a wave function approximating ¢* closely.
ACy* and AA4,* are determined from Egs. (A13) and (A14), using for ¢;* the wave function resulting from approxi-
mating AC® and AA4° by AC:* and A4,°. By continuing this process the higher terms in Egs. (A16) and (A17)
are determined.

APPENDIX B: DERIVATION OF A (Agi)*
The scattered wave A(Agy!)® is defined by Eq. (2.32) as

AAgst)i— / #'R; G(R, R/ KA (R)A s (B1)

To perform the integration the scattered wave A¢;* need be expressed in terms of R,. Using the addition
theorem for spherical harmonics and the transformation formula (D2) Ag;! is expressed in the coordinate system
(Rs,f‘?R.',‘pRO’) by

eik B
Agyt=4r yuz Z Z Z'l"‘hlmylm*(dk.rm K’k,rza) Yhm(ﬁkurm SoRaJu)ahlmt(nhk,Rs)’ (BZ)
IL,h m
with
2h+1 (h—m)! pretRe R32—ri,’—R¢ R +ri,2— R
ahim' (5,0, R;) = 9:‘(k,Rz)Pz"‘(——————)P "’(—————————)R:JR:, (B3)
d 2r:sR, (h+m)' |rta—Rq| 2r¢,Ry 2R,
an

_( 214+1) (I—m) (h+m) !)’/2

@h+1) (+m) | (h—m) ! (B4)
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Using for the Green’s function G the expansion (A.3), the angular integrations in Eq. (B1) can be performed.
The result is

eik B {7
A(Agrt)*=4ar ; 2 dlanmim® Ok, Chore) VamOr, ere @R, ri) Hitm® (70,k,R,), (BS)
Lh,m
with
Hun(r15,k,Rs) = / dR,’ R,? Gh(R,,R,\B)AH* (R, )ahim! (7¢s,k,RS’). (B6)
0

APPENDIX C: DERIVATION OF A~

The scattered wave Ay,* arising from the perturbing potential A(HM)* associated with the displaced lattice ion
u is given by

a0 (R)= [ R GRRAERAPBAR,), ()
with
vit= o0+ Agt. (C2)
To perform in Eq. (C1) the angular integration G, A(HM)#, and y;* are expanded into spherical harmonics as
G(R, R, k)= ;0 Vio@r, v, o, V) Vio* @r,r v, 0, v, )G (R, R B), (C3)
AEM (R =2 ¥V po@ry v, oRy VI Und*(RY), (C4)
with " i
U (R)= [ 40 A RAFT o Ony 30,3, (c3)
and .
vt (R))=4r p— l'%‘,'” Y 1m(OR,, V0 OR, V) YV nm™ Ok, v, 06, 7,) Frnm (0,8, RY). (Ce6)

Substituting these expressions into Eq. (C1) and performing the angular integrations one obtains

etk Ty
Ay#(R,))=4r —_ 2 YViu@r,v, R v) Vnn® @k,v,, 0, v,) K tonn (00, k, Ry, (€7
t,g,n,m
with
Ktanm"(mG;Rﬂ) ={V_“ ila(Plt; (g—m)mg)/ dR#' Rnlz Gt(RmRu’ak) Uv(a—M)"(Ru’)Flnmu (v,,,k,R,.’). (CS)
P 0

It follows from Egs. (C2), (C1), and (C6) that Fi..,.* is determined by
Funm v,k Ri) = jn(kR)+ 22 a(plt; (3_"1')7”5)/ dR) R)? Gi(Ru, R/ \B)U p(s—m)* (R) Finm* (v, R, R,). (C9)
t.s,p 0

To determine U (,—my* the potential A(H)* which is given by
AHMpE=0(x—1")—V(x—10)+ACH(r—1,0)+AAd4(r—19), (C10)

is evaluated as follows. Expanding U(r—r,) in a Taylor series around r, and assuming that U (r—r,?) is spher-
ically symmetric, one gets

o d=0(R,)
A(HM)p= 3 (v*)* cos*Ir,,v, 2 +ACrH-AA* (C11)
a=1 a
Using s
COS"‘t’R",V“-———' Z;} dg(“) Yﬁo(’l?g‘"v“,()), (C12)
with

ds(ﬁ) = /dﬂ COSaxyﬁO(xyO)) (Cls)
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Eq. (C11) can be rewritten as
A(EHM)r= 20 X (v#)°dg

a=1 B8 “"‘

d~0(R,)
Yﬁo(l’ku'v“,O)-“'AC“—i—AA“. (C14:)

