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The static-electron-paramagnetic spin susceptibility has been calculated by a variational calculation
about a polarized ground state, the polarization parameter being determined as the extremum condition
on the ground-state energy. The basic techniques used are those of many-body perturbation theory in a
fashion analogous to that used by Brueckner and Sawada, with the addition of a momentum transfer inter-
polation procedure designed to obtain relevant information in the region of metallic densities. General curves
are given which should be appropriate to all free-electron-like metals in both the solid and liquid state.
The e6ects of band structure in our application to the solid alkali metals are taken into account by the
introduction of the Fermi level band masses in the kinetic energy term. The results obtained by this proce-
dure are in agreement with experiment.

I. INTRODUCTION

''N a previous paper (referred to as I),' we have
~ - applied a momentum transfer interpolation pro-
cedure to the calculation of the electronic specific heat
of an interacting electron gas. Here we use the same
principles to calculate the static-electron-paramagnetic
susceptibility.

There are two approaches one can take to a per-
turbative calculation. of the susceptibility: (1) The
problem can be formulated in a time-dependent manner
where a weak time-varying inhomogeneous fieM
gradually Hips the electron spins starting from an
unpolarized state at t= —~; or, alternatively, (2) one
can concern himself with the dc response to a uniform
field and formulate the problem as a variational calcu-
lation about a polarized ground state, the polarization
parameter being determined as the appropriate ex-
tremum condition on the free energy of the system.
The former method would, in principle, achieve the
complete wave-vector-dependent dynamic suscepti-
bility, a quantity of considerable interest for the
magnetic properties of metals and metallic alloys. '
However, an explicit calculation of the eGects of
electron correlations, within this framework, is quickly
stiQed due to the appearance of insoluble integrals. In
Appendix C we discuss this point further. WolfI3 used
this former method in calculating the response to a
static inhomogeneous magnetic field. In his treatment
he linearized the equation of motion of the spin-density
fluctuations (this corresponds to a T-matrix expansion
of a, single-electron hole polarization diagram) and
obtained an integral equation which again, at least in
principle, could be solved. We find the second method,
although restricted to uniform static response, can
easily handle the correlation effects a~d ultimately
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' S. D. Silverstein, Phys. Rev. 128, 631 (1962).' K. Yoshida, Phys. Rev. 106, 893 {1957).' P. A. Wol6, Phys. Rev. 120, 814 (1960).

produce numerical results for the susceptibility which
conform quite favorably to the experimental
measurements.

The variational method was first used by Sampson
and Seitz.' There they assumed that the shift in the
ground-state energy from the electron polarization
could be obtained from an independent variation of the
populations of the up and down spin states, the ex-
change and correlation corrections being evaluated
with the aid of the signer expression for the correlation
energy. Pines' carried out a calculation similar to that
of Sampson and Seitz. His result differed markedly
from theirs because of the use of the Bohm-Pines theory
for the correlation energy. The results obtained by
Pines were in relatively good agreement with experi-
ment. However, this agreement was, in fact, somewhat
fortuitous, because careful investigation shows that
the Sampson-Seitz assumption of independent vari-
ations is not appropriate to the second-order per-
turbation calculation of the short-range correlation
effects. A simple illustration of this is shown in Appendix
B. Our approach is basically similar to Brueckner and
Sawada's, ' except, of course, we must treat the short-
range interactions and retain the wave-vector de-
pendence throughout.

The spin polarization of the electron gas is defined
in the standard manner,

P= (Ng —et)i(et+I)). (1.1)

The spin density and Fermi momentum of a given spin
state are represented by e.=-,'e(1—~P) and

P~ =(1 ~P)"'Pr

Here pr is the Fermi momentum of either spin in an
unpolarized medium, and 0- takes on the values ~1.
For small polarization, the ground-state energy of an
electron gas in the presence of a weak uniform magnetic

4 J. 3. Sampson and F. Seitz, Phys. Rev. 58, 633 (1940).
D. Pines, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press Inc. , New York, 1955), Vol. 1, p. 367.
s K. A. Brueckner and K. Sawada, Phys. Rev. 112, 328 (1958).
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FIG. I. RPA expansion of
interaction energy.

numerical integration of a(q) over all momentum
transfers.

