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electrical glow curves reported by Van Heyningen and
Brown."These workers observed a number of current
peaks during the warming of nominally pure AgC1
samples which had been illuminated at liquid helium
temperature. They attributed these current peaks to
the thermal release of electrons from traps. Although
some of the electron traps appeared to be caused by
strains, the exact nature of the traps was not deter-
mined. Presumably some of the traps could be instrinsic
and others could be caused by impurities. In our experi-
ments, nominally pure AgCl samples were continuously
illuminated with blue light from a Hg lamp as the

' R. S. Van Heyningen and F. C. Brown, Phys. Rev. 111, 462
(1958).

samples were cooled from room to liquid nitrogen tem-
perature in about 2 h and then quenched to helium
temperature in less than 2 min. In other experiments,
samples were continuously illuminated at liquid helium
or nitrogen temperature for 10 to 30 min with either
blue light from a Hg lamp or with white light from a
tungsten filament lamp. No EPR signals were seen which
could be attributed to the illumination. Also, there was
no apparent coloration of the samples after these ex-
periments. There exist at least two possible explana-
tions for these failures. First, the electrical glow curve
technique is several orders of magnitude more sensitive
than EPR in the detection of electron traps. Second,
there was no dc electric field applied during the illumi-
nation to help prevent electron-hole recombination.
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A general method is proposed for determining the equilibrium configurations of single lattice point defects
and complexes thereof. The equilibrium configuration of the lattice containing impurities, interstitials, and
vacancies is determined by using a variational approach minimizing the energy of the crystal. The energy
of the crystal is explicitly expressed in terms of the displacements of the ions. It is assumed that the energy
of the system of ions, including the point defects, arises from two-body interactions. The energy of the
system of valence or conduction electrons is derived in the general form from a Hamiltonian including the
coupling between the distorted lattice and the electrons. The wave functions of the valence or conduction
electrons are given by an integral equation derived from the Hartree-Fock equation. The explicit dependence
of the wave functions on the displacements of the ions is obtained from the integral equation by using the
Born approximation. Using these wave functions the energy of the considered system of electrons is ex-
plicitly expressed in terms of the displacements. To apply the method, in practice the wave functions and the
crystal energy need to be evaluated explicitly.

I. INTRODUCTION

"ANY experiments' ' have been performed to
- ~ study the eGects of point defects in crystals. To

be able to check theoretically the interpretation of these
experiments it is necessary to determine the lattice dis-
tortion and changes in the distribution of the electrons
associated with the various point defects and complexes
thereof. In particular, it is of interest to determine the
equilibrium configurations and formation energies of an
interstitial, a vacancy, a close Frenkel pair (vacancy
plus interstitial), a divacancy, and a di-interstitial. In
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all previous calculations' ' of point defect configurations
the eGect on the lattice distortion arising from the re-
distribution of the electrons has been neglected. The
principal purpose of this paper is, therefore, to deter-
mine the lattice distortion by taking into account the
coupling between the lattice and the electrons.

The crystal is represented by a system of ions (each
ion consists of nucleus plus tighly bound electrons)
arranged in a static lattice and valence or conduction
electrons moving in a potential 6eld produced by the
electrons themselves and the ions. The lattice distortion
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produced by the introduction of point defects into the
crystal is determined by using a variational approach in
which the energy of the system of ions, point defects,
and electrons is minimized with respect to the positions
of the ions, impurities, and interstitials. The resulting
system of equations can be solved by iteration in a
manner proposed by Tewordt. ' The wave functions of
the outer electrons in the imperfect crystal are given by
an integral equation derived from the Hartree-Fock
equation. An approximation scheme which gives the
dependence of the wave functions on the displacements
of the ions is presented.

equations:

BE~/Bv, =0, (~=1, , j), (3a)

ggM pe
u~ "(r)+)—r.)

