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Magnetostriction in Cubic Keel Ferrimagnets, with Application to YIG
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The magnetostriction of single-crystal yttrium iron garnet (YIG) has been measured from 100 to 450'K
by a capacitative technique in which the sample dilatation shifts the resonant frequency of an oscillator, and
by standard strain gauge methods. To analyze the data, the theory of magnetostriction in cubic insulators
is applied to the Noel model of a ferrimagnet. This theory permits evaluation of the individual magneto-
elastic coupling coeficients for each type of site (or sublattice) and for each symmetry of strain mode. The
values found are Be s&(a) = —9.70X10' ergs/cm', Be,s&(d) =8.95X10' ergs/cms, Be, s'(a) =5.67X10'
ergs/cm', Be, s (d) = —17.2X10e ergs/cm', where a and d refer to octahedrally and tetrahedrally coordinated
sites, respectively, and p and ~ refer to linear dilatations and shear modes, respectively; the subscripts on the
coe%cients indicate that these are the coe%cients of the lowest order symmetry polynomials, the higher
order terms being found experimentally to be relatively small. Appropriate averaging of the above constants
give "effective" constants in good agreement with the mean values found by other investigators. The
theoretical predictions of the temperature dependence of the magnetostriction constants h~ and h2 are in
excellent agreement with the observed values of tti, which has a minimum (~—2.1X10 ') near room
temperature, and of h& which increases monotonicaIIy toward zero with increasing temperature.

I. INTRODUCTION

'N this paper we present experimental data on the
~ - magnetostriction of yttrium iron garnet (YI( ) over
a wide temperature range, and we apply the previously
derived theory of magnetostriction in cubic insulators
to the Neel model of a ferrimagnet. The theory and
experiment are found to be consistent, permitting an
excellent fit of the observed temperature dependence of
the magnetostriction constants. This fit yields values
of the individual magnetoelastic coupling coefficients
for ions in each specific type of site, with each particular
symmetry of strain mode. It is, of course, these single-
ion coupling constants which are amenable to direct
analysis by crystal field theory.

In simple ferromagnets the magnetostriction can be
written as a function of the magnetization, as has been
noted by Kittel and Van Vleck, ' and as has been
analyzed in specific detail by two of the authors in a
paper' hereinafter to be referred to as I. In a ferrimagnet
the magnetizations of the several sublattices may have
di6'erent temperature dependences, and the resultant
magnetostriction curves may, thereby, show fairly
complicated forms. As one might expect, the magneto-
striction is the net result of the magnetoelastic couplings
of the separate magnetic sublattices to the crystal
strain, each contribution to the strain depending on
the sublattice magnetization by the familiar l(3+1)/2
law at low temperatures and by the corresponding
spherical Bessel function dependence at higher tempera-
tures. ' The theory, therefore, allows the relatively com-

* Supported by the Once of Naval Research.
' C. Kittel and J. H. Van Vleck, Phys. Rev. 118, 1231 (1960).
'Earl R. Callen and Herbert B. Callen, Phys. Rev. 129, 578

(1.963).' E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310
(1960).

plicated experimental temperature dependence of the
magnetostriction to be unraveled, and thereby yields
the separate underlying magnetoelastic coupling con-
stants. Over the enti. re temperature range the theoretical
curves agree with our experimental data for both
—hi(T), which rises to a maximum near room tempera-
ture, and for —hs(T), which falls monotonically with

rising temperature.
Consider the case of several sublattices, which we

number e= 1, 2 . .Then the Hamiltonian is the sum of
magnetic interactions Il, the elastic energy H„ the
anisotropy energy II„and the magnetoelastic energy
II,. The first three terms are given explicitly in I;
the magnetoelastic energy is assumed to be the sum of
terms for each sublattice

H, =Q„H„,(rt).
Each term II,(rt) is written in terms of phenomenologi-
cal magnetoelastic coupling coeKcients, precisely as in
I, where we need merely add the sublattice index;

e,(rs) = —P g 8;,to(ss)P e,' X '(rs). (2)
7i&

Here ts labels the irreducible representation (of which
only five are permitted), j labels the strain modes of
the pth representation, i labels the functions which
generate the tsth representation (so that s', goes from
unity to the dimensionality of I'„),and 1 labels the degree
of the spin operators. The quantity e;»7 is then the
amplitude of the ith strain component in the jth mode
set which transforms under I'„. X,"'(st) is a Tensor
Kubic Operator (TKO); a spin operator of the /th degree
in the basic spin operators S„S„,S„ the set X~~',
X2"' . - transforming as F„.In the term with a given
m the TKO depends on the spin operators of a lattice
site of the nth sublattice.