II. CONTRIBUTIONS TO THE CORRELATION
ENERGY FROM DIFFERENT REGIONS

OF MOMENTUM TRANSFER

6eM BCO is given, through terms second order in the
polarization, byv

E(e',P) =E(c',0)—LugpppKpNP/pcs (nr, )'j
+eP'A Ry. (1.2)

Here the term linear in P is the Zeeman energy;
+ =+free +exch++eorrp where

A f, = psprp/3 (nr, )'no*; A,~h = —1/3prnr, . (1.3)

Also, u& = eh/2mc, and n is a constant equal to (4/9')"'.
We have added an eGective mass into the kinetic energy
term to account for the periodic ion potential in the

specific application of our results to the alkali metals.
From the extremum condition on the energy of (1.2),
we obtain the ratio of the susceptibility to the corre-
sponding free-electron value

X*/Xr„,= I (ppp/pm*) —(nr, /7r)+3(nr, )'A„„g '. (1.4)

The unknown term which must be determined is the
coeKcient of the I" term in the correlation energy of
the polarized system. The contributions to A„„from
the long- and short-range interaction regions will be
represented by aza(q) and asn(q), respectively. The
intermediate momentum-transfer region is represented
by a smooth interpolation between the two regions,
and the resultant value of A„„ is obtained from the

In performing our calculations, we adopt the standard
model of an electron gas in the presence of a uniform
background of positive charge. The Hamiltonian for
this system in the presence of a uniform magnetic field
is given by

f pp

+=+ cp I +IInrrpxo Icpr
p. &2ppp i

v(q)+ E cpl+'0 &1 cp2 &2 p2+s &2 pl &I' ( '1)
PI&I q P20'a 2

Here we have neglected the uncoupled diamagnetic
interactions. The ground-state energy of the polarized
system can be most conveniently expressed in terms of
the standard integral over the coupling constant:

&(c'P) =&(OlP)+ ((&~«)/c' )d(c') (2 2)

Here the average of the interaction Hamiltonian is
evaluated with the use of polarized wave functions. In
expanding the average of the interaction term, we make
use of the propagators defined for the polarized system,
These are: the free fermion propagator

Go, (p t) = i(C (P) I
T—{c..(f)c,.t(O)) IC'(P)), (2.3)

and the polarization propagator

IIo.'(q, &) = —i(c (P) I
2 {E....c...(&)c„+,'.,+., '(&)",.') IC (P)) (2.4)

Here the states IC (P)) correspond to the ground-state wave functions of a noninteracting polarized system. The
average interaction energy is expressed in the interaction representation by.(q) &e(P) I r{c„„.,c„.,c„.,'(f)c„„.,t (f+)S)

I
c (P))

E;.t,(c'P) = g lim (2.5)
PILI, q, P202 2 + &C(P) ISIC(P))

The contributions to the interaction energy of the long-wavelength interactions can be well described by the
random phase approximation (RPA). The perturbation diagrams corresponding to this select group of terms in
the 8-matrix expansion are indicated in Fig. 1.There diagram (a) corresponds to the exchange energy, and diagram
(b) represents the correlation energy. The long-range correlation energy is given by

i "—de' +" v(q) g. IIp,~(q,u)
F...,„(e'P)= — d'q du —v(q) Q, Iip, p(q, u) . (2.6)

2(2s)' p e' p&s»v —„L1+v(q)2, IIs,v(q, u)j
The integrand of (2.6) is analytic in the first and third quadrants of the complex u plane. It proves desirable to
deform the contour to the imaginary axis. Also, transforming variable I~ qN, and performing the coupling-
constant integration, we obtain upon conversion to r, units,

du {ln(1+v(q) g IIp.v(q, iqu) j—v(q) g IIp, P(q, iqu)) Ry. (2 7)~--(c'P) =
(4 nr, )s 0' 0

7 3'.= I unless explicitly indicated.
Here momentum is in units of the Fermi momentum and energy is in units of twice the Fermi energy. r, is dehned as the

radius of the spherical volume per electron in units of the Bohr radius, i.e., r, = (mp /A') (3V/4pÃ)'~'.
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FIG. 3. Interpolation curve for density
corresponding to Na: r, =3.96.

