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scattering" at the lower strains; such scattering has
been ignored in deriving (11).

CONCLUSIONS

The preliminary results presented here show quite
clearly that the matrix element for "across the zone
face" scattering in silicon is quite small and is consistent
with the results of Long. ' Both Long's results and the

'~ G. Weinreich, T. M. Sanders, Jr., and H. G. White, Phys.
Rev. 114, 33 (1959).

present ones assume a temperature-independent effec-

tive mass; if, as suggested, "the effective mass increases
with temperature, the effect would be to make this

scattering rate even less.
As an ancillary result, a value of 8.3&0.3 eV has been

obtained for ™,the shear deformation potential of the
conduction band of silicon.

' M. Cardona, W. Paul, and H. Brooks, Helv. Phys. Acta 33,
329 (1960).
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The theory of the elastic scattering of polarized neutrons by magnetic crystals with ordered spins is
developed. Several terms which were omitted by Halpern and Johnson in their original treatment of the
subject are discussed. These terms vanish in the case of scattering from simple ferromagnetic or antiferro-
magnetic structures, but they give rise to some interesting effects in more complex structures. Among these
is a polarization effect which occurs in antiferromagnetic spirals, proposed recently by Overhauser,
Nagamiya, and Izyumov, and an effect which allows the determination of the imaginary part of the form
factor in noncentrosymmetric systems. General formulas for the cross section and for the polarization of
the scattered beam are given for arbitrary spin orderings.

INTRODUCTION

POLARIZED neutron scattering has, in the past
few years, proved a most useful technique for the

study of the magnetic properties of solids. The theory
of the scattering of polarized beams was developed by
Halpern and Johnson' in their now classic paper on the
magnetic scattering of slow neutrons, and the expres-
sions which they derived have been veri6ed experi-
mentally. '' In their derivations they restricted their
attention to the cases of ferromagnets and simple
antiferromagnets. As a result of this restriction they
omitted several terms which should appear in the cross
section for scattering of a polarized beam and in the
expression for the polarization of the scattered beam.
These terms are of interest in view of the complicated
and unusual spin arrangements found in the last few
years. Two of these terms give rise to an interesting
polarization effect in the case of scattering by spiral
spin structures, as proposed recently by Overhauser, 4

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

i O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939).' C. G. Shull, E. O. Wollan, and W. C. Koehler, Phys. Rev. 84,
912 (1.951).' R. Nathans, C. G. Shull, G. Shirane, and A. Andresen, J.Phys,
Chem. Solids 10, 138 (1959); R. Nathans, T. Riste, G. Shirane.
and C. G. Shull (unpublished).

4 A. W. Overhauser, Bull. Am. Phys. Soc. 7, 241 (1962).

Nagamiya, and Izyumov' while another is of interest
in connection with the imaginary part of the magnetic
form. factor.

In this paper complete expressions for the elastic
scattering cross section of a system of ordered spins
are derived, along with relations for the polarization of
the scattered beam. Several examples are presented to
illustrate the occurrence of the terms omitted by
Halpern and Johnson. In order to derive the formulas
we make use of the density matrix description of the
polarized beam. This was 6rst used by Tolhoek and
de Groot' and Kolfenstein' in the case of nuclear
scattering, and was applied to the diffraction problem
by Marshall. ' Particularly clear descriptions of this
useful concept are given by Fano and by ter Haar. '

The principal expressions derived are Eq. (15) for the
cross section for elastic scattering of a polarized beam
by ordered spins and Eq. (19) for the final polarization
of a beam elastically scattered by ordered spins.
Equations (8) and (17) are more general and may be

~ T. Nagamiya (private communication to R. Nathans); Yu. A.
Izyumov, Zh. Eksperim. i Teor. Fiz. 42, 1673 (1962) Ltranslation:
Soviet Phys. —JETP 15, 1162 (1962)j.

s H. A. Tolhoek and S. R. de Groot, Physica 15, 833 (1949).
7 L. Wolfenstein, Phys. Rev. 75, 1644 (1949).
'W. Marshall, Lectures on ¹utron Di8raction, Harvard,

1959 (unpublished).
s U. Fano, Rev. Mod. Phys. 29, 74 (1957); D. ter Haar, Rept.