At a slightly more fundamental level, in which the
terms of the Hamiltonian refer to the individual ions
rather than to the sublattices, terms of lower symmetry
than cubic appear. However, the summation over the
various sites making up the given sublattice so combine4
these terms as to lead to a net Hamiltonian of cubic
symmetry.

Minimizing the free energy with respect to the strains
we obtain a solution completely analogous to that of I. +

cM
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(3)

Here E,"'((,„) is a Kubic harmonic (the classical analog
of the TKO) which depends on the direction of the sub-
lattice magnetization („.The quaiitity &'JJ&(r& (22)) is the
average value in the unperturbed density matrix of the
spherical tensor operator of degree l and order zero.

In the Neel model all sublattice magnetization direc-
tions ((22) are coaxial. Furthermore, for those TKO's
permitted by time-reversal symmetry, &X,& '(I)) de-
pends only on the axis of f(22) and not on its direction;
hence, this quantity is independent of the sublattice
index e. Then

where

c)"
(4)

Equation (4) is identical to that obtained in I, but the
temperature dependence of the 8; ((T), as determined

by Eq. (5), may be more complicated, of course.
At low temperatures the average value &'&(ii(r&o(22)) is

equal to the l(1+1)/2 power of the sublattice magneti-
zation, precisely as in the ferromagnetic case':

whence
&'JJ((r&e(n)) =2&2 '('+'&(2 T&(T

jg. P(T) =P„».P(22)2&2 1((+1&i2

At higher temperatures the l(i+1)/2 power law is
not valid. However, we have calculated' the classical
average &F&(r&') in the internal field approximation,
obtaining the result

I(+&is(& '(2&2(&))

&I'i(r&')= =&1+Vs(& '(2222))&

Itis(Z '(2NP))

where I& is the hyperbolic Bessel function and 2 ' is
the inverse of the I.angevin function. Equation (8)
reduces to the l(l+1)/2 power law as 202 approaches

4 This combination can be shown most readily by reducing the
full cubic group according to the site symmetry, and by labeling
the site functions in terms of their cubic parentage. Summation
over the various equivalent sites, related to each other by the
operations of the cubic group, then immediately couples the site
functions to restore cubic symmetry.' J. H. Van Vleck, J. Phys. Radium 20, 128 (1959).
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PIG. 1. Reduced hyperbolic llessel functions I&+&q2(z) vs reduced
magnetization, m(& =2(z), for l =2, 4, 6.

unity. The argument of the hyperbolic Bessel function,
2 '(2No), has the physical significance of f2II;„t/kT, where

p is the magnetic moment of a site and H;„~ is the molec-
ular field which acts on it. This field is actually a func-
tion of the sublattice magnetizations of other sublattices,
but when written in the form of Eq. (8) the result can
be applied to each sublattice simply by interpreting
mo as the resultant magnetization m of that sublattice.
All the underlying coupling of the sublattices are im-
plicit in that they have, in effect, already determined
m . Hence,

In Fig. 1 we plot Ii+1~2(Z '(202)) as a function of 2&2(&

for l =2, 4, 6. With these plots, and with the sublattice
magnetizations, m, known either from the suscepti-
bility using the Neel theory or by some other means
(nuclear magnetic resonance, Mossbauer effect, neutron
diffraction), one can then obtain the temperature de-
pendences of the effective magnetoelastic coupling
constants directly.

Although Eq. (4) for the strains is applicable to all
the k=0 (infinite wavelength) strain modes, both
acoustic and optical, in this paper we are only concerned
directly with the exIereal strains, those signified by
j=0 in our notation. These are the strains which are
measured as the external magnetostriction. The mag-
netostriction constants are defined by

bl
J21 Q l i 5i +2h2(| ll 25182+c.p.)+ ., (10)

where 1; and f; are the direction cosines of the magneti-
zation and of the measurement direction, respectively.
From reference I we recall that the magnetoelastic
coupling coeKcients are related to the magnetostriction
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II. MAGNETOSTRICTION OF YIG, EXPERIMENTAL

The temperature dependences of the saturation mag-
netostriction constants, h~ and h~, of YIG were measured
over the temperature range from liquid nitrogen to
450'K. The sample, a 0.250-in. sphere, grown by
Nielson, ' was prepared with four Rat surfaces cut along
the [001],[001],[110],and [110]directions.