AC* and AA* are now evaluated by using Eq. (C7). AC* is derived in the same way as AC?® in Appendix A. The
result is
kr 0
ACHR)=16¢ 3 oolg; (=) =) | *Vann Onsvugmin) [ db it [ RV 6R)
l,g,n,m,q 29+1 ] 0

X Klanmu* (”mk:RM’)"/q (RF’RI-‘I) +cctYym—p (0R,.,V,n ‘PRu.Vu)

—1)¢

kr 00
X 2 dk kz/ an’ RuIZKlal’a'“* (vmk:R;t')Knml’o"‘(’UmkyRu,)’Yq(RM:RM') } (CIS)
9" Jo 0
Using
4
pM(Rll; RMI) = Z Yta* (0Ru.vm ¢R,.,V,‘) Y%m (0R“',V,;, ‘PRM’,V;:)Ptanm” (RI-L)RM’)7 (C 16)

T t.g,n,m
with
kp

pronnt(Ru,R) = / dh E2{Ge(kR,) (kR o m, b (— 1)K et (., R') o (RR,)
0
+i"Ktanm"* (”mk;Rﬂ)jn (kR,") + Z Ky y'“* (vmkyRu)Knmt'a’“ ('l)“,k,R“') } ) (C17)
tl ,ﬂ,

and expanding [0*(R,,R,) ]! in a Taylor series in terms of Ap*(R,)/0°(R,,R,), one obtains for A4*

AA*‘(R“)= —é? Z Z "lanmg’n’mlepqu(ahn%a’-m) (oRu.Vw SDRMIV“)/ de" RM/2'YB(RM»R#')
0

l,g,n,ml,g",n" ,m' B,p,q
Ap*(R,)

X {Planmﬂ* (RmRul)Pl’ o'nm* (RM»RFI) (1  O(RuR.)
: : P (RM;R#)

te >ﬁpluﬂm0* (RM;RMI)Pl’a’n’ m’O(Ru;Ru’)
_ _ X[ (R.R)TY, (C18)
where the coefficients ngnmgr o™ #?¢ are given by

32 (—1)o+m—m’
ngnmg’n'm,ﬂpq=_—' —————0'(71:’6”; m, ('m"‘ml)'m)‘f(t’ﬂp: g, (m-—m/) (gl+m—ml))

T 28+1
Xo(tpg; g(m'—m—g) (g+m'—m—g)). (C19)

From Egs. (C.14), (C.15), and (C.18) it follows that

Upg (R,‘) = (qu"(Ru>)1+ (qu"(Ru))f%‘l'(qu“(Ru))% (CZO)
with

w ded (R“)
(qu"(Ru))lzao.q > ('U“)adp(a) ) (CZI)
a=1 dR“a
— 1)” ) ) kr 0 .
(Wpe®y=16¢ T~ o Crlps (g4 (00 [ e [ aRY R ER K G R)
g 0 0

kp 0
Xvp(RwR) e+ 2 dk k* / dR,/R/* K 150" (v,k,R,")
.9 Jo 0
XK n(atorve™ (0uk, R )Y s (R4, R)) }7 (C22)

and
(qu“(RM))sz- 62! 1 86,0 ﬂqnmg:w""ﬁ“’/ dR“/ R“/27ﬁ (RmRnl) [Planm“* (RM;RuI)Pl’n'n'm'"(RmRM,)
Jg,m,m,l g’ 0! m’ Be, 0 ]
( —_ [dar, A0 (R)—+ ]
X\ .66 Jg+m —g'—m™ / QY IR,V s PRV, Ap* - )
»,e0q,9+ g po (R",R,.) Pq Ry, Viy PRy, Vi "

- Plﬂnmo* (RmRu')Pl’ g'n’ m® (Ru;Rul)ap.quv g+m/—g'—m ] [Po (RIHRF)]_I' (C23)
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The terms (Upe*)1, (Upd*)2, and (U pe*)s result from Av, AC* and AA*, respectively.
To solve now Eq. (C9) self-consistently, (U,s*)2 and (U,*); are expanded as
(Upd")e= (qu“)21+{(qu“)22‘ (qu“>21}+ Y (C24)