Progr. Phys, 24, 304 (1961).
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used for calculating polarization sects in inelastic
processes. These are not considered in detail in this
paper, and reference in this regard may be made to
work of Saenz'

CROSS SECTION FOR SCATTERING OF A
POLARIZED BEAM

The cross section in Born approximation for scattering
of a polarized beam is' ' "

d'o k'( ms )'
I 2 p. trL'U-'(K)U'. (K)p]

dQ'ds' k 2mb') aa'

x6i ik" li')+s——s,). o)
&2m,

Here 'U(K) is the Fourier transform of the interaction
between the neutron and the scatterer. The quantum
numbers q and q' label the initial and final states of
the scatterer. They may refer to such properties of the
solid as its state of magnetization, its distribution of
phonons, etc. The factor p, represents the probability
that the scatterer is in the initial state labeled
by q. Usually p, is given by the Boltzmann factor
e e&'~r(g, e e~'"r) '. The initial and final wave
vectors of the neutron are denoted by k and k', respec-
tively, and K= k—k'. The density matrix p is given by

p=-,'1+P s,

where 1 is the two-by-two unit matrix, and s is the
neutron spin operator. The trace in Eq. (1) is under-
stood to be taken only with respect to the neutron spin
coordinates. The meaning of the vector P in (2) can
be seen by using the relation

(0,)= tr(po, ), (3)

where 8 is a quantum mechanical operator and (8)
denotes the average value of this quantity. Ke consider

(s), where s is the neutron spin operator. Ke have

(s )= tr(-', s +s seI'e),

where o.=x, y, s, and the summation convention has
been introduced. The trace of an individual spin
operator is zero, while tr(s~se) =—',6~~. Hence,

(sa) 1)aepp —t pn

The vector P, therefore, represents the polarization of
the incident neutron beam. ' The magnitude of P is
unity for a completely polarized beam, and is zero for
an unpolarized beam.

When explicit forms for the Fourier transform of the
potential are substituted in (1), we may immediately
perform the traces indicated, and we have an expression
for the cross section which contains the polarization P
of the incident neutron beam. These explicit forms have
been given by Halpern and Johnson. Following them
we can write 'U(K) ='U„(K)+'U (K), where

'U (K)=
27rA2 a„+(I„,+1)+a„; I„;

Z expCiK (n+d, )] +2+ expfiK (n+d, )] I; s,
mp nj 2I„,+1 ~i 2I„;+1

27rA2

(Ts+T, s),

'U„(K)=
27!A 2+8

P e'" " I X (s,XE')——(E'Xp;) s,
mP @AC

27l A 2+8
s Q.

mo mc'

(6)

'U„represents the interaction with the nuclei of the
scatterer, while 'U represents the magnetic interaction
with the spin and orbital moments of the electrons.
Here I+d; is the position of a nucleus, n being the
vector from the origin to the origin of the unit cell in
which the nucleus is located, while d, is the position
vector of the nucleus within the unit cell. The position,
spin, momentum and mass of the ith electron are
r;, s;, y, , and m, respectively, while the spin, gyro-
magnetic ratio, and mass of the neutron are, respec-
tively, s, y= —1.91, and mp. I„jis the spin operator for
the nucleus at n+d, , I„; is the magnitude of the spin of

"A. %. Saenz, Phys. Rev. 119, 1542 (1960)."S.V. Maleev, Zh. Kksperim. i Teor. Fiz. 40, 1224 (1961)
)translation: Soviet Phys. —JETP 13, 860 (1961}].

