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A general method is presented for determining the wave functions of the conduction electrons in noble
metals containing point defect complexes consisting of interstitials, vacancies, and impurities. The wave
functions are determined by an integral equation derived from the Hartree-Fock equation. An approximation
scheme is developed for solving the integral equation taking into account the multiple scattering arising
from the interacting point defects and the scattering by the lattice distortion associated with the point
defects. The conduction electron density is derived in general form. The derived wave functions and the
electron density can be used for a calculation of the interaction energy of point defects and the electric Beld
resulting from the conduction electron redistribution.

I. INTRODUCTION

' T is important in many studies of metals, in partic-
~ - ular, nuclear magnetic resonance, ' self-diffusion, 2

and annealing, ' to know the redistribution of the
conduction electrons due to impurities, interstitials,
vacancies, and the lattice distortion associated with
these point defects. The electron redistribution arises
from the scattering of the conduction electrons by the
point defects and the lattice distortion. The point
defects and the displaced lattice ions represent an
ensemble of scatterers which give rise to multiple
scattering. In particular, the multiple scattering due to
close lying point defects must be taken into account in
determining the redistribution of the conduction
electrons.

Knowing the redistribution of the conduction elec-

trons, the electronic contribution to the interaction
energy of point defects can be calculated. In the past
the electronic interaction energy of a vacancy-impurity
pair and two vacancies has been calculated. '4 ' How-

ever, in these previous calculations no attempt has been
made to determine the conduction electron scattering
by using a treatment as good as the Hartree-Fock
approximation. All previous calculations used wave
functions neglecting the effect of multiple scattering
due to the interacting point defects and the scattering
due to the displaced lattice ions. Therefore, the obtained
results for the interaction energy of point defects, in

particular, if these lie close together, cannot be regarded
as being very accurate.

It is the aim of the present paper to develop, in

general form, a method for determining the conduction
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4 I:.. C. R. Alfred and X. H. March, Phys. .kev. 103, 877 (1956).
' A. Seeger and H. Bross, Z. Physik 145, 161 (1956).
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electron redistribution due to an ensemble of interacting
point defects in noble metals including multiple scatter-
ing by the point defects and the scattering by the
lattice distortion associated with the point defects. The
Hartree-Fock equation is used to determine the wave
functions of the conduction electrons in the imperfect
metal. Converting the Hartree-Fock equation into an
integral equation and approximating the total perturb-
ing potential by a superposition of perturbing potentials
due to single scatterers a system of coupled integral equa-
tions is derived for determining the scattered waves due
to the various single scatterers. A suitable approximation
procedure is proposed for solving this system of coupled
integral equations, The wave functions are determined
in detailed form in first order in this approximation
scheme. Thereby, the scattering potentials associated
with the single point defects are approximated by
spherically symmetric self-consistent potentials and in
the integrals of the coupled system of integral equations
the scattered waves are replaced by the scattered waves
arising from single electron scattering by the noninter-
acting point defects and displaced lattice ions. multiple
electron scattering due to the displaced lattice ions is

neglected. The scattering potentials act on conduction
electron states which are approximated by normalized

plane waves.
The conduction electron density resulting from these

approximate wave functions is derived in general form
suitable for numerical calculations.

II. CONDUCTION ELECTRON WAVE FUNCTIONS

The system of conduction electrons in the metal con-

taining 3f point defects is described by the Hamiltonian

A2 g2

q s+. Ifsr(&,) +2 p (2 i)
2'

where i and j are summed over all conduction electrons
and w is the electron n~ass. t..' " describes the interaction
between the distorted lattIce„ including the 3f point
defects, and the conduction electrons. The last term
describes the Coulomb interaction among the electrons.
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The wave functions of the conduction electrons are C~ is the Coulomb potential due to the conduction
determined by the Hartree-Fock equation' electrons and is given by

where
(HsM)H —F~„M e ~ M

A2

(H M)H—F q2+P3f+CM+A M

28$

(2.2)

(2.3)
The exchange operator A~~ is defined by

(2 4)

(2.5)

To obtain a local and eigenvalue-independent operator, A&~ is replaced by

g2

A (rr) = —— d'r& p (rr, rs)p (rs, rr)/rrs
2

P(rr, r ) (2.6)

with

pM(r„, r„)=Qs rpsM*(r„) p3M(r„) (o, 33= 1, 2). (2.7)

A~ is obtained
summed over
obtained from
is split into

by averaging A&M over k.' k and k' are
all conduction electrons. (HM) H F,
(H3M)H-F by replacing A&M by AM,

(H3f) H—F—HO+ gHM (2.8)

B' is the Hartree-Fock operator for the perfect crystal
and

where the potentials C and A are referred to the
perfect crystal. Defining a Green's function 6 by

(2.14)

and the condition that t" as a function of r has the same
behavior for r —& 0 and r —+ ~ as the scattered wave
due to the perturbing potential f3.HM Eq. (2.2) is
rewritten as

@3M(r)= ip3o(r)+ d'r' G(r, r', k)AHM(r') ps (r'). (2.15)

(2.16)

(2.9)
The electron states yI,' on which the perturbation

represents the perturbing potential arising from the potential QB~ acts are determined by
JIE point defects and the displaced lattice ions. DU1 is
given by

~~ "()=2 4.( —.),
s=l

The integral in Eq. (2.15) describes the scattering ot
the conduction electrons by the perturbing potential
AB~. It is required that the scattered wave

6 rpsM d'r' G(r, r', k——)d HM(r') AM (r') (2.17)

lim d ysM(r) 6nite
~0 (2.18)

where I|I,(r—r,) describes the change in the lattice
potential due to the introduction of the point defect s
at r, in the perfect lattice neglecting the lattice distor-
tion and electron redistribution associated with this
point defect. The perturbing potential ~U2M arises has the behavior

from the lattice distortion associated with the 3II point
defects and is given by

~~3 (r)=Z {'U(r—ro )—U(r —r.')) (211)
and

llm kq&3 (r)~ (2.19)

where the potential 'U describes the interaction between
the ion p and the conduction electrons. r„' and r„~
denote the position of the ion p in the perfect lattice and
distorted lattice, respectively. The change in the
Coulomb potential d C~ and the change in the exchange
potential hA~ are defined by

ECM(r) = CM —C' (2.12)

DAM(r) =AM —A', (2.13)
' F. Seitz, Modera Theory of Sohds (McGraw-Hill Book

Company, Inc. , New York, 1940).' F. C. Slater, Phys. Rev. Sl, 3SS (1951).