(qu")3= (Uzzq”)sl'i'{(Um“)s?'_ (qu")ﬁll}'i‘ Tt (CZS)

(Upg*)at and (U pg#)st are first approximations for (Upg*)s and (U pg®)s. (Upe*)#, (Upe*)s? are determined from Egs.
(C22) and (C23) by using Fi..* which results from approximating (U,¢#)2 by (U2 and (Upe®)s by (Upg*)st.
The higher terms in Eqgs. (C24) and (C25) are determined in the same way.

and

APPENDIX D: THE TRANSFORMATION H (RO ¢:) =H' (R, ¢s)
Using (see Fig. 1)

T16. 1. Tllustration to transformation (D1).

Ve 4
t s

0r=¢s, RZ=R2r2—2r, R, cosds, costds=(R;cosdi+7:s)/Rs, cosdy= (R, cosds—74s)/Rs, (D1)
the transformation H (R;8:,¢:) = H' (R.,%s,¢s) is evaluated by expanding H and H’ in spherical harmonics. One gets

Ki(R)Py™(costs) =2 n @him(7es,Rs) Pr™(cosds) (D2)
with the coefficient functions ani» given by
2h+1 (lz—m) ! restRs -Rs2’— rtsz—RtZ Rsz+rtsz~Rt2
anm(rie,Re)= K; (Rt)Rtle( >th( )th. (D3)
27tsRs (h-l—-m) ' | 7ts—Rs| 2r;ng ZrtsRs
APPENDIX E: THE ANGULAR INTEGRATIONS IN Ap¥.
To perform the angular integrations in Ap®, the integral
J=/d9 Yllml*(l?rl.rm ‘Pu,rz)yhmz(ﬂmra) ‘Prl.fa) Ylama(0r1.ra: <Pr1,r3) : (El)
has to be evaluated. This is done by using the expansion?
Vi @ @) Y tymy @) =221 0 (dal; mama(mat-ma)) Vet ma) (9, 0), (E2)
with
QU41)2L41)\ 2
o (Lol muma (my+ms)) = (m) c(bilal s mama (mit+ms))e(lilsl 5 000), (E3)
4 (2141)
where the ¢’s are Clebsch-Gordan coefficients, and the formula®
Yin@0)= 2 Duwn! @B,0)Y 1 &, ¢), (E4)

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate
system. o is the azimuthal angle and 8 the polar angle of the new polar axis, to which ¢’ refers with respect to the
original polar axis. The Clebsch-Gordan coefficients are determined from?

(h+1a—13)!
¢ (lalala; mamapms) =ams.ml+m[ QU+ 1>mUs+zl~ 1) (lg-t Ta— 1) | (T ma) | (ly— 1) (g ma)

[(h‘f‘lz—' l3—1’)!(l1~ml—f)!(l2+’”’L2*"r)!
X (ls—laFmy+-1) 1 (I— li—ma+r) 1T, (ES)

1/2 _1 r
X(lz—’mz)!(la+m3)!(ls—'ma)!:| > =y

r o7l
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where the integral index r assumes only those values for which the factorial arguments are not negative. The
matrix D' (e,8,0) is given by*?

ith Dm’ml(a’ﬁ:0)= _im’adm'ml(ﬁ)y (EG)
wit
(_1)K[cos(ﬁ/2)]2l+m—m’—2K[_Sin(ﬂ/z)]m’-m—f-ZK
wl(8)= i—m) L) b= T2
el = LM =m0 8~ o S e ()

where the sum is over the values of the integer K for which the factorial arguments are greater or equal to zero.
Now the integral J is easily evaluated. One gets

J= 0'(131211 5 m3m2(m3+m2))D(m2+m3) mlll*(¢t2,ra,‘l,r2,r3,0)- (ES)
In performing the angular integrations in Ap™ with the help of Eq. (E8), the relationship

4 \1/2
Dt (@,8,0)=(——) Vi*(s, E9
(@6,0) QHA) (5,0 (E9)

is used.
APPENDIX F: FURTHER EVALUATION OF SOME TERMS IN Ap¥

To determine the interaction energy of point defects and the electric field resulting from the electron redistribu-
tion all terms in Ap™ need be expressed with respect to one coordinate system. In principle, this can be easily
performed by using the transformation formulas (D2) and (E4). The following results are obtained :

kP
Apgts-= z Z All'amhqu@m)*(gnnrm ‘!’Ra.rrs)/ ak kzﬂls* (k)Re)ahl’ mt(rtS)k:Rs)ja (krt3)1 (Fl)
0