this nucleus, and u„j+ and a„are, respectively, the
scattering lengths for neutron spin parallel and anti-
parallel to nuclear spin. To 6nd the cross sections for a
polarized beam we need only substitute (6) in (1) and
perform the indicated traces. The evaluation of the
traces is made easy by using the following formulas':

tr1=2,
trs =0,

trs sl'=~6 t',

trs s&s&='-i c &&,

trs ses~sr= ', (h e6~r p~yr-+. g r6e~)—

Here ot, P, y, t' run over x, y, s, and e» is the unit
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antisymmetric tensor of third rank. These formulas follow from the properties of the Pauli spin matrices.
Substitut:ing (6) in (1) and using (7), we obtain

A/2
d'~f'd~l'd~'=- —& P. &qiTo'Iq'&&q'iToiq&+4&qi»" iq'& &q'IT~iq&+ ——(qlTo'Iq')&q'IP Qlq)

/ÃC

ye2 pg2 2 ye' '
+ &qlp Q'lq')&q'lq'oIq&+ &qlQ'Iq') &v'IQlq&+i —P (&qlQ'Iq')x&q'IQlq))

mc' tSC PlC

In deriving (8) we have used the relation

(AXB)-=P„.-) A~B

for the components of the vector product of two vectors
A and S. We have also omitted terms which are linear
in the nuclear spins. This is because we must average
over nuclear spin orientations to obtain the Anal cross
sections, and we assume that the nuclear spins are
randomly oriented. This corresponds to the experi-
mental situation in the vast majority of cases of interest.

Equation (8) is, except for the above restriction,
quite general, and gives an expression for the cross
section for elastic or inelastic scattering of a polarized
beam. Before specializing to elastic scattering, it is
worth noting that the last term in (8), a polarization-
dependent purely magnetic contribution to the cross
section, was not considered by Halpern and Johnson.
The only polarization-dependent term discussed by
them was the nuclear-magnetic interference term, also
included in (8). That a purely magnetic polarization
dependent term should occur may be seen by considering
the scatte-. ing of polarized neutrons by a spin ~ ion in a
magnetic heM. If the ion is in the ground state with
m. =+2, then a neutron polarized along the negative s
axis can excite the ion to the m, = —-', state, so that angu-
lar momentum can be conserved if the neutron's spin is
Ripped. The neutron's final energy will be less than its
initial energy by an amount equal to the excitation
energy of the m, = ——', state of the ion. On the other
hand, an ion in the nz, =+—', state cannot be excited
to the m, = ——,

' state by a neutron polarized along the
positive s axis, since there is no way in which angular
momentum can be conserved. Hence, in this case, the
magnetic inelastic scattering cross section depends on
the neutron polarization. This type of phenomenon is
described mathematically by the last term of (8). As

vill be seen, this term can also be of interest in elastic
scattering from certain complicated spin structures.

CROSS SECTIONS FOR ELASTIC SCATTERING

We wish now to limit our considerations to elastic
scattering from magnetic substances in which the
individual spins are all rigidly aligned, e.g. , ferro-
magnetics, antiferromagnetics, etc., at low tempera-
tures. For elastic scattering, we take iq')= iq). We
assume that the nuclei are rigidly fixed, so that lattice
vibrations are ignored. This simply amounts to dropping
Debye-Wailer temperature factors in the 6nal result.
We also assume a Heitler-London model for the mag-
netic structure, so that the ionic spins are taken to be
localized. If, in addition, the orbital momentum is
quenched, we may take over Halpern and Johnson's
result that"

(qiQiq)=g. , exp[iK (n+d, )]f., (K)

x&qi&x(s.,xx) iq). (9)

Here, S; is the spin operator for the ion at site (n, j),
while f„(K) is the form factor for that ion, i.e. , the
I'ourier transform of the ion's spin density.

