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A suKciently Gne ferromagnetic particle has a uniform vector magnetization whose magnitude is esse&-

tially constant, but whose direction Quctuates because of thermal agitation. The fluctuations are important in
superparamagnetism and in magnetic

aftereffect.

The problem is approached here by methods familiar in the
theory of stochastic processes. The "Langevin equation" of the problem is assumed to be Gilbert's equation
of motion augmented by a "random-Geld" term. Consideration of a statistical ensemble of such particles
leads to a "Fokker-Planck" partial diGerential equation, which describes the evolution of the proba»»ty
density of orientations. The random-Geld concept, though convenient, can be avoided by use of the
fluctuation-dissipation theorem. The Fokker-Planck equation, in general, is complicated by the presence
of gyroscopic terms. These drop out in the case of axial symmetry: then the problem of finding nonequi»-
brium solutions can be restated as a minimization problem, susceptible to approximate treatments. The
case of energy barriers large in comparison with k2 is treated both by approximate minimization and by
an adaptation of Kramers' treatment of the escape of particles over barriers. The limits of validity « the
discrete-orientation approximation are discussed.

1. INTRODUCTION

A SUFFICIENTLY 6ne ferromagnetic particle
consists of a single magnetic "domain. "' The

direction of its magnetization M is determined by the
applied field H and by internal forces. Let the free
energy per unit volume be V(8,&), where 8 and P are
angular coordinates that describe the orientation of
M; and let v be the volume of the particle. When the
difference between the maximum and minimum values
of V(8,&)e is very large in comparison with the thermal
energy kT, we may (for any reasonable measurement
times) ignore thermal agitation and calculate the static
magnetization curves by simply minimizing V (with
respect to 8 and P) at each H. This is the familiar
Stoner-Wohlfarth' calculation; it leads to hysteresis,
because in certain 6eld ranges there are two or more
minima, and transitions between them are neglected.
When the differences in V(8,&)e are very small in
comparison with kT, thermal agitation causes continual
changes in the orientation of the moment of an in-
dividual particle; and in an ensemble of such particles,
it maintains a distribution of orientations characteristic
of statistical equilibrium, so that the number of particles
with orientation within solid angle dQ(=sin8d8d&) is
proportional to e "' dQ. The behavior is like that of
an ensemble of paramagnetic atoms; there is no
hysteresis. This phenomenon is called "superpara-
magnetism. "' Under intermediate conditions, changes
of orientation occur, with relaxation times comparable

, with the time of a measurement; the result is an observ-
able lag of magnetization changes behind field changes,

a phenomenon called "magnetic after effect" or "mag-
netic vicosity. "' Each of the three types of behavior—
stable ferromagnetism, superparamagnetism, and»g-
ging respons" is useful for some purposes but
undesirable for others so that theoretical understanding
of each is of practical importance. Furthermore, an

understanding of the nonequilibrium behavior of this

relatively simple system may contribute to the under-

standing of more complicated processes, such as thermal

nucleation of domain structures. '
This problem can be approached through simplifi-

cations that have proved successful in the theory of the

Brownian motion and other stochastic processes. ' The
most important simplification is the assumption that
the random thermal forces have correlation times much

shorter than the response times of the system (e.g, .
of the Brownian particle). This simplification makes

possible the replacement of an integral equation (the
Smoluchowski or Chapman-Kolmogoroff equation) by
a partial differential equation (the Fokker-Planck

equation). In effect, it reduces the random forces to a

"purely random" process, with a "white" spectrum.

According to the quantum-mechanical Nyquist
formula, ' the spectrum of thermal-agitation forces

may be regarded as white up to a frequency of order

kT/js (=10" sec ' at room temperature); this corre-

sponds to correlation times of order 10 " sec. The
response time of a single-domain particle is of the order

of the reciprocal of its gyromagnetic resonance fre-
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quency, i.e., =10—"sec.' The basic assumption of the
Brownian-motion treatment is, therefore, allowable.

In previous treatments of this problem, ' it has usually
been assumed that (V, —V;„)v/kT is large enough
to justify a discrete-orientation model. Thus, when
V= V(8), with minima Vi and Vs at 8=0 and rr and
with a maximum V„at 0 (0(8 (v.), itis assumed that
ni particles of an ensemble have 8=0 (orientation 1)
and ns have 0= rr (orientation 2), and that a particle in
orientation i (= 1 or 2) has probability p, , per unit time
of jumping to orientation j (=2 or 1).The approach to
statistical equilibrium is then described by the equation

By analogy with other such problems, one writes

(1 2)

and sets c;, equal to some quantity associated with the
particle an'd having the dimensions of a frequency —for
example, the natural frequency of gyromagnetic pre-
cession about orientation i. This simple model will
break down eventually as v/T decreases, because the
distribution will no longer be sufficiently concentrated
near 0= 0 and m-. One purpose of the present work is to
find at what v/T the model becomes unreliable.

The first detailed calculation was that of Keel. 4

Some steps in Neel's derivation fall short of complete-
ness, " and it provides no criterion for the validity of
the discrete-orientation model.

Stacey" has proposed for "a domain or domain wall"
a formula of the form (1.2) with c;;= (v-'/643) (kT/k).
He derives this formula by assuming that the random
forces have an upper cutoff frequency of order kT/k
(he thereby omits the zero-point energy of the equiv-
alent oscillators), and by identifying the energy
available for surmounting the barrier with an energy
associated with the random field. Thus, he neglects
altogether the process by which the system under
study acquires the energy from the random field; that
is, he assumes an instantaneous response of the moment
-to the field. According to the estimates presented
above, it is this response time, and not the correlation
time of the field, that limits the rate of Ructuation of
the moment.

The theory to be presented is based on a Brownian-
motion approach. It uses the discrete-orientation
simplification only as an approximation valid under
certain special conditions. The basic model is described
in detail in Sec. 2; the corresponding Fokker-Planck
equation is derived in Sec. 3. Further calculations,
related to the case of axial symmetry, are presented
in Sec. 4. Conclusions are drawn in Sec. 5.