8,t(s%t) 1,1 ,0,m,h,q

with
2a+1\12
Aa™re=16(—1)HmjH+ay,, m<—41r—) o((Wa; m(—m)0)a(klg; mm(2m)); (F2)
Apgss-= Z Z Z Blanml’a’n'aﬂwhﬂ”qu(u”—f) (‘9Ru.Vm¢Ru'rvu)
) Lg,n,m,l,g",n a,B,7.f k0" q
kP
Xf dk k2Klgnm"* (vp,k,Ry)bhﬂ"l’ g’ n’ (at+7y) '('I)p,fy“,k,R,.)].ﬂ (krl’l‘): (Fs)
0
with

Blanm’ v a,n,o:ﬁ'yfha"q= 16¢# (_ 1)fa'(nﬂn, oy (a+7))a' (hlq 5 g” (_ f) (g”—' f))ahla” amn((an.Vnz’Vu,V"O)

d XDy g v (QOVr.r'mﬁV:.t-mO)val' (¢v1,r!u)0Vv,fru’0)) (F4)
an

deRrKl'a’n’ (at7) V(VV;k7R")

Do v o' wt (etry” (UnsT oy B, R) =

2h+1 (h—-g")!/"‘""‘RF
2ryR, (h+g'")'J,

rou—Rp|
(it 3 R2—1,2—R.}? (RA+r,2—R?
X Py9 Py . (FS)
zrmRv zrvuRll
Apg®e-= Z (l ﬂz . Cuamﬂ‘w'hqa'yq(”:,,_a;)(011,.:;4,)‘?12..1-,..)
8,4 4 g,m,a,8,7,0" kg,

X / ” dk szls*(k,Rs)bha’tuﬂ(d—%—”/)“(”m"uwk;RS)jﬂ(krus)'*“c-c-)y (Fo6)
with ’
Clignag?? "% =16 (—1)i+e (Bln; ya(y+a))anyo (hlg; g'a’ (§'+a"))Dy o (€., 1u Vu,106:0)
X Do ) (090,109,100 0) Y y™ @y, vier O, vi) 5 (F7)

kP
Apz’“'s'= Dlmhnaﬂh'quﬂ(ﬂlln.rm ‘pRs.ru)/ dk kZthmB(rtmk:Rs)
0

8.8’.t(s?£t.s?£a’)(l.m,h.n.a,ﬂ.h',q

Xah’n(m—ﬂ)sl*(rts,k;Ra)ja (kr“')‘l“C-C.), (F8)
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with
Diyma®®? 1= 16(— 1) 7B mt gy s n(m—pyo (nal; (m—pB)8m)
Xo(hh'q; m(m—B) 2m—B))Yag* @ ruyriey Prusres) 5 (F9)
Apam'“'=M't(”ﬂ)(l,g’n’m./'h,a'ﬁ.m"h,'v”'qE;,,nm,haﬁ“'”’"'ﬂ"qu(.,Jraﬂu)(&R,,,,,,qog,,,,,)
kF
X/ dk B2Hn(yra)® (Pesy By Rs)bhr g 1gnm™ (VnyTus, By Rs) 7 (krtp)+c.c.), (F10)
with '
Etgnmina®0'¥ 0" 1=16(—1)%"*Pasp(yraranigo @nf; ya(y+a))a(W'hy; g (v+a) (g +v+))Dan™ (@i, 58V rea0)
XDy ) (Vi eV 10 0) Dt ¥ (@rpa, 0P 5u0,116:0) Yoy * @rinsreey Orunr) 5 (F11)

Apgm-8-= Fimhvm h’aﬁm”h”qu(m”—w (19R..rm €0R.,r¢,)

a,t,a'.t'(s#t.s';ét’.s’#s)<l.M.h.l’.M’.h'.a.ﬁ.m”.h”.q

X f ’ dk k2Hninm® (10, , R)Qnr oo v e (o 51,7505,k Rs) o (Rrre t)“*‘c'c')’ (F12)
with '
Fromipr mer®Bm ¥ =16 (— 1) Hmitt U+ oprpr et e o a (B 5 (@— m)ma)a (b hq s m’'m(m’’+m))
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