Bph Bv)+1

~ u)(')(r+, —r,)+ . . =0

Lb=1, , n(s); s=1, , Mj, (3b)

II. GENERAL METHOD

The energy of the disturbed crystal containing M
point defects is given by E~(v, ,v, , ), where the v,
are the displacements of the ions, impurities, and inter-
stitials from suitably chosen starting positions. The dis-
placements v, are determined by a variational approach
whereby the energy EM is minimized. The displacements
of the ions which lie suKciently far from the point
defects are small and vary slowly from ion to ion and
correspond, therefore, to an elastic displacement field. "
The elastic displacement field at r arising from M point
defects at r;, - ~, rM is given by

v(r) = Z v"(r—r ),
s=l

where v "(r—r,) is the elastic displacement field due to
the point defect s. v" is expanded in terms of the
elastic solutions u)')(r —r,) . u„('(r—r,) as

v(s)(r r ) p&( )u ( )(r r )+.. .+p ( )u (e)(r r )
(s= 1, ~

,N), (2)

where the constants P)(', . , P„(' are representing the
field strengths of the corresponding elastic solutions.
The elastic displacement fields u~(' - u "are ob-
tained from the derivatives of the fundamental integral
of the differential equations for the anisotropic elastic
continuum. " The u~('& . u„(' are elastic dis-
placement fields due to dipole, quadrupole, etc., forces
centered on the point defect s. The number e of these
elastic solutions increases with the size of the discretely
treated lattice regions V~, , VM around the point
defects 1, and 3f, respectively.

By means of relations (1) and (2), the energy Z~
becomes a function of the displacements v~, v; of
the ions, impurities, and interstitial. s inside the regions
V), , V))r and of the coefficients P)('), , P (~) of the
elastic solutions. The minimization of E~ with respect
to these arguments yields the following system of

"J.D. Eshelby, in Solid-State Physic, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 3,
p. 79."K. Kroner, Z. Physik 136, 402 (1953); and E'ontingumstheorie
der Versetsungen Nnd Jiigenspannsnsgen (Springer-Verlag, Berlin,
1958).

where j+1, j+2, . . . denotes the ions outside the
regions V&, ., V~. Equation (3b) can be simplified by
assuming that the distortion of the lattice is negligible
at large distances from the point defects. This means the
force (—BZ~/Bv„) acting on ion v vanishes for nearly
all ions v which lie in the lattice region whose distortion
is described by the elastic displacement field. The as-
sumption (BE~/Bv„=0) for—certain ions p corresponds
to a boundary condition guaranteeing the stability of
the disturbed lattice.

Equations (3a) and (3b) for the unknowns v, , , v, ,
P)(') .

, P„())r) are solved, in a manner as originally
proposed by Tewordt, ' by iteration performed on the
system of linear algebraic equations derived from
Eqs. (3a) and (3b) by approximating all forces
(—BZ~/Bv„) by expressions which are linear in the
displacements. At each step in the iteration process,
the coefficients of the linear algebraic equations are
calculated from the linear expansions of the forces
(—BZ~/Bv„) in the displacements of the ions, inter-
stitials, and impurities from their positions obtained in
the previous step. Thus, the equilibrium state of the
disturbed lattice is successively approached. To obtain
a rapid convergence of the iteration process, starting
positions approximating the equilibrium positions in the
disturbed lattice are chosen from which the displace-
ments are calculated. The accuracy of this method of
determining lattice distortion is improved as the size
of the discretely treated lattice regions V&, -, V~
increases.

It should be pointed out that the equilibrium state of
the disturbed lattice determined as proposed in this
paper corresponds, in general, to a relative minimum of
energy of the imperfect crystal. Therefore, various equi-
librium states of the disturbed lattice can be obtained
by choosing different starting positions. In this way it
is possible to investigate the migration of the point
defects in the lattice.

III. EXPANSION OF BE~/Bv„ IN TERMS OF
THE DISPLACEMENTS

The forces (—BEjr/Bv„) in Eqs. (3a) and (3b) need
be expressed as functions of the displacements v~,
This is done as follows: First, the energy of the imperfect



POINT DEFECT CONF IGURATIONS I N CRYSTAI. , S

crystal is written as the sum of three terms: between the lth and /th electron. Then E,jM is given by

E2r(v, ) =E~~(v, , . . .)
wj.t

+E2 (vg )+E, (v2, . ). (4)

=&i+&2+~2,

Vvp= Vv —&p. (6)

E&M is the nonelectrostatic interaction energy and E2M

is the electrostatic interaction energy of the system of
ions, impurities, and interstitials. E3M is the energy of
the system of valence or conduction electrons includ-
ing the energy resulting from the interaction between
these electrons and the imperfect lattice. Corresponding
to Eq. (4), the force (—BE~/Bv„) is split into three
terms which are explicitly expressed as functions of the
displacements.