For example, W. F. Brown, Jr., J. P. Hanton, and A. H.
Morrish (Suppl. J. Appl. Phys. 3j., 214S (1960)1, Table I, find
resonance frequencies of 4.45 to 5.20 kMc/sec for four y-Fe20&
powders of different axial ratios.

"W. F. Brown, Jr., Suppl. J. Appl. Phys. 30, 130S (1959)."F. D. Stacey, Proc. Phys. Soc. (London) 73, 136 (1959).

8W/Bt= —V' J; (2.2)

here and hereafter, expressions containing the operator
V' are to be expressed in spherical coordinates with the
radial terms omitted. In the absence of thermal
agitation, J= Wv, where v is the velocity of a represen-
tative point at (8,$); that is, v= (dM/dt)/M„where'
dM/dt can be found from Eq. (2.1). insertion of this J
into Eq. (2.2) gives a partial diRerential equation for
W(8,&,t); it describes how W would decay toward
static equilibrium under conditions of appreciable
dissipation but negligible thermal agitation. We shall

~' See reference 1, p. 96 6."T.L. Gilbert, Phys. Rev. 100, 1243 (1955).
'4L. Landau and E. Lifshitz, Phys. Z. Sowjetunion S, 153

(1935).

2. BASIC MODEL

An individual particle has uniform vector magneti-
zation M, of magnitude M, determined by the tempera-
ture T. The orientation of M is described by angles 0
and p such that M, =M, sin8 cosP, M„=M', sin8 sing,
M, =M, cos0. A particle with orientation (0,P) will be
assumed to be in internal thermodynamic equilibrium
at temperature T, with Helmholtz free energy per
unit volume 2 (0,&,T) determined by crystalline
anisotropy, magnetic self-energy ("shape anisotropy"),
or both. The particle is not necessarily in external
equilibrium with the applied field H. The Gibbs free
energy per unit volume is" V(8,&,T,II) =2 (8,&,T)—M H, which we shall write simply V(8,&); the total
(Gibbs) free energy is U(8,&)v, where v is the particle
volume.

in the absence of thermal agitation, changes of M are
assumed to obey Gilbert's" equation

dM/dt=yeMXL —8V/8M —ridM/dtj, (2.1)

where po is the ratio of magnetic moment to angular
momentum, and where g is a dissipation constant;
8V/8M means the vector whose components are
8V/8M„etc. )If Eq. (2.1) is solved for dM/dt, the
result is of the same form as the I.andau-Lifshitz"
equation. $ When V= —M H, —8V/8M=H; thus in
general —8V/BM represents the conservative part, and

rldM/dt —the dissipative part, of an "effective field. "
A particle with instantaneous moment-orientation

(8,&) can be represented by a point on the unit sphere.
A statistical ensemble of such particles can be repre-
sented by a distribution of points over the unit sphere,
with surface density W(0,&,t); as the particles undergo
changes of moment orientation, the representative
points move, and there is a net surface-current density
J. The total number of points is conserved; we may
normalize j'WdQ to unity, so that W is a probability
density, or to some large number, so as to avoid the
mental difficulty of a fractional number of points in dQ.
Because of the conservation of points, W and J satisfy
a continuity equation
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(h, (t)h;(t+r)) =p, ,5(r), (2 4)

where, because of the stationarity, p;; is a constant;
( ) means "statistical average of." For isotropy of the
statistical properties, p, ;;=y5... where p is a single
constant. Thus

(h, (t))=0, (h, (t)h, (t+r))= p8, ,5(r).

It follows that if

see later Lcf. Eq. (3.22)] that this is the limiting case
T/e -+ 0.

Ke now suppose that in the presence of thermal
agitation, the dissipative "effective field", rtd—M/dt
in Eq. (2.1), describes only the statistical (ensemble)
average of rapidly fluctuating random forces, and that
for an individual particle this expression must be
augmented by a term h(t) whose statistical average is
zero. Thus, the "I.angevin equation" "of our stochastic
process is

(dM/dt) =yoMXL —8U/8M —g(dM/dt)+h(t)]. (2.3)

Concerning the components h, (t) (i =1, 2, 3) of the
"random field" h(t) we make the following assumptions:
that the process h(t) is stationary; that the joint
distribution of any finite set of the quantities It,'(t ),
It, ~ (t"), is normal (Gaussian), with means equal to
zero; that tr;(t) and It, (t+ r) are correlated only for time
intervals 7 much shorter than the time required for
an appreciable change of M according to Eq. (2.1);
and tha, t the statistical properties of It, (t) are in-
dependent of the orientation of the x, y, and s axes.

These assumptions, apart from the last, are similar
to those made about random forces in Brownian motion
theory. ' The last assumption, that the statistical
properties are isotropic, is made primarily to simplify
the calculation; the anisotropic case will be discussed
briefly at the end of Sec. 3.

By virtue of the correlation assumptions, we may
simplify the process to a purely random one and write
the correlation functions

BV 1 BV 8W
Je= — h' —g' W+0'

88 sin8 8$ 88

1 BV 1 BW
W+k'

sin 8 8$ sin8 8$

where
1/vo

(2.8)

substitution of (2.8) in (2.2) gives

BW l 8 BV 1 BV 8W-—sino h' —g' W+k'
8t sin8 88 88 sin8 8$ 80

1 8 f BU 1 8Ui
+ —

/

g' +l't' /W
sin8 8$ k 88 sin8 8$ I

+&' . (2.10)
sin8 8$

volume density of representative points, ultimately to
be of the form 8(r—1)W(8,&). The Cartesian method
has the advantage of symmetry but is no less laborious;
we shall therefore present only the (8,&) method.

This calculation will be carried out in Sec. 3. First,
however, we digress to present a simpler, intuitive
method of taking account of thermal agitation in Eq.
(2.2). As has been seen, J in the absence of thermal
agitation is equal to Wv, where v is (dM/dt)/M, as
computed from Eq. (2.1), i.e., with neglect of thermal
agitation. Let us now add to this J a diffusion term
—O'VW; its tendency is to make the distribution more
nearly uniform. Direct justification of this intuitive
procedure would be difhcult; but in fact it gives the
same result as the Fokker-Planck method of Sec. 3,
with considerably less labor.