To solve the integral equation (2.15) the perturbing
potential AB~ is expanded as

gHM gH M+ (gH 3f gH M)+. . .
+ (aH„M aH„1M)+ (f3HM AH.M) —(2.20)—

where the potential d B1~represents a close approxima-
tion of AB~ and the potentials AB2~, , hB„~ are
constructed from the wave functions q A~ obtained from
Eq. (2.15) approximating hHM by AHrM, hH&M, etc.
The corrections (AHs DH1 ), etc., to DH1 involve—
only changes in the Coulomb and exchange potential.
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In order to get a rapid convergence of the expansion
(2.20) hH, ~ must closely approximate d,H~. It is
assumed that AH~ is closely approximated by

AHi~(r) = Q AH'(r —r,)+Q A(H~(r —r„'))&, (2.21)

~C' and AA' are the changes in the Coulomb potential
and exchange potential due to the point defect s.
D(H~)& is given by

6(H~) i'= 'U (r—r )—'0 (r—r„')
+5(C~(r r„')—)&+A(A (r r„')—)". (2.23)

where hH' is the self-consistent perturbing potential due
to the single point defect s and h(H~)& is the self-
consistent perturbing potential due to the displaced
lattice ion y. A(H~)& arises from the displacement of
the ion p which results from the M point defects. AH'
is given by

DH'(r —r,)=p, (r—r,)+DC'(r —r,)+DA'(r —r,). (2.22)

A(Cir)& and A(A~)& are the changes in the Coulomb
potential and exchange potential of the conduction
electrons due to displacing the lattice ion p by v„=—r„~
—r„' from its regular lattice position. Ef the expansion
(2.20) converges rapidly, the term (AH~ AH„jr—) can
be neglected for e)»io(M), where no is a small positive
integer depending on M. Then using Eqs. (2.20) and
(2.21) the integral equation (2.15) can be rewritten as

pi~(r) = yi'(r)+ d'»' G(r, r', k) P AB'+Q A(H~)&+ ~ + (AH ~—bH i ) pi~(r'). (2.24)

Regarding AH1~ as a good approximation for hB~ the integral equation is approximately solved by substituting
for q~~ into the integral the wave function resulting from approximating AH~ by AH1~. The wave function
resulting from Eq. (2.24) by neglecting all corrections to the potentials dH' and A(H~)& can be written in the form

v~ (r) = v"(r)+ 2 ~(~~")'+2 ~(4 )", (2.25)

with

6(yP)*= d'»' G(r, r', k)AH'(r'){pit, '(r')+ P d, (qP)'+P AQP)i'} (s=1, ,M), (2.26)

and

~(A")"= d'»'G(r, r', k)~(H )"{v~'(r')+ Z ~(v~ )'+Z ~(A")'} (~=1,2, .") (2.27)

Equations (2.26) and (2.27) represent a system of coupled integral equations for the scattered waves h(&pz~)',
h(pre~)~, h(Pi~)', etc., arising from the various potentials AH' and h(H~)& The first te.rm on the right in Eqs.
(2.26) and (2.27) gives the contribution to the scattered wave A(pier)' and A(Pi~r)& as resulting from the Born
approximation. The additional terms arise from the subsequent scattering of the scattered waves A(&pz~)' and
A(P&~)' by AH' and 4(H~)&.

The system of coupled integral equations for the scattered waves is solved approximating h(pz~) ' and h(Pz~)~ by

(2.28)

&(fa )'=&fi'+ Q &(&Pi")'+Q &(~ye")'+ . (2.29)

The scattered waves Aqz' and hfz' are defined by

(2.30)
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&(6 ztzz, ")and 4 (hPz, ,")' arise from the subsequent scatter-
ing of Apt, ' and hpz, z' by izzHz and are determined by ~(~.") =~~ + 2 ~(~O.)

A(hyt, ') '= d'r' G(r, r', k) 6Hz (r') hit z, '(r') (2.32)

and

6 (tz Pzz) '= d'r' G(r, r', k) 6Hz(r') tz Pzz" (r') (2..33)

D(D zt i')' and d (DPz,z')' arise from the subsequent
scattering of 6 zt z,

' and APzz' by A(H~)' and are obtained
from Eqs. (2.32) and (2.33), respectively, by replacing
6Hz by D(H~)'. The higher terms in. the expansions
(2.2S) and (2.29) arise from higher multiple scattering
of the conduction electrons by the perturbing potentials.
The number of terms which have to be taken into
account in these expansions depends mainly on the
separations among the point defects and decrease with
increasing separations.

W'ith the help of the expansions (2.2S) and (2.29) the
system of coupled integral equations (2.26) and (2.27)
can be reduced to the set of uncoupled equations

~(v~ )'=~a~'+ 2 ~(~~~')'

+g 2 (Alp )'y, (S=1, , iv), (2.34)

+ 2 ~(~v")"+, (t =1,2, ") (2»)

In order to get explicit expressions for the scattered
waves Azez, ', tz fzz', etc. , the Green's function G defined
by Eq. (2.14) need be determined.

Approximating in H the lattice potential by the
potential resulting from an uniform distribution of the
ion charges; e.g. , neglecting in H' the structure of the
lattice potential, Eq. (2.14) is reduced to

2m
(V'+t'e')G(r, r', k) = zI(r —r'),

A

and then solved by'

G(r, r', k) =-
r rl—

(2.36)

(2.37)

which yields the required behavior of the scattered
wave Dq~'~ for r —&0 and r~ ~.