The nonelectrostatic interaction between the two ions
v and p, , separated by a distance r„„' in the disturbed
lattice, is given by the scalar potential U„„(r„„').The
distance of the ions v and p, both lying in their starting
positions, is denoted by r„„.The displacements of these
ions are designated by v„and v„, respectively. Then
r,„' is equal to

/
rvv = rvp+Vvvr

with

The correlation energy is given by

Evorr = d f F(vl&lv2r' ' ')r

where Ji is assumed to be a known function of yI„.M.

The k, k' summations are over all valence or conduc-
tion electrons. The one-electron wave functions pI, M are
determined by the Hartree-Fock equation

(Hu )'0A. =0~01, , (16)

1
+2 —p (022 (r~.) q ~; (r2)

I

—
I 0 a "(r2) 021' (rl)) (13)

2 &,II f/2

The force (—BU„„/Bv„) acting on ion v due to ion p is with
expanded in a Taylor series in v„„. Summation over p
yields

A2

(H„M) F — q2+ WM+CM+ A M

2m

gE M

BV„

BU,„+
BU,„+ Vvvr

'

~rvp, curvy ~rvp

1
C3r(r ) ~2 Q(~„3II(r ) ~

I
~„M(r

g2
= ——p(0vt, (r2)

I

I 02„(r2))p2 (r~) (19).
2 r12

8 Bgvp
++v„„

~rvp curvy ~rvp~Vv
(Hg~)~ is split into

(BE2~/Bv„) is expressed in terms of the displacements
using the following procedure: The energy E&M is
split into

(2o)(H M)F H 0+gH M

where BI,' is the Hartree-Fock operator for the perfect
(9) crystal andEM E M+E M

is the Coulomb potential of the electrons, The exchangeIn the same way, (BE2 Bv.) is expressed in terms of
operator A&, is de6ned bythe displacements. If the potential due to the electro-

static interaction between the ions v and p is given by A„2r&,M(r, )
g„„(r„„'),one obtains

where E,&M is obtained by using the Hartree-Fock ap-
proximation and E„„M is the correlation energy. The
considered system of electrons is characterized by the
Hamiltonian

g2
H2r —P q 2+ WM(r ) y P (10)

2m z(lgt) pl~

where m is the electron mass and X is the number of
electrons. The potential WM represents the interaction
between the imperfect lattice and the lth electron at
r~. The last term describes the Coulomb interaction

(H~0 0~) ~„M— gH„M ~„0r

The solution is given by the integral equation"

(22)

q I~(r) = q q'(r)+ d'r' G(r, r', k)AH~~(r') p~~(r'), (23)

~ P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(Mcoraw-Hill Book Company, Inc. , New York, 1953), Parts I
and II.

AH(, ~ (W™ W')+——(C~ C')+ (A I,
~— A I,') (2—1)—

represents the perturbing potential arising from the M
point defects. Then Eq. (1'7) can be rewritten as
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where the Green's function is determined by

f H),0—e2}G(r,r', k) = —()(r—r').

B
X—y„(r'—r„)v,M(r') —~ ~ ~

Bf~

qA, is the eigenfunction of Hl, o.

The explicit dependence of the wave functions qj,~
upon the displacements v1, is obtained as follows:
The potential 8'M is given by

M

li "=Z.~.( —.')+ 2 ~.'( —.') (25)

=Z 4' (r r)+—2 4'.'(r —r )

(t)„(r—r„') is the potential due to the ion )(3 located at
r„' and P,'(r —r, ') is the potential due to the sth point
defect located at r, ' in the disturbed lattice. A Taylor
expansion of (YI)„and (3I),

' in terms of the displacements
v„and v„respectively, yields

v, . d'r' G(r, r', k)

B
X y, '(r' —r.)y M(r') —" . (27)