To derive the elastic scattering cross section, we
substitute (9) in (8). At very low temperatures only
the ground state of the spin system will be occupied
with appreciable probability, and for this state the
matrix element in (9) is easily evaluated. We have

&qi s„,
I q) =s.,&„„ (1o)

where 5„, is the magnitude of the spin at lattice site
(n, j), and g„; is a unit vector in the direction of this
spin. Defining

q.,=Ax (g.,xE),
the elastic scattering cross section becomes

{&
exp[iK (R.,—R„,)]{a„,}{a.,'}++({a„,}—{u„,}'-)+ Q exp[.'K (R„,—R. , )]

dQ' n jn' j' 11j WC n j n' j'

A/2 2

a„, „,I SjPqj a„, „, K 5„,Pq j exp iK. I„;—R j
ggp2 n j,n' j'

R„=n+d, .
xs';5.;f. ;"%)A';(K)(s. ; e.;+)P (a, ,'xe. ,:)), (»)

'2 Equation (9) can still be used if the orbital angular momentum is unquenched, as in rare-earth ions. In this event, the form factor
f(K) must be reinterpreted as

f(K) - (L J fr, (E)+2S Jf, (E))/(L. J+2S.J),
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An average over nuclear spin orientations has been
performed in deriving this expression. The quantities
{as/} and {u;}, the averaged nuclear scattering
lengths, are defined by

(I„,+1)a„,++I,a,
2I„,+1

(I.,+1)(~.")'+I., (~., )'
{~.'}=

2I„,+ 1

(13)

Here I„; is the magnitude of the spin of the nucleus at
site (n, j), while a„,+ and a„, are, as above, the scatter-
ing lengths of this nucleus for neutron spin parallel and
antiparallel, respectively, to nuclear spin.

Equation (12) must be averaged over isotope distri-
bution before it can be applied generally. Also, for
scattering by disordered alloys, it must be averaged
over the positions of the components of the alloys. %e
do not treat the latter case in this paper.

The first line of the equation gives the pure nuclear
scattering, both coherent and incoherent. The second

line represents the nuclear-magnetic interference term
derived by Halpern and Johnson. lt is present only for a
polarized neutron beam. The last line gives the pure
magnetic scattering. The term in this proportional to
P gives the effects mentioned above for spiral spin
structures.

%e perform the isotopic averaging by defining

({~})=r.« ~-{~-}

where C is the concentration of the o;th isotope and
{a } is the scattering length for this isotope, averaged
over nuclear spins, as above. Since the isotopes are
randomly distributed, we have

({a„,}{a„.,'})=({a,})({a,'}) for nAn' or
= ({a,}') for n=n' and j =j '.

These two results may be combined to give

~nj ~n'g'

+(({ }')—({ })')~-~„' (14)

On averaging (12) over isotopic distributions and using

(14), we obtain finally

~j( )sl'+ ' qr((~')) —((~))' + x ~xr['s (s —s )3(((' ))f (s)s r q.
dQ' pgf nj,n' j'

2 2

+((a;))f.;(K).s ;p ,*q ;).+, ., , p exp[~K (s.;—R., ;,)$5., ;,s.;f., ;,"'(s)f.;(K)
'HZC~ n j n' j'

Here &)v(K) =Q; expLsK d, ]({a,})is the nuclear struc-
ture factor. This equation gives the elastic scattering
from a set of ordered spins. Most aspects of it are quite
familiar and have been discussed by many authors in
the past. In a later section we illustrate the newer
features as well as some of the well-known ones, by
examples.

POLARIZATION OF THE SCATTERED BEAM

The formulas derived in the preceding sections assume
an experimental arrangement in which each neutron

of the scattered beam is counted, regardless of its

polarization. In some experiments the polarization of the

final beam is analyzed, and this data can yieM valuable

information not otherwise obtainable. In this section

we derive general formulas for the 6nal polarization of

an initially polarized beam elastically scattered from a
substance with fixed spins.