The intuitive procedure gives for the components
of J

h, (t')dt', (2.6)
The Fokker-Planck method will lead directly to the
partial differential equation (2.10),without introduction
of the current-density components Jo and J~.

The next step is to use the Langevin equation (2.3)
and the statistical properties of h(t) to calculate the
quantities needed in the Fokker-Planck equation. The
calculation can be carried out either in angular co-
ordinates (8,qh) or in Cartesian coordinates (x,y,s) in
the space of representative points, in which the unit
sphere is x'+y'+z'= 1. That Cartesian coordinates can
be used results from the fact that Eq. (2.3) keeps each
representative point on a sphere x'+y'+z'= const; we

may, therefore, replace the surface density W(8,&) by a,

3. THE FOKKER-PLANCK EQUATION

Let xr ——8, x2 ——g; and let I'(xr, x2,t)dxidx2 be the
probability of a value in dx~dx~ at time t. Then the
Fokker-Planck equation is"

8P
(3.1)

Summation over repeated subscripts is understood. The
quantities A; and 8,; are functions of x~ and x~ defined

"S.Chandrasekhar, reference 6, Eq. (184); M. C. Wang and
G. E. Uhlenbeck, reference 6, Eq. (48).

' S. Chandrasekhar, reference 6, p. 31 ff. ; M. C. Wang and
G. E. Uhlenbeck, reference 6, Kq. (39a).
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in (3.10) is half that in (3.11).Thus, by use of (2.7)

A, =lim —(x;(t))=F;+~zzG;g, ;G,g, (3.12)

where Dx; is the change in x; in time ~t; the statistical
averages ( ) are to be evaluated by use of the Langevin
equation (2.3) and the statistical properties (2.5) of
11(/).

If Fq. (2.3) is written in angular coordinates and the resulting
two simultaneous equations are solved for 9 and p, the result is

8 =h'Pg' —g'(sin8) 'Pg',
(3.3)P=g'(sin8) 'Pg'+h'(sin8) gP'g.

Here h'and g'are given by Eq. (2.9), and

Pg'= 8V/88—+Pg, Pg'= 8V/8zh+P—g, (3.4)

where Pg and Pg are the contributions of h($) to the generalized
forces (torques) corresponding to 8 and p:

Pg=M, {hi(g) cos8 cosd+hz(t) cos8 sing —hz(t) sin8},
(3.5

Pg ——hI, (—hi(t) sin8 sinP+hz(g) sin8 cosp}.

Equations (3.3), when expressed directly in terms of the random-
field components h; (t), are of the form

x;=F;(x)+G;g(x)4(t) (z=1, 2, ~, gz), (3.6)

where x represents the gz variables xi, xz, ~, x„(here, gz= 2), and
summation over zzz values of h {here, zzz= 3) is understood. In the
corresponding equations of standard Brownian-motion theory,
F;(x) and G;g(x) are constants; the nonlinearity of the present
problem complicates the calculation. To evaluate 3; and 8;; by
Eqs. (3.2), we need nx; only to terms of order Dt for A; and only
to terms of order (nt)'z' for 8;;. For a typical member of the en-
semble, nx; itself is of order (nz)'z', since Jzz+ zhg(f')dz' is of this
order by the second Eq. (2.7).

For simplicity of notation, shift the origins so that at the
beginning of the interval ht considered, t=O and x, =0. Expand
F;(x) and G;&(x) in Taylor's series:

Fz(x) = F;+F;,;x;+xFg, ;zx;xz+
(3.7)

G'g(x) =Gzg+Gzg, z xi+gG'g. z'zxzxz+'' ',
where, for example, F;, ; means 8F;/8x; evaluated at xi
=xi= =0. Then by integration of Eq. (3.6) with respect to t,
we get

1
8;z=lim —(x;(t)x;(t))=zzG;gG;&. (3.13)

M, 'G»=h' cos8 cosp+g' sing,
SI, 'G12= h' cos8 sin@—g' cosp,
M, 'G13 ———b' sin0,

M, 'G21 ——g' cot0 cosy' —h' csc8 sing,
3f, 'G2~ ——g' cot8 sin@+&' csc8 cosy,
3II, 'G2g = —g'.

(3.15)

Partial differentiation of Eqs. (3.15) with respect to 8 and p gives
the formulas for the twelve quantities G;g, ; (i, j=1, 2; h = 1, 2, 3).
Substitution of the values of F;, G, g, and G;g, ; in Eqs. (3.12) and
(3.13) gives

Ai= —h'Vg+g'(sin8) 'V +~zz3g.z(h"+g") cot8,
Ag= —g'(sin8) iVg —h'(sin8) 'V (3.16)

fill zzz}II 2(h 2+g 2)

Bzz=zzM '(h"+g") csc'8 (3.17)

Substitution of (3.16) and (3.17) in (3.1) gives the
partial differential equation satisfied by I'. By the
definitions of I' and lV,

I'= H/ sin8. (3.18)

In the original notation, at the instant t considered the variables
have values x;; the functions F;, G;k, and G;q. ;——BG;kj8x; are
evaluated at these values of the x's.

In standard Brownian-motion theory, quantities such as
(x, (z)x; (t)xg (t)}vanish faster than Dt, so that Eq. (3.1) contains no
partial derivatives of third or higher order. This remains true
here, for the only eGect of the variability of F; and G;I, in I'3.6) is
to add terms of still higher order in At.