In the following, explicit expressions are derived for
the scattered waves Ayz, ', A(Aiez, z)', and Aft, z'. Assuming
spherically symmetric potentials DH' and approximat-
ing &I,

' by a normalized plane wave, one obtains, as
shown in detail in Appendixes A and 8,

4zr
t

2z'+1
~a~'(~.)= e'" "Z ~'I I'tag'~, R, ,0)f~t'(&,~.),v't' (2.3S)

A(&q~a'(R, ))'= e'" "Q P z'ozhtmXl'Lm (+k, r p , z)rIz'z~(&R„r„, qR„„,)Hhlm ( &rP,),
i, a m

(2.39)

V is the volume of the crystal. V~p, F~, and I'& are spherical harmonics. 8&,,„and p&, ,„are defined by

q~, .„=pv —q.„,
where the polar angles 8k and 6„„and the azimuthal angles q ~ and q,„are defined by

k = (k,A, yt, ) and rz, ——(r„,r't„„&p„,).

Corresponding1y, the angles 8&,R„DR, , ,„, and q»„,„are given. R, and r&, are defined by

E,=
/

r —r, /, r„= [rz —r, /.

(2.40)

(2.41)

The functions Qz' and Hz, z
' and the coefFicients n» are given by Eqs. (AS) and (86) and (84). Assuming that

hH'(E, ') tends rapidly to zero v.ith increasing E,,', it follows from Eq. (A4) that for large R, the scattered waves
hztzi' and D(Aztiz)' can be written in the form

gikZs

(2.42)

and
~ik r( ~i7c,Es

A(Ap '(R ))' = jzz~ k,—
Re~ao pl/2 l g

(2 43)

"L. I. Schiff, Qzzazztzzzzz Mechanics (NicGraw-Hill Book Company, Inc. , New York, 1955l.
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where the scattering amplitudes f&s and f" are given by

Sgrrtt ~ 2t+1) "2
ft (k) = ~ I

I"tp(8k, R„O)tot'(k),
A' ~=o 4x )

with

(2.44)

and

with

tot'(k) = dR, ' R,"jt(kR ')aH'(R ')Ft'(k R ')

R, Sgrgw

f"l &,—= — p p otkt I't *(teak, .„,qk, .„)l't, (2'tR„PR„)Pk (k,rt.),
k 'R,. A2

(2.45)

(2.46)

P&'(k, rt, ) = dR, "R,'j k(kR, ')tt H'(Rs')a«mt(r«, k,Rs'). (2.47)

Ft' and aktmt are given by the Eqs. (A6) and (83).
As shown in detail in Appendix C, the scattered wave Atilt

&& arising from the displaced lattice ion tt is given by

&f2"(R,)= o*' "Q p 1'«(&Rs,vs, pRs, vs) I'nm (t'tk Vsy gk, vs)+tgnm (vstktRg)r
Vf2 tn gm

(2.48)

where the function K«„"is given by Eq. (CS). R„and the displacement v„are defined by

R =r—r', v =r~—r'. (2.49)

Assuming that with increasing R„'A(HM(R„'))& tends rapidly to zero Af&& can be written for large R„ in the form

Otk rs ( R )OtkRs

Apk" (R„) = f2"I v„,tr,
Rs "V2 k RJR„

where the scattering amplitude is given by

( R„Sgrm
f2 ~

vtttlry p p 1 tg (~k, Vst ttgk, Vs) 1 nrn(v Rs, vttt rtRtt, vs)7tgnrn (vttrk).R„A2 t n g m

(2.50)

(2.51)

p« I' is dered by

ptg„"(v„,k) =Q 2t t(4tr)'t2(2P+1)'~2o(Plt; (g rN)gttg—) dR„' R„"Uv«&"(v„,R„')Ft„&(k,v„,R„')j t(kR„'). (2.52)
L, p

o (pit; (g rw)rttg), U„« —„&", and Ft„s are defined by Eqs. (E3), (C5), and (C9), respectively.
The scattered waves A(dPn)', A(A(Dqst)')', etc. , can in principle be determined using the same mathematical

treatment as for the evaluation of 6v k', 6(6q kt) ', and Asks

III. THE DENSITY OF THE CONDUCTION ELECTRONS

The density of the conduction electrons in the distorted metal containing M point defects is given by

pM (r) Q ~„Ms~„M

where k is summed over all conduction electrons. Approximating qI,
~ by

(3 1)

p~ can be rewritten as

VkM=VP+ P &uk'+ Z &(~uk')'+g ~4k"
e, t(aQt)

~M (r) —~P+g~s. s.+tIt~m. s.

(3.2)

(3.3)

p is the conduction electron density in the perfect metal. Ap" arises from the single electron scattering by the
point defects and the displaced lattice ions. 2 p

' arises from the multiple electron scattering by the point defects.
hp" is split into

Qtts s Qtt s s +tSttt s s +Qtt s s +Qtt s s +Qtt s s (3.4)
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Apl ' = Q Q f rpk Apk +C.C.+6(pk Apk }q

s=l Ip

(3.5)

and

Ap2" = p p f lpk'*Afkg+c. c +A.pks*hpks),
p, k

Z ~uk'*~uk',
s, t (sQt) Ip

~P4"'= Q Q &Pk"'&Pk",
P, v (ltPgR-"v) k

hpk" = Q Q fArpk*'Apkg+c. c.).
s,p

(3.6)

(3 7)

(3.8)

(3.9)

hp&". represents the suxn of the density changes Ap' due to the point defects. Ap2". represents the sum of the
density changes Ap& due to the displaced lattice ions p. Ap3", Ap4", and Ap ' arise from the interference of the
different scattered waves. hp ' is split into

with

and

+pm. s. pp m.s.+pp m.s.+pp m.s.+Zp m.s.