The inal polarization Pq of a scattered beam is

given in Born approximation by ' ' "

dO k sz
~py =— x p, tr[U. , !(K)s'U, , (K)p]5 (q" q')+I:.", r,',I——

dQ d& k 27rk2 2'/Ro

The notation used is the same as that for Eqs. (1) and (6). Allowance for the initial polarization P of the beam is
contained in the density matrix p, given by Eq. (2). To obtain an expression analogous to (8) we substitute (6)

~here fL, (E}and f,(k) are the spherical parts of the orbital and spin form factors, respectively, and J is the total angular mo-
mentum. Also Snj in (9} should be replaced by the total angular momentum Jnj of the ion at site (nj).This is a good approximation
for small momentum transfer K. See, e.g. , G. T. Trammell, Phys. Rev. 92, 1387 (1953); M. Blume, A. J. Freeman, and R. E.
%'atson, J. Chem. Phys. 37, 1245 (1962).
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in (16) and use the relations (7). We find

d2O

=—2 P. 2P(q12'o'Iq'&&q'I2'olq&+R(qlTi'Iq')(q'IP Tilq&+k(qlP T 'I q'&(q'ITilq&
dQde k aa'

1 ye'~ 1(ve'~—KP(&ql T{'Iq') &q'I Til q&)+- l&ql 2'2'I q')(q'I Q
I
q)+-I

2 mc2) 2 kmc2)

( ye2 , .(~"l yc2i 2

+l2i (q f
PxQ'f q'&&q'I 7'Rf q&

—l21 l(qf TR'Iq'&&q'IPxQI q) —l' I ((ql Q'Iq') x(q'IQI q&)'
Emc2

'
Imc2& mc2i

1 ye2)' 1(ye2q{2 1(~c2 2

+-
I (ql Q'I q'&&q'IP Ql q&+-I I (qlP Q'I q'&&q'I Qlq&

—-I P(&ql Q'I q') &q'I Q I q))
2 mc2f 2&mc2) 2&mc2

A2

X8 (k"—k2)+E E, I. —(17)
25$p

In deriving this expression we have omitted, as in (6), terms which vanish on averaging over randomly oriented
nuclear spins. Equation (17) is, except for this restriction, general, and yields the polarization of the scattered beam
for elastic or inelastic scattering. There are several terms in (17) which did not appear in Halpern and Johnson's
treatment. These are more clearly seen when the equation is simplihed by restriction to elastic scattering. To do
this we take

I q )= I q) and we make the assumptions indicated in Eqs. (9), (10), and (11).On substituting these
in (17) we find for the polarization of an elastically scattered beam

&0 A/2

—,'P, =-',P P expLzK (R„;—R„;.)]{{2„;){{2„.; }——;PP ({(2., ) —{(2„f))+— P expl zK. (R„,—R;.)j
dQ' IIg,n'i' Il j 2 SK2

A/2 2

+— P exp(eK. (R„—R; )jS;S;f;;"(K,)f„;(K)(—e(q„; Xq ~)+q; (P q„.)
mg2 n jn'p

The average over isotope distribution is performed exactly as before. Using the same definitions for isotopic and
spin averages on the scattering length, we have

der 1 +8 '{{

2Pf, =2PIZc' 'I'I~~(K)I' —2P&Z (-'&{~'))—-'&{&)'&+&{~})')+-
I Z «pl:2K (R.f —R"f)3

dQ' 2 mc2J Rf'~'f'

1 ( ey{e2 2

+ ({e))eSf;(K)(PXq, ,; ))+—
~

P exp[eK (R„—R;)jS;S f;,,*,(K)f,„, ,(K„), ,
2 kmc

XI —2({l" X{l.;)+{1.; (P a;)+(P 21";){I.,—P(a";"q.;) I. (19)

The notation is as in (15). To find the polarization of
the hnal beam we divide this expression by the ex-
pression (15) for the cross section. The terms appearing
here which are not present in Halpern and Johnson's
analysis are just those which have a factor i. Two of
these are present in the nuclear-magnetic interference
term; these give rise to a rotation of the plane of
polarization in systems for which the form factors are
complex, and they present the possibility of deter-

mining the imaginary part of the form factor directly.
The other term appears in the pure magnetic scatter-

ing, and it gives rise to a polarization of the scattered

beam even though the incident beam is unpolarized.