In the present application

Fi = —h'Vg+g'(sin8) 'Vg,
(3.14)

Fg = —g'(sin8) ' Vg —h'(sin8)-z Vg,
where

Vg —=BV/80, etc. ;

With some rearranging and some manipulating of
derivatives, the equation satisfied by 8' can be reduced
to the form (2.10), with

t t
x; (()=F;t+F;,; x; (ti)d4+ +Gag hg(4)d4

0 0
t

+G;g, ; x, {tg)hg(tg)d4+ . (3.g)
0

From (2.7) it follows that the terms on the right in (3.8) are of
the following orders in the small quantities x and t: t, xt, , t1»,

F1~2, ~ - -. We deduce that x is of order t ~ and that the terms are of
the following orders in t: t, t'~' ~ ., t'~', t, . To the first order
ln t8

+0k'= ,

'Ized,

s (k"+g"—)= ,'fz-
1+yp'rPM, ' (3.19)

To relate the constant k' or p to other constants, we
impose the requirement that in statistical equilibrium
(W'/elf=0), W must reduce to

g
—V (8,$)v /IgT (3.20)

in accordance with statistical mechanics. Substitution
of (3.20) in (2.10) leads to an identity only if

k'= kTh'/ti,

p = 2k Trf/tz.

(3.21)
whence

t
xz(t)x;(t) =GzgGzi d4 hg{4)hz(4)d4.

0 0

We now take the statistical average in (3.10) and {3.11)
di vide by t, and let t —+ 0. It is easily seen that the double integral

(3.22){3.11)

Without the terms in g', the partial differential
equation (2.10) would be formally the same as the

C

x;(t) =Fzt+G;g hg(4)d4+G;g, z xz(4)hg(4)d4; {3.9).
0 0

and in the last integral we may express x;(4) to order t'zg, namely,
as G, iJgzzhz(4)d4. Thus,

t tI
xz(t) =F,t+G;g h„(t,)d4+G;g, ;G;z d4 hg(4)hz(4)d4. (3.10)

0 0 0

The second term is of order t'/', the others of order t; therefore,
to the first order in t
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corresponding equation for an electrically permanently
polarized particle or molecule (as in Debye's theory
of polar molecules) with inertia neglected. In the
magnetic problem ordinary inertia plays no role, but
instead we have the gyroscopic terms in g'. In statistical
equilibrium these terms cancel out of the partial
differential equation (2.10) but not out of the current-
density components (2.8); there is a steady divergence-
less current density, i.e., a mean precession, even in
equilibrium.

By assuming a solution of the form T(t)F(8,$), we
can show that the general solution of Eq. (2.10) is of
the form

W=Ws+Q A„F„(8,$)e '"'
n=1

(3.23)

where F„satisfies (2.10) with 8/8t replaced by —P„.
The eigenvalues p„and the corresponding eigen-
functions F„are determined by the requirements of
single-valuedness and of finiteness; the equilibrium
term HI'0 is the eigenfunction corresponding to the
eigenvalue ps= 0. The constant A s in Ws is determined

by the normalization condition, the constants A„by
the initial conditions, e.g. , by the prescribed values of
W at t=0. Solution for F„(8,&) by separation of the
variables 8 and P is in general not possible, because V
in general depends on both variables and because
deriva, tives with respect to both occur in the gyroscopic
terms.

At this point two facts are helpful. First, except in the
very early stages of an approach to equilibrium, the
only appreciable time-dependent term in Eq. (3.23)
will be the term e=i, corresponding to the longest
finite time constant 1/pi. Second, the problems of
greatest interest are those in which the free-energy
density has axial symmetry, V= V(8). If the initial
distribution also has axial symmetry (e.g. , when a
uniaxial particle is subject to a change in value of an
applied field always directed along the particle axis),
we may assume W= W(8). The gyroscopic terms then
drop out of Eq. (2.10) (though there is still a current
density j@), and the equation for F„reduces to an
ordinary differential equation. Section 4 will be devoted
to this case.

First, however, we stop to consider the second Eq. (2.5) and its
anisotropic generalization (2.4) from a different point of view.
Choose new coordinate axes with Os along the direction that M
has at some instant to. Consider a time interval (tr,4) about to,
take t2 —t1 short enough so that throughout it Jtt/I and 3E„(re-
ferred to the new axes) are small, but still long in comparison
with the correlation times of the thermal fluctuations. Then by
expressing Gilbert's equation (2.1) to the first order of small
quantities and solving for M, and M„, we find

M =M r(h'X, —g'X„),
(3.24)M„=M,r(g'X, +h'X„),

where
X = BV/BM, X„=——BV/BM (3.25)

we suppose V expressed in the form V (M„M„).To the linearized
set of equations (3.24) we may apply the fluctuation-dissipation

4. THE CASE OF AXIAL SYMMETRY

When V and W are independent of p, Eqs. (2.8)
and (2.10) reduce to

jt= Ph'(8—V/88) W+ It'8W/88 j,
je= —g'(8 V/88) W,

8$' i 8 8V 88'-—sin8 t't' W+k'
Bt sing 80 Bg 80

(4 1)

(4.2)

Equation (3.23) reduces to

W=W, +g A„F„(8)e ~-t,
n=l

(4.3)

g
—F (6)e/kT (4 4)

The only effect of the gyroscopic properties is the
presence of a current component J~, which can be
ignored in the calculation of lV. With

x=—cos0

as independent variable, Eq. (4.2) takes the form

(4 3)

BV a@'-
=—L1—x'g O' W+i, '

Bt 8$ Bx Bx
(4.6)

When 8W/8t =0, the differential equation can be
integrated directly; impositjon of the conditions of

"$ee reference 7; H. B. Callen, M. L. Barasch, and J. L.
Jackson, Phys. Rev. 88, 1382 (1952); H. B. Callen and R. F.
Greene, ibid. 86, 702(1952); R. F. Greene and H. B. Callen, ibid.
88, 138t (1952); reference 8.

theorem" and the theory associated with it. We then regard
Eqs. (3.24) as describing only the behavior of the statistical
means of M, and 3II„; on these are superposed spontaneous
fluctuations eM, and gM„, whose statistical properties (and those
of their time derivatives) can be found by use of the standard
formulas of the theory. From this point of view the "random-
field" components h„h„are formal concepts, introduced for
convenience, and dered as the values of K, and X„necessary,
according to Eqs. (3.24), to produce the fluctuations bM, and
bM„. In this way we 6nd

(h, (t)h, (t+r)) = (2hTv/e)e;;)(r) (3.26)

for i, j=1, 2 in the new xys axes. The component h3 has no effect
and may be assigned at will. If we require it to have such proper-
ties that (3.26) holds also when t'=3 or j=3 or both, then (3.26)
becomes invariant to a rotation of the coordinate axes and,
therefore, holds for i, j= j., 2, 3 in the original axes, in which M
has an arbitrary direction. We may now remove the restriction to
a short time interval, since the same result follows for any t0.