Br,

r„denotes the position of the ion p in the regular lattice.
Equation (27) can be solved by iteration. Denoting the
solution of Eq. (27) for v„=v,=0 byx), M and treating
in Eq. (27) the terms arising from the displacements by
using the Born approximation, qA,

M is given in first
order by

(28)
with

AX),M= —g v„d'r' G(r, r',k)

B—P v — y„(r r„)——
Bly

ill B
4" (r—r.)—' ' ' (26)

e=l

M—Q v, d'r'G(r, r', k)
e=1

Then Eq (23) can be rewritten as

v))M(r) = v)), '(r)+ d'r' G(r, r', k)

x(p[y„("-.„)-q„("-.„o)]+p q, ("—.,)
s=l

+LC"(")—C'(r')]+L~ M(r') —~ "(")]}

B
X g, '(r' —r, )X&M(r') —. . (29)

Br,

If necessary, this first-order Born approximation can be
improved by performing on Eq. (27) the iteration
process started with y), M as given in Eq. (28).

E,~M is in first-order approximation expressed as a
function of the displacements by substituting q»M,

Eq. (28), into Eqs. (12), (13),and (14).One obtains then

X q ()M) rPv„d'r' G—(r, r', k)
with

BE) BZ1 BZ2 BZ3
+ +

BVy BVy BVv BVv
(30)

BVy

BZg A2 B
X M(r) g2+ JISM

gv. 2m

t' A2

rrxrrr(r))+c. c. ~+~ rxx, rr(r) —-rr'+Wx
2m

8
hx2M(r) +c.c.

Iav„)
+(Xrrr(r)

BUy

BS™
cxrx(r))+c.c. ~+ rxxrx(r) rrxr (r)), (31)

r Bv,

= e2 g I
X&M(r~) X2 M(r2) — aX2.M(r2)X&M(r&) +c.c.

I

112 Bv

+I AXIOM(r, )X2.M(r2) —X)3 M(r2)
f32 Bv

1
+~ xr (r,) xr (rr) —rxxr (rr))+c.c.

BVy

3Xrrr(r, ))yc.c.)+, (32)
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and

e~ t(' 1 B
x)™(r))x),.~(rp) —x)~(rp) hx), (r)) +c.c.

I

2 )c»r k ryp Bvx

1 B

+((x, (r, )rrx,:. (r, ) —x» (r») kx» (r,) +c.c.
)

r~p Bv„

B 1
+((x»x(r,)»rx». x(r,) —»Xx»»r(r, )x», x(r, ) +c.c.

~

~V ~y2

1 B

+((x» (r, )X»,x(r,) —AX»x(r. ) r»X» "'(r,) +c.c. ~+ (33)
Bv

In Eqs. (32) and (33) only the terms up to the erst order in the displacements have been written down explicitly.
One obtains from Eq. (29)

ggx M

= —Q B.„d'r' G(r, r', k) (t „(r'—r„)x)„~(r')—
~V» 81'~

3f 8
d'r' G(r, r', k) (t)„(r'—r,)Xp~(r') — ~ (34)

8=1 8 l'g

and from Eq. (26)

8 vlf ()
-4 (r—r )— —Z B 4 '(r — )-'

81N e=i aire
(35)

Finally, (BF.„„/Bv„) will be expressed as a function of the displacements. The expansion of F, Eq. (15), in a
Taylor series in terms of the displacements yields

Bvg

fBFxl (BF)
dpr 1yp V„ I I + I I

(~=12" )
(BV)r) erg p » Bvr) v)=p

(36)

All forces contributing to (—BF. /Bv„) are now ex-

plicitly expressed in terms of the displacements. The
wave functions X~~ are determined as follows. The wave
functions obtained as solutions of Eq. (27) by neglecting
all lattice distortion, i.e., r„=r„', v„=v,=0, are de-
noted by I'&~. By making then the same approximation
which leads to Eq. (28), one gets from Eq. (27)

X„M Ir M+gI»„))r
where

AI'), ———Q (r—r ') d'r' G(r, r', k)

Ir M(p) ~„p+ Q g~„»r (40)

where the hq A,
' are the scattered waves due to the single

point defects acting independently. The effect of the
iteration process is to include multiple scattering in the
wave functions. Ay~' is defined as

hF~~ is the change of the wave function I"~~ due to the
lattice distortion associated with the starting positions
of the ions. Equation (39) can be solved by iteration
starting with