Therefore, through terms of order q', aLR(q) is given by

ai,R, (q) = (0.102/r, )q
—(0.66/r 2) q

+ (1.97/r, P/2) q4. (2.20)

Here the q' contribution arises from the shift in the

plasmon pole, whereas the other terms are contributed

by the single-particle excitations. Thus, the collective

behavior of the system serves to increase the correlation

energy and decrease the susceptibility.
AVe now consider the short-range contribution to the

correlation energy. In doing this, we follow a procedure

analogous to that used in I. That is, we treat the short-

range interactions by second-order perturbation theory
where, for sufficiently large momentum transfer

q) 1.5pr, the parallel spin-exchange contributions

approximately cancel one-half of the direct interactions.

Accordingly, the short-range correlation energy is

approximated by

E,.„,sa (e2,P)= Q dpqd24 Ilp. ,"(t1,24) 11p,,~(q, 22) u2 (41).
2 (22r) +&02(+&r +2~ p)s~uu

(2.21)

The frequency integral of this term yields

3s dq
SR(~2 P) — dpp dpp

32m', &p, q' &I 4r2 ( tr1 H4r 2)

Here e„ is the unit step function,

u2—2/2 ( 22u2+2/2 )
22ui —2/2 (1 22ui+2/2 ') Ry (2 22)

a (I +I2)

22u'= 1 for P ( (1 gP)"—
= 0 for p) (1 aP)"'—

V1e now expand the short-range correlation energy in a power series in the polarization I'. The expansion and
subsequent integration is a straightforward but lengthy process, the details of which are further discussed in

Appendix A. The result is expressed in the form

J/ SR(~2 P) p' SR(e2 0)+NP2 asR(q) dq+O(P'), (2.23)

where, for 2(1—P)i/2)'q) P2) 1

q' 8 3 1 3 89 9 8
asR (q) =+ —+ —+—

q
——

q ln
~
1+q/2

~
+ —

q
——

q +6q ——q+— ln
~

1—q/2
~

3m'q' 6 3 2 24 4 24 2 3

for q) 2(1+P)'/'

2 3 3
q 8 8

asR(q) = ——q+ ——4q lnq+ ——+2q —— ln
~ q

—2
I + ——+2q+ — ln

~
q+2

~

3+~q' 3 3 6 3 3 3

and for 2(1—P) /2~q~2(1+P)'/2

(2.24)

asR(2) = —(1/722r2) (1—16 ln2).

We have now obtained both aLR(q) (2.20) and asR(q) (2.24) in the forms desired for the momentum-transfer
interpolation. These are plotted for the speci6c case of r, =3.96 (Na) in Fig. 3. We note that the apparent dis-

continuity at q= 2 is actually nonexistent. Here we have merely extended asR(q) for the regions 1~q~ 2 (1—P) "
and q)'2(1+P)'/2 to q=2. The areas due to the extension will cancel. This can be seen from the fact that: the
values asR(q) in the momentum interval 2(1—P)'/'~q~ 2(1+P)'" satisfies

asR(2)Dor 2(1—P)' p~q~ (1+P)'/pj=-2'(asR(q=2)Dor 1~q~2(1—P)'/'j
+asR(q=2)Lfor q) 2(1+P)'/2]). (2.25)

The fornax of t.l&e intermediate momentun~-tra»sfer region is now approximated by a smootli i»terpulation
between the short- and long-range regions. Tlie resulting values of 2,,,... arq obtained from the numerical inte-

gration of a(q) over all momentum transfers.
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TABLE I. x* for alkali metals. Susceptibilities are given in
cgs volume units X10'.

3.0—

Li Na K Rb Cs CO

C

2,5—

~s

(~a g*/m). „s'
(m, '/m) s'
Xsph

Xd

Xexp

3.22
1.32
1.66
1.56
2.20
2.08+0.1"

3.96
1.00
1.00
0.86
0.86
0.95+0.1b ~

4.87
1.02
1.09
0.66
0.73

5.18 5.57
0.99 1.06
1.21 1.76
0.60 0.60
0.78 1.15

Cl

E
O

2.0—

1.5—

I.O—

a F. S. Ham, Phys. Rev. 128, 2524 (1962).
b See reference 12.
o See reference 13; value quoted there is 0.89 &0.04.
d See reference 14; value quoted there is 1.13&0.05.