Z f V
' ~ (~ V ')'+ c c ),

s, t(s&t)

Ap2 ' = g Q fh(pk"*6(hyk')'+c c ),
s, s', t (tQs) Ik

P fag, *a(av, ') +c.c.j,
P, s, t (tgs) Ik

(3.10)

(3.11)

(3.12)

(3.13)

Qp m.S.

s, t, s', t'(tgs, t'Qs')
(3.14)

The various terms into which p~ is split are now evaluated by replacing the summation over k by an integration.
Using Eqs. (2.38), (2.39), (2.48), and (E8) the following results are obtained:

4 kr 21+1
~Pk" = ZZ- dk k'f jl(kR, )Ql'(k R,)+c.c.+Ql'*(k R )Ql'(k R ))

o

(3.15)

hpk" ———p p (—1)grr(e/q; m( —g) (m —g)) &"Fg( ) (8R,v„,kgR„V„)
l, g, n, m, g

dk k' js(kR„)Klg„m"'(v„,k,R„)

dk k'K, gl g s'(v„,k,R„)K„m, g s(v„,k,R„), (3.16)+C.C.+Fg l m—g ) ('8Rs.Vs) Ã Rs, Vs) Q
ll gr

(2n+1
p s.s.— P P 16( 1)lzl+l'+a~ o(lt'n; m( m)0)P—l *(8R„„„vgR,'„,)

s, t(sQt) l, l', a, m

X I l'(—rsl (~Rl, rr ~ rPRr, rrs) dk O'Ql" (k,R,)Ql'(k, Rr)j (kr&,), (3.17)

p, v(pAv) l, g, n, vn, l', g', n', a, P,y

164P~(rlPrl'; n7(n+v))D- "(v v„,v.gv, ,v„)Fp„*(&..„,v., v ..„,v,)

and

+~lg (+Rs,Vsr PRs, Vs) l Vg' (+Rr.vry kgRr, Vy) dk k'K«„""(v„,k,R„)Kl; &
+»"(v.,k,R„)jp(kr„„), (3.18)

16( 1)'4"p~(P« ~—n(V+n)) 1'pr" (+. .v., V ...,v.)1'r, (+R,v„,ÃR„,v„)
s,g (l, t, g, n, a, p, y

& 1'la*(&R.,v„,vgR„v„) dk O'Ql'*(k, R,)K«& +»"(v„,k,R„)jp(kr„,)+c.c. ~. (3.19)
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The terms arising from multiple scattering are given by

/r2n+1
/Ilpi ' = Q Q 16(—1)"+"i'+"+

~
nkt„o(md; tt«0«t«)o (hgtq; tt«( —tt«)0)

e, t(sgt) l, m, h, n, a, q 4~

X 7'„(BR,„„0) dk k'Hkt„*(rt„k, R,)j„(kR,)j (krt, )+c.c. ~, (3.20)

ts( s,ssts) Elm, k,, n, a, P

16(—1)"i'+"+ nkt O(t«nl; (g&t P)Pt—t«) I' p*(t'/„;, r„,q r„., r,.)

&pa-' =
, tsts( est) (t, g, n, m, f, k, a, p, &

16ir+Pnkf(y+ )a(Pgtf; yn(y+n))D "(rpv„,r„,t'/v„, r„,0)

X I pr («)rts, rt» prts, rts) I tg ((/'R VsrpsRts, vs) ~k(y+a) (+Rs, rtsr 'pRs, rts)

X dk k'Hkr(&+ )'(rt„k,Rs)K&gnm"'(v„, k,R„)jp(krt„)+c.c. It (3.22)

and finally

Qp m.8.— z I z
s, t, s', t'(sgt, s'Nt') El, ,mlk', 'm, '/, s,aP

16(—1)'i'+'+Pnkt„nk. l o(pl/'; (n —m)mn)D '"((o„...,„,P... ,.„,o)

g („qXI p(a—m) ( rt. t~, rt (grst&t, rt )' skms(~R rsrtsÃR rs)tsIV m( «R/'srt' ' s'PtR 'st'r)s,

To determine the interaction energy of point defects and the electric 6eld resulting from the conduction electron

redistribution, it is necessary to rewrite in p all expressions involving two coordinate systems in a form referring

only to one coordinate system. This can be achieved with the help of the transformations (D2) and (E4). The
obtained expressions are given in Appendix F.

IV. THE CONDUCTION ELECTRON DENSITY AT LARGE DISTANCES FROM THE SCATTERERS

The integrations over k in the formulas of the previous section need, in general, to be performed by numerical

methods. However, at large distances from the scatterers, e.g. , the point defects and the displaced lattice ions, all

integrals over k can be evaluated analytically as follows. It follows from Eqs. (2.42), (2.43), and (2.50) that the
wave function rpkM which is given by Eq. (3.2) can be written at large distances from the scatters in the form

ptk14)

y M(R) =
~

e'k'R+f
R~" Vi/'k R. )

(4.1)

where the scattering amplitude f is given by

fM p p « n(4 )i/«(—2««+1)i/«Ir (y 0)j (k& )ptk rss(f s+f s+ p ptk ~ rtsfts) (4.2)

Equation (4.1) yields the conduction electron density

pM (R ) p0+
4& k(ky

expt —«kR, (cos'Ok, R 1)j ~
fM

~

'
dtk fM +c.c.+

R. R,'
(4.3)

Now for large R, the first term in the integral contributes essentially only for cos8k, R.=1, e.g. , k/k = R,/R, . One
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gets, therefore,

p"(R.) = p'+B~ 2~2+ 2
dk k(f )u)a-R.~rr.&" '+c c

~2+ 2
dk k Im(f )a)r=R, )R

+ d'k If~I' (44)
t

Using the, well-known optical theorem,

one obtains

4m
d&

I
f~I'= —Im(f~)j, s=R.)rt.,

pM(R ) po+
g~—+oo 2 2g 2

0

dk k(f )qp, R.(z.e'"' "'+c.c. (4.6)

Again for large p„e'rs~~ varies quite more rapidly than (f )k&o=R.&lr, Ther.efore, the integral can b«eadily
evaluated. The result is

with

p~(R ) = po — ((f (k=kr))&p, n,~z,e'+r"'+c.c.),
B~&e 4~2+ 3

(4.7)

327(' 5$
(f~(k=k&))z~& R.~z,

——— p p i& "(2n+1)'l'(2q+1)"'a (eqq', 000)j„(krr,.)j,(k&r.~)I'o o(PR. , r...0)
$2 s nq q'

~ (2l+1~'ls
X Z I I

«'(kr) I'ro(&R. ,R )0)+ 2 v~o..'(v, )kr) I'~o*(~R. v)+R,.v,),
r~ & 4~ ) t, g, n, m

X Ram(8r4, v„rpR„v,)+ p p i~(4 )'7r'(I2p+1)'~' »rro (happ; (—rw)0( —m))
t(tge) l, h, ,~,y, p'

XPs (k~,r~,)j,(krrr. ) &, '(~R, , 9 R, „)~s„(&R, .„,rpR„„,) . (4.&)

For R,&&r„ this expression can be simplified by putting E,=R,.