Equation (3.26) is equivalent to the second Eq. (2.5) with p
given by Eq. (3.22). From this alternative derivation it can be
seen that the anisotropic generalization would require not only
replacement of (2.5) by (2.4), but also replacement of the damping
term rtdM//dt in G—ilbert's equation (2.1) by an anisotropic
term.

Strictly, the moment of a particle undergoes thermal fluctuations
of its magnitude as well as of its direction. The exchange forces
keep the fluctuations of magnitude small, and in the present
calculation we simply neglect them.
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hniteness at x=~1. leads again to the equilibrium
solution 8'0.

The differential equation satisfied by J „can be
written

this becomes

p= &/kT—, X=pv/kT—h.

F=e t v~(x

(4.8)

(4.9)

d dQ
(1—x'-)e—&v—+he i'v&=0.

dx ds
(4.10)

The eigenvalues X„are determined by the requirement
that p must be finite at x= &1.The lowest eigenvalue
is ),o——0; it corresponds to the equilibrium solution

po
——const. (Note that the symbol p is now being used

in a new sense. )

A. General Principles

Analytical solution of Eq. (4.10) is easy only when
V= const, or for any finite V(x) in the limit P —+ 0, i.e.,
7—+ ~. Then

DLy]=— (1—x2) e-&vLy'(x)72dx

where P„(x) is a Legendre polynomial. This solution
may be used as a starting point in a perturbation
calculation for small P(V~,„—U~;„).

For other conditions, a more useful starting point is
the restatement of the problem as a minimization
problem. " The nth eigenfunction P„of Eq. (4.10)
minimizes the functional

since Po(x) = const. By approximate minimization one
can evaluate X& approximately; and by two approximate
minimizations, of which one errs (if at ail) upward and
the other (if at all) downward, one can set upper and
lower bounds to Xi, and thus to pi.

When P(U,„—V; )))I, the case usually en-
countered, one can use either the approximate method
just described or the following physical principle:
When high (as compared with kT) energy barriers
separate the minima of vt/, equilibrium within the
distribution about a minimum will be established much
faster than equilibrium between diferent minima.
Therefore, except in the initial stages of a transient
process, it is legitimate to assume that the distribution
about the minimum 0, is of the form B,(t)e i'v"'; the
problem then reduces to finding the variation with time
of the functions B,(t), which ca,n be rela, ted to quanti-
ties n, (/) Lcf. Eq. (1.1)] that describe the rela, tive
numbers of particles with orientations near 6W;. A
method of formulating and solving this problem is
suggested by Kramers' treatment of the escape of
particles over potential barriers. '

These various approximations will be discussed in
the following subsections, 8 through D.

B. Low-Energy-Barrier Approximation

Sy standard perturbation theory, "we can derive the
following series solution of Eq. (4.10) in powers of P:
q4=u„+P Q' V„„u„/

Ln(n+1) —e(&+ 1)7+ .
, (4.16)

X„=n(n+1)+PV„„+P'Q' V„V „/

Ln(n+1) —e(m+1)]+ . . ; (4.17)

here u„ is the nth normalized eigenfunction for the
unperturbed case t/'= const,

under the constraints of constant u-= L(2n+1)/2]'"~. (*), (4.18)

H$y]=— e i'v/y(x)5-'dx (4.13)
du„d V

(1—*') u„dx.
dx dg

and of vanishing

e-i"y(x)y (x)dx
In the case of greatest interest, a particle with

(4.14) uniaxial anisotropy constant E in a longitudinal field H,

e-&vy, (x)dx=0, (4.15)

"R. Courant and D. Hilbert, 3/Iethods of 2lfothematical Physics
(Interscience Publishers, Inc. , New York, 1953), Vol. 1, p, 398.

for m=0, 1, 2 . . e—1;X„ is equal to the correspond-
ing minimized value of DLQ]/HLp]. We are primarily
interested in the value of pi and, therefore, Lcf. the
second Eq. (4.8)]of lii. For it, the last set of constraints
reduces to the single constraint

In this case

V = HM, cosg+E sin'8—
= —H3E,x—E'x'+ const.

= —BM,a„—2Eb„,

(4.20)

(4.21)
~ H. A. Kramers, Physica 7, 284 (1940); S. Chandrasekhar, ref-

erence 6, pp. 63—70.
~ R. Courant and D. Hilbert, reference 18, pp. 343—346. In the

present case the perturbation PU'(g) affects the term in dp/dx
rather than the term in p in the differential equation, but the
changes required are minor. Formulas read from books on quantum
mechanics are too specialized in that they assume that the matrix
(U ) is Hermitian; here it is not, for in general U„and U „are
real and unequal,
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where

a ( -i) =n(n+1)/L(» 1)(2n+1)3'"
a ( +i) = n(n+ 1)/L(2n+ 1)(2n+3)j

b„„=n (n+ 1)/( (2n —1)(2n+ 3)},
b ( 2)= (n 1—)n(n+1)/

{(2n —1)L(2n —3) (2n+ 1)jit2},

b„(„+2)= —n(n+1) (n+2)/
((2n+3)L(2n+1) (2n+5) j'"};

the other a's and 5's vanish. Thus

4 96 1
Xi= 2 PI +—-(PI&.)'+ (PHM-, )'+

5 875 5

I;=e Pv/P (4.28)
where

hi=—V"(0), k2=—V"(m). (429)