III. RESULTS AND DISCUSSION

0.5—

0
0

L
1.0 2.0

1 I

5.0 4,0
I

5.0 6.0

In Table I, we give the various values of 2„„
together with the values of p* obtained by the use of
(1.4). As Pines has shown, the influence of band
structure on the correlation corrections is small for the
alkali metals, and the- effects of the lattice can be taken
into account by the introduction of the lattice effective
mass into the kinetic energy term. Because we are
dealing with the behavior of the electrons in the
immediate vicinity of the Fermi surface, a proper
account of the masses would correspond to the band
theory masses evaluated at the Fermi level, suitably
averaged to eliminate anisotropy effects. These new
values, with consideration of Fermi surface distortion,
have been recently calculated by Ham. " In the table
we list Ham's values obtained in both the spherical
band approximation, (m~*/m), nh, and the values taking
into account Fermi surface distortion, (mt*/nz)g. It
is apparent, and more plausibly so, that the theoretical
results obtained by using the averaged distorted masses
are in better agreement with the experimental values.

The paramagnetic susceptibility has been directly
measured for both Li and Na."There have been later
measurements reported in the literature for Na.""
However, these seem to vary considerably. The error
estimates on the first measurement by Schumacher
and Slichter seem to almost cover the full spectrum,
so we will use this value to compare our theoretical
result with experiment. The experimental values were
obtained by the use of the Kramers-Kronig relations
to relate the susceptibility to the area under the spin-
resonance absorption curve. The measured values were

XL„.——(2.08&0.1)X 10 at 300'K,

XN, = (0.95&0.1)X 10 ' at 79'K,

in cgs volume units. The zero-temperature values are
listed in the table. The theoretical value for Li, modified
by a volume correction to yield the room-temperature

' F. S. Ham, Phys. Rev. 128, 2524 (1962)."R. T. Schumacher and C. P. Slichter, Phys. Rev. 10.1, 58
(~956'.

"" R. T. Schumacher and W. E. Vehse, Bull. An&. Phys. Soc. 4,

'~ R. T. Schumacher and W, L'. Vehse, J. Phys. Soc. Japan
Suppl. B-l, 460, (1962).

Fro. 4. x and x&„,as a function of density for m*/m = 1.

result is
Xg„,(Li) =2.16X10 ',

a result in agreement with experiment.
In Fig. 4 we have plotted the values of X and Xf„,as

a function of density. These results are for m*/m=1.
The susceptibility for a given density and effective mass
can be obtained from these curves by the use of the
relation

x*=
1+L (m/m*) —1j(x/xf„, )

(3.1)

APPENDIX A

In this Appendix we outline the methods used to
evaluate the integral (2.22). We desire the expansion
in the polarization of

J(I',q)= g n„-g(1—es, g) ns, -t(1—es,.t)/
PIP2

e (pi+ps) (A~)

IIere vsPog and nP, t are unit step functions at the
moment;a (1+/)'~' and (1—I')"' respectively. Also,
we have used the abbrevia, ted notation p+=p&q/2,

The above relation enables one to obtain the values in
the event of an alteration in the estimated band-theory
masses.

We feel that A,.„should be accurate to the order of
20%. This estimate is obtained by considering radical
deviations from the most obvious intermediate mo-
mentum-transfer interpolation. This degree of error
would in turn reflect a 5 to 10% error in the static
susceptibility X. Of course, these estimates do not
incorporate the possible errors in the theoretical-band
masses.
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Here P is 1/kT. It is a simple matter to show that the
real and imaginary parts of X,(q~) satisfy

and
Imx, (qio) = f(q(a) (1—e—e")= —ix(q40), (C8)

+"de' Imx, (qco')
Rex, (qa&) =P (C9)

The above dispersion relation is the well-known
Kramers-Kronig relation for the retarded response
functions. Before investigating the perturbation ex-
pansion, we will derive a simple sum rule on the
retarded susceptibility. To do this we proceed as
follows:

FIG. 5. Diagram-
matic expansion of

riqp, +9)
and light lines corre-
spond to exact and
free-particle Green's
functions, respec-
tively; the dotted
lines correspond to
unscreened Coulomb
prop agators.

I
I

ip

p+q

—p+q

+ HIGHER 080ER TERMS

the expression to the interaction representation

p'+q

dX(q, (=0)
40X (q40) d4d/24r X(q)=A ' dhe'"'(e~ T{ P cy,+.,..'(i)o*

Pl&lsP2&4I

Xc, ,(&)c, ,te*c,+4,„S)~ y)/(y~S~ y). (C17)
The commutator of the spin-density fluctuations with
the Hamiltonian of the interacting electron system can
be simply evaluated. The results yield

(C11)co X (q(u) da)/2' =iI4&'q'ii/2ns.