This term corresponds to the extra term in the cross

section (15) discussed above, and it vanishes for a

simple ferromagnet. All other terms in (19) have been

discussed previously.
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da.(dQ' =
I g„e'I '"

I

'
I F&(K) I

' (20)

This is independent of the polarization of the incident
beam. The factor Ip„e"'K'"I' is well known as the
diffraction interference function, which vanishes unless
K is 2m times a reciprocal lattice vector. It describes
the coherent nature of the scattering, which occurs only
in Bragg peaks. The polarization of the 6nal beam
which has been scattered in a coherent nuclear elastic
process is found, on dividing the first term of (19) by
(20), to be the same as the initial polarization, Pf ——P.
This is well known, and is anticipated on physical
grounds. The final polarization of the nuclear in-
coherent scattering is somewhat more complicated.
The cross section in this case is given by the second
term of (15),

d~«~I'= » ((a'})—((a })') (»)
and the final polarization, obtained by dividing the
second term of (19) by the above, is

, E (((a'})—4((a }')+3({a})')
Pg ———-', P . (22)

Z (({a'})—((a }&')

The complication of this expression is due to the fact
that the incoherent scattering arises from disorder
in the nuclear spin system as well as from the disordered
arrangement of isotopes. The latter type of scattering
does not lead to any change of polarization, but the
nuclear spin disorder scattering does give rise to such
a change. The final polarization is then an average over
the isotopic and nuclear spin disorder scattering
results. In the special case of pure spin disorder scatter-
ing (all constituents of the sample mono-isotopic) Eq.
(22) can be simplified, since in this case we can ignore
the angular brackets in the isotopic averaging of the
scattering lengths. We have ((a,})'=((a,}'), and

Pf — 3P On the other hand, if all isotopes present
have zero spin (pure isotopic disorder scattering) we
can ignore the spin averaging of the scattering lengths,
so that ((aP})=((a,. }'), and Pf ——P. In the general
case" the final polarization is between —3P and P.

(b) The occurrence of one of the extra terms in the
expression for the polarization of the 6nal beam can be
illustrated by considering a uniaxial antiferromagnet
without a center of symmetry (e.g. , Cr&03). In such a

"D. J. Hughes, Pile Xeutroe Research (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1953),p. 262.

EXAMPLES

To illustrate the occurrence of the various terms in
(19) and (15) we will consider more specific spin
arrangements. Several well-known results are re-
derived in order to contrast them with the effects of
the additional terms derived here.

(a) We consider first the familiar expressions for
pure nuclear scattering. The coherent elastic cross
section is given by the first term of (15),

system the spins are either parallel or antiparallel to a
unit vector q, and q, =&q, where q=XX(qXZ) is
independent of n and j.The cross section becomes

do ~2ye'
„e'K'"I IF&(K) I +I S

dQ' I mc2

XReI F~*(K)F~(K)f(K)3' q

+ I
s'I F~(K)f(K) I V .

2

kmc'

The purely nuclear incoherent scattering has been
omitted here, since all other terms give rise to scattering
in Bragg peaks. If one of the peaks is observed experi-

mentally the incoherent contribution to the scattering
will be much smaller than the coherent. F (K)
=P, (&), exp(iK d, ) is the magnetic structure factor
for the unit cell. The plus or minus sign is taken if the

spin on the jth ion in the unit cell is parallel or anti-

parallel, respectively, to q. All other terms have been
dehned previously. This expression was given by
Halpern and Johnson. It should be noted that if the

magnetic ions are not in a center of symmetry we should

expect the form factor f(K) to have an imaginary part.
This follows from the definition of the form factor as
the Fourier transform of the spin density:

f(K)= e'I'p(r)dr= cosK rp(r)dr

+i sinKrp (r)dr. (24)