V. CONCLUDING REMARKS

The scattering of the conduction electrons due to
point defect complexes in noble metals has been
treated in general form by using the Hartree-Fock
approximation. The scattering potentials act on electron
states approximated by plane waves. The electron
scattering due to the lattice distortion associated with
the point defects is taken into account in determining
the wave functions of the conduction electrons. The
multiple electron scattering due to the point defects is
determined in 6rst order. However, using the same
mathematical treatment multiple electron scattering
can be determined in higher order. To what extent
multiple scattering need be taken into account in
determining the electron wave functions depends on
the strength of the scattering potentials and on the
separations between the interacting scatterers. If the
scattering potentials overlap or lie very close together,
multiple scattering will play an important role. Also,
for example, multiple scattering has to be taken into
account in determining the conduction electron redis-
tribution resulting from a split interstitial when re-
garded as an extended defect consisting of a vacancy
and two interstitials lying symmetrically with respect
to the vacancy.

In the past it was thought that only the lattice
distortion associated with interstitials must be taken
into account in determining the electron redistribution
due to point defects. However, there exists now some
experimental evidence" that the relaxation of the lattice
around vacancies is much stronger than expected
and, therefore, will have some effect on the electron
redistribution.

The perturbing potentials due to the point defects
have been assumed to be spherically symmetric. This
is no main limitation of the outlined method. It has
been shown in the case of scattering due to the lattice
distortion how the scattering by arbitrarily shaped
potentials can be treated.

The essential limitation of the expressions derived in
this paper arises from the neglection of correlation
among the conduction electrons and from the neglection
of the lattice potential in H', e.g., from using plane

"P.M. Morse and H. Feshbach, 3fethods of Theoretical Physics
(McGraw-Hill Book Company, inc. , New York, 1953), Parts I
and II.

~ M. E. Rose, Elementary Theory of Angllar momentum (John
Wiley R Sons, Inc. , ¹wYork, 1957).

'3 Suggested by Professor D. Lazarus by means of recent
experimental results obtained by his collaborators at the Univer-
sity of Illinois.
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waves instead of Bloch waves for the unperturbed
electron wave functions.

It is possible to include in pM or p, respectively, the
e6ect of electron correlation by using many body
techniques. Also, it seems that the proposed treatment
of the electron scattering can be extended to Bloch
electrons. The scattering of plane waves can be regarded
as a good approximation if the scattering potentials
cover essentially lattice regions where the Bloch waves
can be fairly well approximated by plane waves.

The wave functions and electron density which have
been derived in this paper will be used in a continuing
paper to calculate the interaction energy of point
defects.
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APPENDIX A: DERIVATION OF A@I,'

The scattered wave Aqh, ' arising from the single scattering of the conduction electrons by the potential ~B'
is given by

Aq i,'(R,) = d'R, ' G(R.,R,',k)AH'(R, ') yi, '(R, ') (A1)

with
vi'= go'+&o a'. (A2)

Equation (A1) is derived in the same way as Eq. (2.17). The Green s function G is determined by Eq. (2.14). It
is now assumed that DH' is spherically symmetric; To perform the angular integrations in Eq. (A1) G, as given by
Kq. (2.37), and ipse' are expanded as

with

and

2m+1) 'i'
G(R„R,',k) = p

~

I'~o(+R. , R ',0)G (R.,R.', k)
4~ )

2imk j„(kR,)h„&'& (kR, '), R, (R,'
G.(R„R,',k) = — X

j„(kR,')h„~"(kR,), R,)R,'

eik rg 2)+ 1) 1/2

ooi, '(R,) =4r Q i'
~

Yio(di, , R„O)F&'(k,R.).
V'i' i=o 4~ 1

(A3)

(A4)

(AS)

The functions j„and h„") are the eth spherical Bessel function and the eth spherical Hankel function of the «st
kind, respectively. r, gives the lattice position of the point defect s. V is the volume of the crystal. The function
F&' is determined by

Fi'(k, R,) = ji(kR,)+ dR, ' R,"Gi(R»R, ',k)d H'(R, ')Fi'(k, R,') (A6)

which results from Eq. (A2) by using Eqs. (A1) and (AS) and expanding oo&, approximated by a normalized
plane wave, into spherical harmonics. It follows from Eq. (A1) using the expansions (A3) and (AS) and Eq. (A6)

with

&i& r, 2/+1
A(pi, '(R,) =4+ Q i' I'io (Bi„R„O)Qi'(k, R,)

t=o

n, (k,R,)=F, (k,R,) —j,(kR,).

(A7)

(AS)

To determine F~', the Coulomb potential
p'( .') —p'(R ')

AC'(R, ) = e' O'R,'
[ R,—R, 'i

and the exchange potential

(A9)

g2

AA'(R, ) = ——
2

f
p'(R„R, ')

f

'
d%.'

i R,—R,'i
i p'(R„R, ') i

'
p'(R„R,)— d'R, '

) R,—R, 'f
p'(R„R,) (A10)

need be evaluated by using Eq. (AS). The density matrix p'(R„R,') is given by Eq. (27) replacing ip&~ by pa'.
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p'(R, ') is given by p'(R, ', R,'). Using

with

p'(R„R, ') =—g (2l+1)pt (cosggg„t4. )pt (R„R,'),
~2 lM

(A11)

pg(R„R,') = dk k'( jt (kR,)jg (kR, ')+jg (kR,)Qg'(k, R,')+Og'*(k, R,)jg(kR, ')+0t"(k,R,)Dt'(k, R, ')}, (A12)

and expanding !R,—R,'!—' in Legendre polynomials, one obtains

4e' ~ leg

hC'(R, )=—P (2l+1)

and

dk k' dR, ' R,"yo(R„R,')( jt(kR, ')Qt'(k, R,')+c.c.+&g'*(k,R,')&g'(k, R,)}, (A13)
0

oo

5A'(R, )= — P (2P+1)c'(l'l" l; 000) dR, 'R, "yg- (R„R,')pg*(R„R,')pg. (R„R,') P (2t+1)p, (R„R,)

The function pp. is given by

dR, 'R,"yt (R„R,')pt'*(R„R,')pg' (R„R,')

1 tR,q"
yg" (R„R,') =

! !, R,&R,',
R, gR, P

'

1 tR, 'y"
R,)R. .