(4.23)

(4.24)

In the region (8i,82), W is very small; but it must be
sufhcient to maintain a small net Row of representative
points from the overpopulated toward the under-
populated minimum. We assume that this flow can be
approximated sufFiciently by a divergenceless current
density, so that the total current I=2m. (si n8)J&) is
independent of 8. Then by the first Eq. (4.1), since
k'= h'/P,

and replace the upper limit 8~ by ~.With these approxi-
mations and the corresponding approximations in /~,

(4 22) we get

(4.30)

C. High-Energy-Barrier Approximation

+p W
Unfortunately, these formulas apply to the case of 88 88 2xh' sin8

least interest, the case in which pK (=I& 7)/kT) and
pHM, (=HM, v/kT) are small. On multiplying by the integrating factor e~v and

integrating from 8~ to 02, we get

W(0)=W, e ~(v&" v", (i=1,2) (4.25)

where Wi =—W(0) and W2 =—W(7r). Almost all the
particles in (0,0i) have orientations very close to 0, and
almost all in (82,~) have orientations very close to m.

If we normalize J'WdQ to be the total number n of
particles, then the numbers e~ and m2 in the two groups
are

Formulas for the case (~(V, —U; )))kT can be
derived by two methods: the Kramers method and the
method of approximate minimization. We consider for
simplicity the case in which V(8) has a minimum Ui at
0=0, a minimum V~ at 8= x, and a maximum U at
8=8 (0(8 (m), with P(V —Vi)))1 (i=1, 2).

In the framers method" we assume from the outset
that equilibrium has been attained within the regions
0&~8&~8, and 82~&8~&~ separately (8((8~(82) and that
all but a very small fraction of the members of the
ensemble have orientations within one or the other of
these regions. The choice of 8~ and 82 is not critical,
since most of the particles have orientations very close
to 0 or m, all that is required is that e t'v"') be very
small in comparison with e &v' but very large in com-
parison with e ~v" (i= 1, 2), conditions easily satisfied
when P (U —V;)))1.

In the regions (0,0i) and (02p.) we have

where

Wee v =—(PI/2m. h')I, (4.31)

e~ vd0/sin8. (4.32)

In this case we replace U by its Taylor's series about
the maximum, truncated at the (8—8 )' term; replace
sin8 by sin8; and integrate from —~ to + 0(. Then

I~= (2~/Pk~)'('e~ /vsin0~,

where

k =—V" (8 ). (4.34)

(4.33)

Now by Eqs. (4.25), the left member of' Eq. (4.31)
is W2eev2 —Wie&v'; or by Eq. (4.26), (n2/I2 —ni/Ii)/2m.
Equation (4.31) relates this to the current, I, from the
region (0,0i) to the region (82@.). But since practically
all the representative points are in these regions,
I= —rii=ri2. Equation (4.31), therefore, gives

h n2 ni)
n, = —ri2 ——

pI I2 Ii)
(4.35)

This is of the form (1.1), with

v, ,=h/PI I; (i=1, j=2 ori=2, j=1). (4.36)

with
n; = 2~8';e&v'I;, (4.26) With the approximations (4.28) and (4.33), this

becomes

I&= e t'v(e~ sinodg, I2= e ~v&" sin8d0. (4.27)
with

p, = g, .e—p(vm —v')
Zj1

—i',j

c;;=h'k, (sin8„) (Pk /2m-)'".

(4.37)

(4.38)

Because of the rapid decrease of the exponential factor
with distance from the minimum of V, we may in I&
replace V(8) by its Taylor's series about 0, truncated
at the 8' term (the 8 term vanishes); replace sin0 by 8; H,M,=—2E, (4.39)

When V is given by Eq. (4.20), with E)0, there are
two minima whenever

~
H

~

M, (2K. If, following
Neel, 4 we define a critical field H, by
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&t»= L/Ii, A= —C/I. ,
L'= H/L(1/Ii)+ (1/I2)]cos8 = H/—H,= —e—. (4.40)

then the condition for existence of two minima is for an indeterminacy of sign):
~

H
~
(H„.The maximum is at

(4.49)

In this case

Vi —— HM—, , Vs=-+HM, , V = ,'II,-M, .(1+22),
We may, therefore, minimize D[p] for specified

(4.41) $(81) &t21 and Q (82) &122 ~ Then in (8i,82), &p satisfies

k, =H,M, (1+e)1 k, =H,M, (1—e) 2

k = II,M, (1 c'). —
Formula (4.44) gives

(4.42)
d d@—e i'~—sin9 =0.
dg dg

(4.50)

C2i

v
=- k' — (H,M, )2"(1+s)-'(1W e)

27rkT
(4.43)

Integration gives

d&t /d8= A e&v/sin8,

and further integration from 0& to 0~ gives

(4.51)

po'qM eII 'M
(1—e') (1~e). (4 44)

1+(ysr)M, )2 22rkT

Numerical calculations based on this formula were
reported earlier. "

To attack the case P('~ —V;)))1 by the method of
&Jpproximale minimisatiorr, we note that with 8 as
variable the quantity to be minimized is

AI =y, (4.52)

(4.53)

where I„, is defined by Eq. (4.32); this evaluates A.
To evaluate X~=D[&t2]/H we now substitute (4.51)
in (4.45) with limits 8, and 82, since elsewhere dQ/d8=0;
insert the value of A from (4.52); substitute the values
of &t 1 and $2 from (4.49); and divide by H. Thus,

D[&t2]= es (&I—&t2/d8)' sin8d8

and that the constraints are

H[P]= e&vqP si—n8d8= const—=H

and

H[rt2, &tis]= e eve sin8d8=0.