Standard strain gauge techniques, introduced by
Goldman, 7 were used to measure the temperature
dependence of h2 over the entire temperature range and
the temperature dependence of h~ above room tempera-
ture. This method is schematically represented by
Fig. 2(b). Two strain gauges were mounted side by side;
one on the YIG crystal, R„and the other on a dummy
sample, R~. The gauges were, then, connected as part
of a Wheatstone bridge with large adjustable resistances
R,' and R~' in parallel with R, and R~. If the change in
resistance of the active gauge due to the strain of the
sample is compensated for by changing R,', the mag-
netostriction is given by

X=R,.AR, '/(R, ')sF, (12)

where hR, ' is the change in R,' and P is the gauge factor.

J. W. ¹ielson, Airtron Inc. , Morris Plains, New Jersey.
r J. E. Goldman, Phys. Rev. 72, 529 (1947)

Bo,s~(T), (11a)

egg�

(T)—crs (T) 2 X (4s )'

1 15~"'
hs(T)=prtr=-', Cs — —

~
Bo,s'(T). (11b)

2c44(T) 4s.l

Because the polynomials of Eq. (10) are not orthogonal,
they mix the various Kubic harmonics. This orthogo-
nality is the advantage of the magnetostriction coef-
ficients described in reference I. However, it will turn
out that in the particular case of YIG there appear to
be no higher order terms of substantial magnitude in
Eq. (10), and Eq. (11) is accurate to within S%%uo. Conse-
quently, knowing the temperature dependences of the
sublattice magnetizations and of the elastic constants
(which have only a slight temperature dependence) we
can compare the experimentally determined magneto-
striction constants with those found by means of Eq.
(11), in which we adjust the coefficients Bo,o"(I) to
obtain the best agreement.

Yttrium iron garnet is a simple Neel ferrimagnet, to
which the above theory should apply directly. It con-
tains two magnetic sublattices, with iron ions, respec-
tively, on octahedral "a" sites and tetrahedral "d"
sites. Consequently, there are just two adjustable coef-
ficients (one for each sublattice) for each of the meas-
ured magnetostriction coeAicients.

cg,gI..

Unfortunately, the method has the disadvantage that
at low temperatures the change in magnetoresistance of
the strain gauges with magnetic 6eld orientation becomes
large and not reproducible from one gauge to another.
It is not unreasonable to have a pseudostrain of

0.4)&10—' with these gauges at low temperatures. A
more direct method, although somewhat more dificult
because of bonding techniques, was used to measure
the small values of h~ occurring below room tempera-
ture. This method is depicted by Fig. 2(a). The sample
was bonded between two plates; a metal plate serving
as a support and an aluminum-plated silica disk serving
as one plate of a parallel plate capacitor. The other
capacitor plate was one face of a Be-Cu ring which was
placed around the sample. The capacitor was, then, part
of a free-running Hartley oscillator, whose frequency
was monitored by an electronic counter. For small
changes in length, the magnetostriction is simply pro-
portional to the change in frequency of the oscillator.
Taking into account the distributed capacity of the
leads, Cz, the magnetostriction is given by

81 2' 1+(Cg/C„) Af

I. Cs f
(13)

where e is the permittivity of free space, A the area of
the capacitor plates, C~ the value of the capacity, I.
the length of the sample, f the frequency of the oscil-
lator, and hf the change in frequency with strain. At a
frequency of 5 Mc/sec, a strain of 10 r produces an easily
detectable frequency shift of 10 cps. This method has
the advantages of eliminating the problem of magneto-
resistance of the strain gauges and variation of gauge
factor with temperature, while still permitting the
investigator to use relatively small samples. Room-
temperature values of the magnetostriction as a function
of magnetic field are shown in Fig. 3, for the held
parallel and perpendicular to the measurement direc-
tion, and for the measurement direction along the [001)
and [110).Saturation occurs below 2 kG, after which a
smail volume magnetostriction is observed. The values