R, (R,)

g (2t+1)pto(R„R,) . (A14)
tM

(A15)

kf is the Fermi wave number. The c(l'l"l; 000) are Clebsch-Gordan coe%cients. " pto(R„R,') is obtained from
Eq. (A12) putting Qg'=0.

F&' can now be determined self-consistently by expanding AC' and hA' as

and
DC'= ACt'+ (AC2' —ACt')+

AA'= hA g'+ (AA2' —AA g')+

(A16)

(A17)

BCg' and AAg* are determined from Eqs. (A13) and (A14) by using a wave function approximating q»' closely.
AC2' and AA2' are determined from Eqs. (A13) and (A14), using for &pk' the wave function resulting from approxi-
mating AC' and hA' by ACg' and AAg'. By continuing this process the higher terms in Eqs. (A16) and (A17)
are determined.

APPENDIX B: DERIVATION Op 4(Lgpkg)*

The scattered wave h(Egg»g)' is defined by Eq. (2.32) as

h(Aykg)'= d'R, ' G(R„R,',k)AII~(R, ')Aq„g (B1)

To perform the integration the scattered wave Apl, need be expressed in terms of R,. Using the addition
theorem for spherical harmonics and the transformation formula (D2) Aq»g is expressed in the coordinate system
(R,',ttR, , q R;) by

with

e1R 'ft

. +pk —4'll p p t &htmF tm (~k, rg~q gpk, rg~) F km(+R~, sg~~Stgg~rgI)aktm (rts,,k,Rs)~
l, h na

(B2)

2k+1 (k—ttt)! 'g +~
akt '(rt„k,R,)=

2rtNRg (k1ttt) (gg —tg

(83)
(R '—rt, '—Rt') (R '+rgb R')—

Ilt (k,Rt)~t-!
' '

!~.-! !R,dR„
2r,Rg ) k 2rt,R, )

( (2l+1)(l—ttt)!(k+ttt)!)'"
+hl sr'

4 (2k+1) (l+ttg)! (k—ttt)!)
(B4)
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Using for the Green s function G the expansion (A.3), the angular integrations in Eq. (Bi) can be performed.
The result is

~ik. rt

A(kepis ) —4p g &AlmYlm (~tr, rs sspk, rs ) Ylsm(~Re, rs srpme, rse)Hhlm (rtesksRe)s
+11~ t,a, ~

(BS)

Hi, ) '(rg„k,R,)= dR, ' R,"Gi, (R„R,',k)aHe(R, ')agi r(rg„k, Re'). (B6)

APPENDIX C: DERIVATION OP chal„w

The scattered wave Af~& arising from the perturbing potential A(H~)& associated with the displaced lattice ion
p, is given by

AsP„&(R„)= d'R„' G(R„,R„',k)A(H~(R„'))Qp&(R„'), (C1)

with
$r"= rpi'+A@" (C2)

To perform in Eq. (Ci) the angular integration G, A(H~)&, and Pz" are expanded into spherical harmonics as

G(R„R„',k) = P Yre(&a„,v„,q R„,v„)Yre*(&a„,v„,e a„,v„)Gs(Rw, Rw', k),
t, g

~(H"(R.'))"= 2 Yne(&R„.v„,~a„.v„)U.e"(R')

(C3)

(C4)

with

and

U„, (R„')= dQ ls (H (R„')) Y„,*(r'la„.,v„,rpR„. ,v„),

sire" (R„')=4+ Q i'Y) (PR„,v„,spa„,v„)Y„~(8g,v„, rpg, v„)F( "(e„,kR„').

(c5)

(c6)

Substituting these expressions into Eq. (C1) and performing the angular integrations one obtains

with

ls sPI&(R„)=4rr Q Yr, (@R„v„,spa„,v„,)Y„„*(8g,v„,rpg, v„)Kr,„"(s„,k,R„),
t, g, e, m

Kgg„m&(V„skR„)=Q Prr(pl', (g m)tug) —dR„'R„"Gs(R„,R„',k)U„(, m)"(R„')F)wm"(e„,kR„').

(c7)

(C8)

It follows from Eqs. (C2), (C1), and (C6) that F&„&is determined by

Fi "(e„,k,R„)=j (kR„)+ P rr(pit; (s—m)ms) dR„' R„"Gr(R„,R„',k) U„~, &4(R„')F&„"(v„,k,R„'). (C9)
t, s, y

To determine U~~, &" the potential A(H~)w, which is given by

b, (H )w='U(r —r„~)—'U(r —r„')+BC&(r—r„')+AA&(r —r„'), (C10)

is evaluated as follows. Expanding 'U(r —r„~) in a Taylor series around r„o and assuming that 'U(r —r„o) is spher-
ically symmetric, one gets

Using

with

00 d 'U(R)
A(H~)w= Q (e")w cos&R„,v„+AC"+AA".

a~1 gg a

cos&R„,v„=Qp dp 'Ypo(BR, v sO)r

(C11)

(C12)

dp& ) = dQ cos xYpo(x, O), (C13)
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Eq.. (C11) can be rewntten as

~(& )"= 2 2 (v") dg"
a=l P

d 'U(R„)
0)+ACu+ AA u.Fl(0 (~Ru, Vu) (C14)

AC~ and AA~ are n

tzz — '"
8R„,v„,(pa„,v„) dk k'(—1)'

aCu(R„) =16(:&

R, Vpy PRp(, Vp)&K(g„„""(()»k,Ru') yg
kg.