(4.45)

This method gives directly the reciprocal pi of the
longest 6nite time constant. To 6nd the same quantity
by the Kramers method, we set rss=n —rri (n= const)
in Eq. (4.35) and transpose the ni term to the left;

(4.46) Pi is the coefficient of 221. It is equal to v»+v» and is
again given by Eq. (4.53). Thus, the minimization
method gives the same time constant as the Kramers
method. It also gives formulas for

4.47
IV e pv(A, +—Ai&fie»')

&1212Ii+$22I2=H,

4iIi+&tsI2=0,
(4.48)

where Ii and Is are again defined by Eqs. (4.27).
Fquations (4.48) can be solved for @2 and &t 2 (except

Because of the constraint (4.47), Q must change sign in
(0,2r). Because of the exponential factor, H[g] and
H[&t,&t s] depend mostly on the values of p near 0 and 2r

and not on the details of the change from pi=—P(0) to
&|2=A(2r), provided it is not concentrated near these
points; on the other hand D[&t] can be kept small only
by concentrating the large values of

~
dP/d8~ near 8 .

Ke can, therefore, expect to get a good approximation,
when P ( V —V,)))1,by constraining Q to have constant
values &f12 in (0,81) and &2 in (82,2r) and minimizing D[&t2]
under the modified constraints Hi[&]=—H and
Hi[&,&t s]=0, where in Hi the integration extends from
0 to OI and from 0~ to vr, with omission of the very small
contribution from the interval (81,82). The choice of 8i
and 82(0(81(8 (82(2r) is, as before, not critical.

The modihed constraints are equivalent to

in the various regions (0,8i), (8,,8,), and (82,2r); these
may now be interpreted physically in terms of e& and
e2, with the same results as by the Kramers method.
The minimization method has the advantage that it
justices, on the basis of a purely mathematical approxi-
mation, simpli6cations which have to be injected
arbitrarily in the Kramers calculation; in particular,
it avoids the arbitrary assumption of a divergenceless
J in (81,82).

The further simpli6cations that follow from the
approximations (4.28) and (4.33) may now be intro-
duced as in the Kramers method. Then

Pi= vis+vsi=cise s& " 1'+csie &'&v"—"&, (4.54)

~h~~~ cis and csi are given by Eq. (4.38).
In equilibrium, Ecl. (1.1) with the approximations (4.37)—(4.38)

gives
222/221 = v12/v21 —(kl/4)e e&v2 (4.55)

In general, k&&kz, and, therefore, n2/e»g &(v2 v» = g ~(v2—v»fk&.
The violation of the Boltzmann distribution law is only apparent.
The 221 particles with orientations in (0,81) are not equivalent
to rtI particles each of orientation 0=0 and free energy Uiv; they
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constitute an ensemble with partition function Zi.=27fvIJ and
Gibbs free energy" (per particle) Gi = kT—lnZi, where vdQ is the
number of microstates for which the moment orientation is within
solid-angle element dQ. It is this free energy 61, not the value vV&

characteristic of particles with 8 exactly zero, that must be used
in the Boltzmann factors to find n1 and n2 in equilibrium. With
the approximation (4.28),

e ai&'r=Z&=2rrvii (2irv/P—k—i)e evi; (4.56)

a similar formula holds with subscript 2. The equilibrium n; s are
in the ratio

Ns/rsi e=&oi »&"r (k=i/ks)e e&vi », {4.57)

in agreement with (4.55).
One can change the power of T in the coeKcient of the ex-

ponential function in v;; by including or not including a particular
free-energy term, such as that just discussed, in the argument of
the exponential. Such terms may be diA'erent for single-domain
particles, for domain walls, and for other models of magnetization
reversal. Therefore, no great significance can be attached to
formulas for c;; [in Eqs. (4.37)] that are derived without con-
sideration of the specific properties of the model.

The approximate-minimization method described is
easily extended to the case in which V(e) has more than
two minima separated by energy barriers large in
comparison with kT. The results are the same as would
be obtained by assuming that e; particles of the en-
semble have orientations near the minimum 8; and that

(4.58)

and evaluating the v; s by the Kramers method.

D. Other Approximations

The method of approximate minimization can be
used to obtain approximate values of the p s and &ti s,
and in particular of pi and gr, when neither of the in-
equalities n(V „—V;„)&&&&.kT is satisfied.

For example, assume a solution of the form (z= cosq)

y= Z. C x", (4 59)

where the sum may include even or odd powers or both and as
many terms as one wishes. Then

DPg) = Z~ Z~ C~C~rim(qnyms qn+m), .-—(4 60)

H[qi]=Z Z CC qp, (4.61)

where

(4.64)

and where the variables are the C„'s. This gives the homogeneous
system of linear equations in the C„'s

Z~ [rim(q +~ s —q +~)—Xq ~ )C~=O; {4.65)

the compatibility condition is

( [rsrri(q~+~ s q~+m—) —&q„+m] [
=0. (4.66)

If the term Cex' is included in (4.59), one solution will be X=O,
Co/0, C„=O for n&0; this is the equilibrium solution of the
original problem and is rigorous Any. other solution p„of (4.65) and
(4.66) then automatically satisfies the orthogonality conditions
H[ib, qi ]=0 with respect to the equilibrium function pp= Co and
to previously obtained approximate solutions p of the form
(4.59) (is=1, 2, ~, rs —1). The desired approximate value of
X1 for the original problem is therefore the smallest non7)unishing
eigenvalue of (4.66). The term Coze need not be included in (4.59)
if the condition H[p, t)=0 is satisfied by symmetry.

In the case of a uniaxial particle in zero field, "with V = —Ex',

where

1
q„=2 exp(nz')z"&fx,

0
(4.67)

n=Es/kT; (4.68)

qo can be found from tables"" of Jj&*exp(t')dL, and recurrence
formulas for the other q, 's can be derived by integration by parts.
One can then solve with successively larger numbers of terms in
Eq. (4.59) until the agreement of successive values is satisfactory.
The labor would be considerable.