Making use of (C8), we obtain our final sum rule

co ImX„(q&u) d~/2' =p&'q'e/2m. (C12)

We now de6ne the time-ordered function,

X,(qt) =i(T{m,~(i)m, *(0))).

The Fourier transform of this function is

d'pdQ

(24r)4
Xr(q, cu) =(C13)

We note that the perturbation expansion of Xz(q&0) is
similar to the renormalized polarization propagator
II(qor) except for one rather important consideration.
The appearance of the explicit spin dependence will

cause the cancellation of terms corresponding to the
summation of a chain of polarization diagrams. There-
fore, one is left with the arduous task of evaluating
the multiple exchange effects associated with a single
polarization loop. Xz(q40) can be represented by the
diagrams in Fig. 5. There we have introduced the
renormalized vertex function I'(pq; Qcv). The general
expression for Xq(qio) is

e t'"'

X~(q~) = f(q~') (C14)
2m' 40' —a) —ze (o' M+$e—

Hence,

Imx, (q~) = f(q(e) (1+e-&");

+"d(o' tanh (Po)'/2) (C15)
Rex'(qco) =P Imxr (q(o').

By comparing (C15) and (C8), we can express the
retarded susceptibility in terms of the time-ordered
function

&I'(Pq; ~)G(P+q; f1+ )G(P ~1) (C»)

As remarked in the introduction, Wo16 has calculated
the response to an inhomogeneous magnetic held by
linearizing the equations of motion of the spin density
fluctuations. In Fig. 6(a) we have indicated the T
matrix expansion of the vertex function. For the case
of the response to a test charge, it has been shown that
the linearization procedure (RPA) describes the correct
high-density response of the system. However, this is
not necessarily the case for magnetic response. The

X„(tv)=ReXp(qco)+i tanh(Par/2) ImXp(q44). (C16) (a)

In the limit of zero temperature (P~~), where we

further restrict consideration to positive frequencies,
the retarded susceptibility and the time-ordered
function are equivalent. To consider the zero-tempera-
ture perturbation calculation of Xz(q~), we convert

(b)

FIG. 6. (a) T-matrix expansion of the vertex function; (b) an
example of a diagram omitted in the T-matrix expansion.



reasoI1 for this is that each term in t;he T-matrix
expansion is an exchange interaction, and for eacI1 tcrITI

selected by this procedure there are neglected terms of
the same order in r,. An example of a neglected term is
indicated in Fig. 6(b). Nonetheless, the 1matrix does
sum a large subset of contributing diagrams, it will

satisfy the sum rule (C12), and one could obtain useful
information if only the integral equation were soluble.

At present this is not the case. Indeed, only the sccond-
ordcr pcI'turb@tlon intcgrRls become InRnRgcRblc In tile
long-wavelength limit.

The evaluation of X&(qor) through second order is
essentially equivalent to the polarizability calculation
performed by DuBois. '4 We refer the reader to his work
for the details; here we will just give the results. The
lowest order contribution Fig. 5(a) is given by

pg 5$
ReXq &'& (qor) =

2o.@or ~

L1—(q/2 —~/q)'j
1+ ln

2g l 1+q/2 —or/q
, (C19)

1—q/2 —or/q

1 q/2+—or/q' L1—(q/2+or/q)'j 1+q/2+or/q
ln

Imx„&'& (qor) = (1JIr'rN/ore pr, qr')

=0
(&(&u+a

d'p for 0~or g (q'/2+q)

for or) (q'/2+q).

(C20)

Here ao is the Bohr radius. The three second-order
terms indicated by the diagrams in Fig. 5 diverge
individually. However, their sum yields a convergent
result. We have only been able to evaluate this sum in
the static homogeneous limit; i.e.,

limq~p, &~p Xp"r (qor) ~ e'rrs'err'/m'. (C21)

Therefore, this procedure yields, even in the static

limit, only terms through second order. This result is

x„(0,0)=x~(1+o.r,/rr), (C22)

where X~ is the free-electron Pauli susceptibility. We
further note that (C22) and (1.4) are equivalent in the
extreme high-density limit. There the Hartree-Pock
term corresponds to the leading r, correction.

"D.F. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959);8, 24 (1959).