R R ')+c.c.+7 g („g)

15)g
"' k Ru')K„„t.g u(vu, k,Ru' yg

' R "Ktgt g u'((t»k, Ru'&& Q dkk'
gt

Using

'x A. Thein the same way asC7). ACu is derived m e asow evaluated yb using Eq. C7 .

kg

dR„'R„"j„(kR„')

with

R'
n, m u ) u

' V )ptgum (Ru)Ru
4

tg u, u Fum(~Ru')Vu) tpRu', Vu gFtg (+RuVu) PR, u, vu umpu(R„, R„')=— (C16)

ptg- "(R.,R.') = 1z „,g „, ,
' ', kR)'

k ' —1 'z'K u(() kR„)j' kR'(t'm, g&u, t+(—1 z umtgdk k {jt(kRu) jt(k u gmu, 1 z umtg

R'k,R„)K.„,gu((tu, , „u*
() k,Ru)y„(kRu)+ P

t pu(R„, R„))

q g —'— Rp, Vpp PRp, Vp~q(g+ '—g' — )gg n m g ' n''g g
', n', m' P, y, qil, g, n, m, ,g, n,

~Au(R„) = —t,'

0

+z Ktgum ( „,

R o
'

for AA&p „' R one obtains for 6terms of Apu(R„)/pg(Ru, Ru), o
'

for 6a Ta lor series in terms o p

00

'in a ay
' '

terms o p

dR 'R )2y (R»Ru')

and expanding

(C17)

&Lp'(R»Ru)), (C18)
'»q are given ybwhere t e cth coefficients gg„g

32 (—1)g'+
, m'Pyq

Ugumg )l
I'

ttz —tl') (g'+ ttz —ttzo(N'Ptz; zzz tzz—
p

s. (C.14), (C.1S), and ( . thats, , d C.18) it follows thatFrom Kqs, , d

(C20)
with

R ' — '*(R R„')pt.g.„ R R )+'''
~

ptg. m—
'(R R„

g
.uR R„') 1—X p&gnm" p) g g n

d a(Ru)
()u)~d (~)(~gg" (Ru)) t=&o, g 2 (C21)

„'=16(,' ((zip; (q+g)( —g)q) z"
2p+1

R ' R "j„(kRu')Ktg„(g+g)
*

dk k' dR„'

and

Xy, (R„,R„')+c.c.+ P dk k' dR„'R„I2Egg) ggI" (()u, k,R„)

„,, ~ u () k,R„')y,(R„,R„'X+n(q+g) l'g'" &p~

(&.."(R.))z= —~' .u R R„')t „u*(R„,R„')pt.g.„. ~ R„,dR„' Ru"yp(R»Ru') ptg„u „, „' t. g „Rr(gumg'u'

0', n', m' P, e,t, g, n, m, ,g,

~ ~p"(R.)-+ .) I
d~Fgg (~Ru»u)9 Ru Vu) PX ~y, (.&q, g+m' —g' —m

.. g, g — —- p'(RuRu) j '.' R Ru')~ g,.~g, g+ g pu u -~-R Ru )pt g Ru' u t) g g — — pPlgnm p) y l'g n (C23)
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The terms. (U~,")i, (U~„&)2, and (U~,&) 3 result from An, hC& and AA&, respectively.
To solve now Eq. (C9) self-consistently, (U~,&)2 and (U„,&) 3 are expanded as

and
(Unc") 2= (Usa")"+((UBQ")2' —(Up.")~')+

(U ") =(U ") +{(U ")3 —(U .")3)+ ''.
(C24)

(C25)

(U„,&)2' and (U„,&)3' are first approximations for (U~,&)2 and (U„,&) 3. (U~,&)2', (U~,")3' are determined from Eqs.
(C22) and (C23) by using Fi " which results from approximating (U~,")~ by (U~,&)2' and (U„,")~ by (U„g)3'
The higher terms in Eqs. (C24) and (C25) are determined in the same way.

Using (see Fig. 1)

APPENDIX D: THE TRANSFORMATION H(Rg, 6&, rp&) =H'(R.P„y,)'

FIG. 1. Illustration to transformation (D1).

q, = q „RP=R 2jri82 2r„R, cos—8„cos6,= (Ri cos8i+ri, )/R„costi ——(R, cos8, r„)/R„—(D1)

the transformation H (R&P&, y&) =H'(R, P„y,) is evaluated by expanding H and H' in spherical harmonics. One gets

E,(R,)Pi"(co&,) =Pi, aqi (r„, R)P„"(cops, )

with the coefIIcient functions u&& given by

(D2)

oui (ri„R,)=
2k+1 (h —m)! "*+~'

2«.R, Q+m)! ~. ,-z,
~

2ft Et 2f t8E8
Ei(Rg)RgPi i Pi, idR. (D3)

APPENDIX E' THE ANGULAR INTEGRATIONS IN Qy~.

To perform the angular integrations in Ap~, the integral

ii~1 ( &1 &2) P&1 &2) i2~2(+&1 &3) Al &3) i8mR(~li &3) Pff, f3) (E1)

has to be evaluated. This is done by using the expansion"

Yi (8 p) Yi . (8 p) =pi K(lll2l mlm2(ml+m2))Yl( + i(0' p)
with

((2li+1)(2l,+1)
0 (lll2l mlm2(ml+m2)) =

~
c(lil2l; mim2(mi+m2))c(lilml; 000),

4m (2l+1)

where the c's are Clebsch-Gordan coefficients, and the formula"

Y.(~,~)= ZD- '(-,~,0)Y. (~,~),

(E2)

(E3)

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate
system. n is the azimuthal angle and P the polar angle of the new polar axis, to which 8' refers with respect to the
original polar axis. The Clebsch-Gordan coeKcients are determined from"

(li+ l2—la)!
c (lilglg., mim2mg) =5, ,+, (2lg+1) (l3+ li l2) ~ (la+ l2 ll) ~ (ll+ml) ~ (ll ml) ~ (l2+m2) ~

(li+ l2+ lg+1)!