N::,~S N 8+S
%~SAMPLE~& & OUMMY

(a}

FIG. 2. Schematic diagrams of methods used to measure mag-
netostriction. (a) Capacitative method; (b) compensated strain
gauge method.
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of hi and h2, to second degree in the magnetization
direction cosines, are given by

I I I I I I

h1

)H(8) trbl(0)q

~St (8) tr N(0) ~

& i,
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where [8l(8)/Ejt is the strain along the [001j direction
when the magnetic field is rotated in the (110) plane.
[M(8)/l js represents the strain along the [110]direction

between the measurement direction and the magnetic
field. Although complete symmetric curves of sin'8

were obtained at room temperatures, only the values of
8 (8)// for 8=0 and 8=~/2 are depicted in Fig. 3.

f h and h2 wereRoom-temperature measurements of,".i an
made on two samples, one grown by J. W. Nielson and
the other by J. R. Cunningham of the Naval Ordnance
Laboratory. The agreement was better than 2%. ' ' e
saturation magnetostriction, X„ofa p y y

~ ~ ~ f ol cr stal of YIG
prepared by Cunningham was —2.22)&10 ', which is
also within 2% of that calculated from the single-

crystal measurements.
The temperature dependences of hi and h~ are shown

'
e. Theln Fig. . 0 cF' . 4. Both coefFicients are small and negative.

quantity —
2 is—h larger than —hi and decreases mono-

tonically from about 8)&10 at liquid nitrogen tem-
b t 2)& 10 ' at 450'K. The coefficient —hi

2.1 10 'peaks near room temperature with a value of
All higher degree coe%cients have been found to be
less than 5% of ht and hs at room temperature.

I I
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Fxc. 4. Magnetostriction of single-crystal yttrium iron garnet
re. The calculated curves, shown by t eas a function of temperature. '

n data of Robertsso i ines, arel'd l based on sublattice magnetization a a o o
of his data.(reference . as e i9). D h d 1 nes result from extrapolation of

III. ANALYSIS AND DISCUSSION

To compare our measurements of ,T and h. T)
to the theoretical equations (11) and (9), we require
the temperature dependences of the sublattice magneti-
zations and of the elastic constants. To our knowledge,

ture, but it is to be expected that the elastic constants
vary by at most a few percent between 450'K and a so-

lute zero, an, ence,d h ce we neglect this variation an
employ the room-temperature values.

R b t ' h determined the VIG sublat tice magneti-o er s as
to 400'Kzations' "from liquid-helium temperature up to

f clear magnetic resonance. To compare
theor and experiment it remains only to substitute t e
sublattice magnetization data at each temperature into
the functional dependence of the reduced hyperbolic

esse unc
'

to adjust the two magnetoelastic coupling coe c

octahedrally coordinated sublattice and d to the tetra-
hedrally surrounded ions, the coupling coe%cients ar-
rived at in this fashion are

—.8
—i.2
—I.6

-2.0

[ioo].e-o

I lp 9-0

Bs,&'r(a) = —9.70X10' ergs/cm',

Bs s'r(d) =8.95X 10s ergs/cms,

Bo,s'(a) = 5.67 X 10' ergs/cm',

Bs,s'(d) = —17.2 X 10' ergs/cm'.

(15)

-2.4—

0 l 2 3 5
H (K~Locwuss)

3. Field dependence of. the magnetostnct1on of yttrium
t Th h th h gon al.'Iiet a't I'OOI11 teIilpera uI"e.

he [100j and I 110]directions, for the magnetic
(s= /2) t i,h, , afield parallel (8=0) and perpendicll~ar =& o,

ment directions,

This choice of coefficients yields the solid curves of

' A. E, Clark and R. E. Strakna, J.Appl. Phys. 32„1172 (1961).' (.". R berts Compt. Rend. 251, 2684 (1960).
izations of YII[.~ have also been esti-H esublattice agneti a

d h N 1

Ann. Ph s. (Paris)
i ma netization measurements an t e ee

251 2675 (1960)"deI. Solomon, Compt. Rend.
tempera uie ya ut . fues by Mossbauer measurements,
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Fig. 4. The dashed line extensions are based upon an
extrapolation of the sublattice data of Roberts up to a
Curie temperature of 560 K. It will be seen that the
classical approximation, Eq. (8), is satisfactory. This is
to be expected in the case of YIG, in which both mag-
netic sublattices are populated by Fe'+ 'S»& ions. Be-
cause of the high multiplicity of the iron ion there is
little distinction between quantum and classical aver-

ages. This classical approximation is, of course, conven-
ient but peripheral to the theory, and for a spin of lower

multiplicity one could calculate the dynamical expecta-
tion value of 'JJP, the spherical tensor of degree l and
order zero, with respect to the Brillouin internal field

distribution function, or for any other appropriate
model.