~PI = PI —PI,
8

&& ~(r~ r P) I „))I(r~) . . . (3g) where y), ' is determined from
Ic )

BI'],

v)), '(r) = v)),P(r)+ d'r' G(r, r', k)
I'q~= q),p+ d'r' G(r, r',k)

&& H.'(r' —r*)+IX"(")—~'(")j

(41)

X (E @.'("—')+LG~(")—GP(")3 +"A),'(r') —A)„. (r') j}v)q'(r'). (42)

+LA))))'(r') —AA, '(r') j}1'p~(r'), (39) (c'—c') and (A), '—A)p) are the perturbations in the
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Coulomb and exchange potentials due to the point
defect s.

The eigenfunctions pI, ' of III,' are the Bloch waves

q „i'(r)=N„(r k)e'"' (43)

which form a complete orthonormal set of eigenfunc-
tions with eigenvalues e„'(k). e denotes the energy
bands. The Green's function G(r, r', k), defined in Eq.
(24), is then given by"

where g is a positive infinitesimal parameter ensuring
that only an outgoing scattered wave is obtained. Sub-
stituting this Green's function and the Bloch wave p ~',
Eq. (43), into Eq. (39), the wave function I'i,~ is in

principle determined. However, in order to carry out an
explicit analytical determination of FA,

~ a suitable ap-
proximation procedure, corresponding to the considered
type of crystal, has to be developed.

IV. CONCLUDING REMARKS

After replacing the forces (—BE'i~/Bv, ), (—BE2i'/
Bv„), (—BE,i~/Bv„), and (—BE,.„~/Bv„) by their
linearized expansions, the system of Eqs. (3a), (3b) is
explicitlv expressed in the unknowns. By taking into
account the coupling between the electrons and the
lattice, the determination of the lattice distortion be-
comes verv complicated. However, some simplifications
can be introduced in performing the calculation. First,
the lattice distortion is determined by using as starting
positions the positions of the ions, impurities, and inter-
stitials which result from Eqs. (3a) and (3b) by neglect-
ing the forces (—BE,~~/Bv, ) and (—BE„,„~/Bv„)
Further, the determination of AX&~, Eq. (29), is greatly
simplified by approximating XI,~ by FI,~ at each step in
the iteration process performed on Eqs. (3a) and (3b).
As can be seen from Eqs. (28) and (29), this approxi-
mation is good if the displacernents are small. If the
point defects lie sufficiently far apart from each other
or if the Bloch wave FI,~ is well localized, as in ionic and
valence crystals, then those terms in 2 FI,~ which arise
from multiple scattering can be neglected. Assuming
that the potentials f(trir.) and —P, '(r —r,) vary rapidly
only within a small region around r,, and r„respectively,

the derivatives of these potentials resemble the Dirac
function and as such allow immediate solution of most
of the multiple center integrals occurring in the
calculations.

It becomes obvious from Eqs. (27), (28), and (29)
that for small displacements the corrections to pI,~
arising from the iteration process are negligible. The
Born approximation leading to Eq. (28) is valid if mul-
tiple electron scattering due to the displacements is
negligible.

So far, the outlined method for determining lattice
distortion is applicable to an arbitrary type of crystal.
However, to solve the linear system of equations for a
special crystal in practice, its coefficients need be deter-
mined numerically. This can be done by using explicit
expressions for the two-body forces describing the inter-
actions among the ions, impurities, and interstitials and,
further, by computing the energy of the system of
valence and conduction electrons, including its inter-
action with the imperfect lattice, by using suitable
approximations depending on the considered type of
crystal and, therefore, developed in detail from case to
case. In particular, to obtain from Eq. (44) an explicit
expression for the Green's function G(r, r', k), a suitable
approximation of the Bloch waves has to be chosen.

The formation energy of M point defects is given by

g M gM go

where A' is the energy of the perfect crystal. The inter-
action energy of M point defects is given by

(46)

where Ep' is the formation energy of the point defect s.
The volume change of the crystal due to the 3f point
defects can be calculated from the elastic displacement
field v(r), Eq. (I).
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