&((l,—m,)!(ls+m, )!(l3—m, )!
—1/2 (—1)"

f(li+ 12—l3—r)!(li—m, —r)!(l,+m, —r)!
r r.l

X (l3—l2+mi+r)! (l3—li—m2+r)!) ', (E5)



1776 K. H. BENNEMANN

where the integral index r assumes only those values for which the factorial arguments are not negative. The
matrix D ~ '(a,P,O) is given by"

D„.„'(a,p,o) =e-'""d„.„t(p),
with

(—1)XLCOS(p/2)] '+ns sn' lrL —Sin(p/2)]~' ~+q&

d ~ '(P) =D l pm)! (l m—)!(i+m')! (l m—')!]'('P
(l—m' —E)!(l+m —E)!(E+m' —m)!E!

(E7)

where the sum is over the values of the integer E for which the factorial arguments are greater or equal to zero.
Now the integral J is easily evaluated. One gets

J=o(lrlqlt j mqmq(mtt+mq))D(nsrynst) snt
t (ttgrt, rstdrr, rs&0).

Pn performing the angular integrations in Ap~ with the help of Eq. (E8), the relationship

is used.

tt 4tr )'('
D ot(a,P,0)= I I

1't *(Pa)
(2l+1)

(E9)

APPENDIX F: FURTHER EVALUATION OF SOME TERMS IN 4y~
To determine the interaction energy of point defects and the electric 6eld resulting from the electron redistribu-

tion all terms in Dp~ need be expressed with respect to one coordinate system. In principle, this can be easily
performed by using the transformation formulas (D2) and (E4). The following results are obtained:

with
e, t (erat) l, l',a, ea, h, q

mhq Ws4 ll'a s q(2ss) (~ Rs, rts, tftR„rts) dk k'Qt'*(k, R,)(l&l „'(r„,k,R,)j.(krt, ), (F1)

~2a+1~ '('
A ~ ~"q=16(—1)t+~it+'+ at, l ~~

~

o(ll'a, m( m')0)o(—hlq; mm(2m));"& 4~ )
(F2)

gp s.s.

with

p, ,v(pQv) l, g, e, m, l', g', n' a,P,y,f,h, g",q

~lgnsnVg'n' s q(g" f) (t) Rs, vss—&PRs, rsn),aPy fhg" q TJ

ky

dk k'Etgn~"'(s»k, R„)bt g-t g .(a+» "(assr», ksR„)jp(kr»), (F3)

&lg l g
p" "' '=16ip( —1) O(rlprl" a'r(a+7))tr(hiq g"( f)(g" f—))at lg"D—am" (tf)V„V, q'fV, ,V, 0)

and
XDu" g' (tpvs, rs»(fvs, rs»0)Df g (O'Vsr, s&OV„r,,s)0)s , (F4)

2k+1 (h—g")! ""n+Rs

b~g-l u n (-+q)" ((t r" k,Rn)=
2,„R„(h+g")!

dRsRsEt g n (a+,)"(&s,k,Rs)

2r„„E„
r&pu"= Z I

s,tt tst, tgnapy;g', ,tt,,q, ,a', ,

yg'hqa' 'If'
+ltgnaP s q(g'+a') (t! Rs, rust tftR„rss)

(R '—r„„'—R„q~ t'R„q+r»q —R q~

(F5)2.,„R„) i

with

k~

X dk k'&t'"(k, Rs)btg «n( +»"(r„,r„„k,R,)jp(kr„,)+c.c. ~, (F6)

Ct, „Pg'~q '= 16(—1)'+ i'+Po (Pll; ya(y+a))at, tg o (hlq' g'a'(g'+a'))Dg g'((pv, ,.gv, , „,0)

'a ( a) (pvts rtsss+vts rsst0) ~p'Y (+rtn. vns (orss, vs) j

g~ m.s. z I z
s, s', t(srst, srss') (sl, sn, h, n,a, p, h',q,Dlnttsn 1 qp((7'Rs, rtst ttgR„rt )sdk k'II), l„*(rt„k,Rs)
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with

Dl h„p"'q=16(—1)"+ pi'+"+ nthmnh „(m p)o (rtnl; (m —p)pm)

X (hh'q; m(m —p)(2m —p))F p*(8„,,„«,(p„...„,); (F9)

4pq ' '= p ~ p Plg»mfha Fq(ypa+g")(t! Rerg ,&gspRe, rge)
&s, s, t(erst) )el, g, », mf, h,,a,P,y, g&, h&, g",q

with

kg
&h hqHrh(v+ )'(«s» Re)hh'g'lgam"'(Itg rge» Rs)j p(h«g)+c c

I
(F10)

Etgrmfshap"""'"' ——16(—1) ig+pnfh(y+a)nh tg.~(pnf & yn(y+n))a(h'hq; g"(7+n) (g"+y+n))Dam" (qrVe, «,&8Ve, r„,0)

XDg'(—g) (gPVe, r&ss&+V», res&0)Dg" g' ((g&r&ss, rge&t&)ree, rge&0)&Py*(t! rg», r«&&Pre&s, rge) j (F11)

Qp H1.8.—
e,tt's( /, gsAst', ,

' ss)e(sl, m, h, l', &a', h', a, p, m", h", q

PlmhVm'h' e q(m" —ss) (()R rgegp~ R&e&rte),aPm" A"qW

with

hy

dk O'Hhl s*(rg,»,R,)(4 m. h l m "(rg, ,r, „k,R,)jp(krg g)+c.c. ~, (F12)
0

p, „, „,-p-"h".= 16(—1)t+-qt+t'+pnht„nh. , „.nh-h. „-~(pll', (n —m)m )~(h"hq; m"m(m"+m))

XDam' (gprg& ~ &, rge&+rg&e&rge&0)D, m" m' (gprg&e&rge&()rg, &e&rge&0)Fp(a —m) (t! rg&gree&gpr, g&g, r«)& (F13)

2h"+1 (h"—m")!
e' Ih»m»h'l'm' Ifs'e&rt's'&h&Rs)

2r, ,R, (h"+m")!

ver h+&e

, &I'a—&el

pR,'+r;, ' R-
Hh. l m "(rg s,k,R, )Ph

2r, ,R,