The array of magnetoelastic coupling coeKcients of
Eq. (15) is noteworthy. These coefficients, which repre-
sent the strain-induced changes in anisotropy energy of
octahedral and tetrahedral ions are the fundamental
quantities that one would like to compare to the results
of an atomic calculation. Unfortunately, no such calcula-
tion has yet been performed on a garnet. However, a
qualitative comparison can be made to Tsuya's"
analysis of the magnetostriction of ferrites. In both
materials there are octahedrally and tetrahedrally co-
ordinated magnetic ions. In both materials the rnagneto-
striction is small when the magnetic ion is in an 5 state
(a,s is Fe'+) thereby eliminating spin-orbit coupling
in the unperturbed ground state.

A possible mechanism might be the variation of
dipole-dipole (or pseudo-dipole-dipole) energy with

strain. Tsuya has shown this effect to be of the order of
magnitude that we observe in YIG. However, our theory
of the temperature dependence assumes a one-ion

magnetoelastic perturbation, and the close agreement
with experiment tends to strengthen the plausibility
of this one-ion assumption. Furthermore, the one-ion
model is in agreement with the conclusions of Folen and
Rado" and of Geschwind" concerning the magnetic
anisotropy energy of ferrites. Indeed, the one-ion nature
of the magnetic anisotropy implies the same character-
istic of the magnetostriction, since the magnetostriction
arises from the variation of anisotropy energy with
strain.

That the strain potential, the variation with crystal
strain of the electrostatic energy of an ion, plays an
essential role in determining the atomic magnetoelastic
coupling coefficients is suggested by the comparison of
our phenomenological coefficients of Eq. (15) and the
second degree strain potentia, l constants, p(", calcula, ted

' X. Tsuya, Sci. Repts, Research Insts. Tohoku Univ. Ser. B
8, 161 (1957).

13 V. J, Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958).
&& S, Geschwind, Phys. Re@, 121, 363 (1961),

by Tsuya for the spinel. Tsuya gives:

Octahedral (b) sites Tetrahedral (a) sites

27
r, &„,()=— rD,

5

36
I", pygmy(') =—lVD,

5

8X6
8"D,

5 (3)'~s

SX16
p»i(2'=— WD.

15(3)'"

(16)

Here W and D are crystal field splitting parameters. It
will be noted that Tsuya's array of constants displays
the same sign variation as our magnetoelastic coef-
ficients, though the actual magnitudes differ, even after
correction of our coeHRcients for the relative populations
(24 tetrahedral, 16 octahedral sites per unit cell). The
strain potential is, of course, to be combined with some
perturbative term quadratic in the spin operators, such
as spin-orbit coupling to second order, or intra- or
interactomic spin-spin interaction to hrst order, to
produce the magnetoelastic spin Hamiltonian our theory
presupposes. It is mentioned incidentally that the rela-
tionships between our magnetoelastic coefficients and
those of Seeker and Doring" are

&o,s"(~)+&o,s'(d) =—2 (4s-)'~'
br (O'K),

t4~ '~'

&o,s'(o)+&o, s'(~) = —
I

— 4(0'K).
&15

It is informative to compare our measurements to
reported values of static magnetostriction and of
dynamic acoustic wave rotation and resonance. The
only published data, of the static magnetostriction we
hnd are the polycrystal measurements of Nakamura and
Siguira. "While our suitably averaged ()I,= s4oo+ s4»)
single-crystal values agree within 2+/0 with our own
polycrystal measurements on several samples of different
origin, these values all differ markedly from those of
Nakamura and Siguira. These authors report a room
temperature X,=0.37', 10—', which is far outside our
experimental uncertainty of +5%.

On the other hand, the magnetoelastic coupling coef-
ficients we derive from our magnetostriction measure-
ments do agree reasonably well with the results of several
dynamic measurements. To make this comparison at
any temperature we average the effective coupling
coefficients for the sublattices at that temperature. For
while our theory allows of a separation into the indi-
vidual sublattice magnetoelastic coupling coefficients
other investigators report only macroscopic averages.