Since this method introduces constraints in the minimizations,
it gives a value of X~ that errs, if at all, upward; it therefore
provides an upper bound for X~. In general, minimization of
Di[4i)/Hi[4] will give an upper bound to 1&i if Di[4i) & D[ik) and
Hi[ib]&~H(p) for every 4i and if the minimization is performed
either rigorously or under constraints; it will give a lower bound if
Di[P) &~D[4) and Hi[i') &~H[&b) and if the minimization is
performed rigorously. It is diKcult to obtain useful lower bounds
because of the last condition. 24

(4.69)

In the case V= —Ex', a lower bound can be found
by replacing the factor e l'v= exp(rex'/kT) = exp(nx')
by 1 in Dfr&b) and by e in HfP j The eigenvalues of X

in the resulting minimization problem are then &—

times the eigenvalues of X in the original problem with
V= const; therefore X„&sr(ss+1)e a, and in particular

where

gv=
1

e t'~x"dx.
—1

(4.62)

The discrete-orientation approximation (4.54), for
t/'= —Ex', gives

The extrema of D[ik)/H[ih) satisfy

bD[4]—7 bH[4] =0, (4.63)

2'R. H. Fowler and E. A. Guggenheim, Statisticu/ Thermo-
dyriar&sies (Cambridge University Press, London, 1939),pp. 67—68.
Let the system under consideration be the particle plus an ideal
permanent-magnet field source, so that the energy e, in microstate
s includes the energy of the microscopic moments in the field.
Then sV(e) is the free energy of a particle specified to have
orientation 0, whereas G1 is the free energy of one specified only to
have an orientation in (0,01). Therefore, e~'I~~= Z, e "~~ and
e '~("f~ = Z, (g) e "~~~, where the 6rst sum is over microstates
compatible with an orientation in (0,81) and the second over
microstates compatible with the specified 8. It follows that
e ~'I~ = Zf, vj,e "v&~~)~~ AQ/„where v1,601, is the number of micro-
states with 8=Of, to within solid angle AQUA„and the summation is
over JOE s for which 8 is in (0,611). On going over to an integral we
get Eq. (4.56) if we suppose that vs= v, independent of e&,.

Xr ——( 4Q/) sr'n"e —, (4.70)

"-H. G. Dawson, Proc. London Math. Soc. 29, 519 (1898);
E. Jahnke and F. Emde, Tables of Fs&riclioris [(B. G. Teubner,
Leipzig, 1933), 4th ed. (Dover Publications, Inc, , New York,
1945)], p. 32.

"N. Arley, On the Theory of Stochastic Processes and Their
Applecalionlo the Theory , of Cosmic Ra&fkali or& (John Wiley 8& Sons,
Inc. , New York, 1943), pp. 222-227.

'40ther methods of obtaining lower bounds are discussed by
S. H. Gould, Variatioaal Methods for Pige&avals&e Problems (Uni-
versity of Toronto Press, Toronto, 1957).

which is compatible with (4.69) only ifn& (sr/4)'"= 0.92.
Thus for n(0.92, the value of Xr by (4.70) is certainly
too small.
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E. Ayylication

For any specific form of the function V(8) or V(x)
(x= cos8), the methods described in Secs. 48—D can be
used to calculate Xi and hence Pi, and also gi if it is of
interest; some of these methods can be extended to X„
and p„with is&1. Except in the trivial case V=const,
it is necessary to use approximate formulas; but
accurate values can be found at the cost of compu-
tational labor, and upper and lower bounds to X„can
be established by the general methods described in
Sec. 4D.

The case of greatest interest is the case V=X sin'8
—H3I, cos0, a uniaxial particle in a longitudinal held";
and here the most important question is to how small a
value of n/T the high-energy-barrier approximation,
which leads to Eqs. (4.44) and (4.54), is legitimate. A
partial answer to this question in the case B=O, where
Eq. (4.54) is equivalent to Eq. (4.70), was given in the
discussion of Eq. (4.69): The formula is certainly
wrong if n= Ei//kT=H—,M, i//2kT is less than 0.92. A
more stringent criterion could be established by
numerical calculations based on Eq. (4.66) in the range
a= 1.A less satisfactory method is to compare values of
Xi (or Pi) based on the high-energy-barrier approxi-
mation with values based on the low-energy-barrier
formula (4.24). Such a calculation, for the iron particles
considered in reference 10, shows that the two formulas
agree in order of magnitude at a=0.5 (1/pi= 2.8X10 "
sec bv the first formula, 1.4X10 " sec by the second)
but disagree by two orders of magnitude at 0, =0.05
(3.5X 10 ' sec vs 1.2X 10 "sec; the high-energy-barrier
formula gives a spurious minimum of 1/Pi as a function
of ii/T at n/T=k/H, M„when n= 1/2). For order of
magnitude, therefore (and this is often all that matters),
the high-energy-barrier formula seems to be useful
even slightly below the point (0.=0.92) at which it
becomes certainly wrong. For iron particles at room
temperature, " this corresponds to a spherical particle
of radius about 40 A.

$. CONCLUSIONS

The Brownian-motion approach to this problem is
based on legitimate simplihcations, and it yields to
analysis up to the point where a partial differential
equation is to be solved. Beyond this point, analytical

methods fail except in trivial cases. When V= V(8),
the approximate methods developed seem adequate
for all cases of interest. When V=V(8,&), practical
techniques of solution remain to be developed. Formu-
lation of the problem as a minimization problem seems
possible only when the gyroscopic terms drop out, as
they do when V= V(8).

The analysis of the case V= V(8) shows that the
high-energy-barrier approximation is usually sufhcient;
this reduces the continuous distribution of orientations
effectively to a discrete distribution and leads to
formulas (1.1)—(1.2) and to numerical calculations of
the type illustrated in reference 10.Further study of the
case V= V(8,&) might, therefore, aim specifically at
developing a high-energy-barrier approximation for this
case.

Formulas for the case V= V(8,&) would have another
application, quite apart from superparamagnetism and
magnetic viscosity. When one attempts to calculate
static magnetization curves of a single-domain crystal,
one finds that the initial orientation sometimes becomes
unstable while two or more other equilibrium orien-
tations are still stable. "One must then determine to
which of the remaining orientations an irreversible
jump can occur, and with what probabilities. This
problem can be studied by use of Eq. (2.10).
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