In an acoustic wave rotation experiment at 500

"R. Becker and %.Boring, Ferfomcgnetis~nws (Julius Springer-
Verlag, Berlin, 1939) p. 136.

r6 A. Nakarnura and Y. Siguira, J. Phys. Soe. Japan 15, 1704
(1960),
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Pfc/sec, Matthews and I.eCraw'r measure an average
coupling coeAicient at room temperature of 8'= —6.8
X 10' ergs/cm', while Hall and Bailey" find B'= —3 7
X10' ergs/cm'. Evaluating the room-temperature sub-
lattice magnetizations from the data of Roberts, ' we
arrive at the basis of our data at

Bp, 2 (a)I5/2(@ (r/t ))+Bp,2 (d)I5/2(@ (rrtd))
= —5.85 X 10' ergs/cm'. (18)

It is only the F, strains which are excited in the shear
wave rotation experiments; this technique does not
yield the average F~ magnetoelastic coefficient.

However, we can compare our F~ data by considera-
tion of the determination of the macroscopic coefFicients
recently made by Smith and Jones, 's who measure the
shift in magnetic 6eld for resonance with sample strain.
A uniaxial stress is applied along the [110jdirection,
and the shift in field for resonance measured along the
[100]and [110]axes. In this fashion the authors can
determine both the average F„and F, coeScients. They
report that at room temperature B~=—1.65&(10'
ergs/cm', B'= —6.37X10' ergs/cm'. The I'„coefficient
of Smith and Jones is in very close agreement with our
value of

B'=Bp,s'(a)Ip/s(Z '(trt. ))+Bp,s&(d)Is/s(Z
—'(me))

= —1.6X 10' ergs/cm'. (19)

Furthermore, it is seen that their F, coeAicient agrees
rather well with our value, as given in Eq. (18).

Yet another technique in the investigation of mag-
netoelastic coupling has been employed by Turner"

'7H. Matthews and R. C. LeCraw, Phys. Rev. Letters 8, 397
(1962).

"A. B. Smith and R. V. Jones, J. Appl. Phys. Suppl. 34, 1283
(1963)."E.H. Turner, Advances il Qicaetisrl Electronics (Columbia
University Press, New York, 1961),p. 427.

and by Olson. 'P In this experiment one observes the
dependence of onset of instability with increasing rf
power as a function of steady dc field, in parallel pump-
ing ferromagnetic resonance. The onset of instability
is suppressed by the coupling of spin waves to phonons.
The values of 8' reported by Turner and by Olson are
again within the range of those measured by other means.
Olson, however, attempts to relate the measured mag-
netoelastic coefFicient to the theory of the temperature
dependence of a ferromagnetic model. Olson invokes
both the lowest degree shear coef6cient, Bp, 2', and a
fourth-degree coefficient Bp,4' which he evaluates as
i.6 times as large as Bp, ' and of opposite sign. As we
have mentioned, our data show that any higher degree
coefFicients, of either I', or I'~ type, are at most 5% of
the 1=2 coefficients at room temperature [or, on the
basis of the l(3+1) /2 power law, are less than 10% at
O'K.j

As a 6nal comment, it is interesting that, although
each sublattice has a monotonically decreasing magneti-
zation (with increasing temperature) and that the hyper-
bolic Sessel functions are monotonic functions of their
argument, the crystal magnetostriction can display a
maximum. This can come about if, as in the case of h~

in YIG, the two sublattice coupling coefficients are of
opposite sign (and comparable magnitude) and the coef-
ficient of smaller magnitude is associated with the sub-
lattice whose reduced niagnetization decreases more
rapidly with increasing temperature. That is, for YIG,

~

Bp s~(d)
(
(

( Bp,s~(a) t and Roberts data shows that
rrte(T)/rrta(0)= me dec—reases with increasing tempera-
ture more rapidly than does m, .

Indeed, if the coefficient of larger magnitude (but
opposite sign) is associated with the faster decreasing
magnetization, the material could display a magneto-
striction compensation point even in the absence of a
magnetization compensation point.

'P F. O, Olson, Suppl. J. Appl. Phys. 34& 1281 (1963).