If the ion is in a center of symmetry p(r) = p( —r), and

the imaginary part of the form factor vanishes. If
p(r) A p( —r) as for a noncentrosymmetric ion

Imf(K)WO. The cross section (23) for scattering by a
polarized beam does not provide a simple method of

determination of Imf(K). The extra terms in the

expression for the polarization of the scattered beam do

provide such a method, as will be seen.
From (19)we find for the polarization of the scattered

beam

do
-'P =

I Q~ e'K "I' -'PI Fii (K) I'
dQ'

ye')
+ IS ReLF~*(K)F~(K)f(K)gq

mc'I

ye
+ —S ImI F~*(K)Pier(K) f(K)j(PXq)

SSC

A/2 2

+- — S'
I
F,ir (K)f(K) I

'
2 %bc

X[2q(P q) —q'P],
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where we have again omitted the purely nuclear
incoherent scattering. The first, second, and fourth
terms in this equation have been derived previously.
The first simply states that the nuclear coherent
scattering leaves the initial polarization unaRected.
The second term is independent of the polarization of
the incident beam, and it describes the manner in which
a polarized beam may be produced by interference
between nuclear and magnetic scattering. The last
term describes the rotation of the direction of polari-
zation produced by purely magnetic scattering from a
magnetized sample. It has been discussed in detail
recently by Izyumov and Maleev. '4

The third term is one which was omitted by Halpern
and Johnson. It vanishes for simple antiferromagnets
in which each atom is at a center of symmetry, for then
each of the structure factors and the form factor can be
taken to be purely real. The term may be isolated in a
relatively straightforward manner, for if P and q are
arranged to be perpendicular to one another this term
gives a component of polarization perpendicular to both
P and q, whereas all other terms give rise to components
along either P or q. Separate determination of this
quantity would be of use in form factor studies. It
should be emphasized that the above expression is for a
single domain antiferromagnet, and it should in general
be averaged over all directions g of magnetization.

(c) Scattering from a spiral spin4 ' arrangement
illustrates the occurrence of the other additional terms
in (15) and (19). We consider an antiferromagnetic
sinusoidal spiral in which the spins all lie in a plane
perpendicular to the direction of propagation of the
spiral. For simplicity we consider a single atom per unit
cell. We take a system of axes described by three
mutually perpendicular unit vectors N~, u2, N3 such that
N~ and n2 lie in the plane of the spins and N3 lies along
the direction of propagation. The unit vectors g„giving
the direction of the spin in the unit cell n are then
expressible as"

s1 =ui cosa n+6s sine n, (26)
=rs(u exp(ir. n)+n+ exp( —ia n)),

where n~ ——ui&ius and e= (2z./), )us, where X, is the
wavelength of the spiral. " In this case the magnetic
Bragg peaks are split into satellite peaks so that the
magnetic and nuclear peaks occur in different places.
There is accordingly no interference between the nuclear
and the magnetic scattering, and we will write down the
magnetic cross section alone. On substituting (26) in
(15) we find that the last term, proportional to
P (q, .Xqs) does not vanish in this case, as it did for the

' Yu. A. Izyumov and S. V. Maleev, Zh. Kksperim. i Teor.
Fiz. 41, 1644 (1961) /translation: Soviet Phys. —JETP 14, 1168
(1962)j."W. C. Koehler, Acta Cryst. 14, 535 (1961).

antiferromagnet. This term together with the ordinary
magnetic cross section gives the total magnetic scatter-
ing from a spiral:

d~/dQ~ r (~es/~c2)2+2
~ f(K)

~

2

X{L1+(X us)'+2(P E')(X us)]
X ~g. exp/i(K+a) n)~'+t1+(X 4,)'

—2 (P X) (X us) j ~ P„expLi(K—z) n]
~

') . (27

This shows the splitting into two peaks such that
K+e=~ and K—a=~, where ~ is 2z- times a reciprocal
lattice vector. The polarization dependence arose from
the above mentioned term in (15). If the scattering
vector K is parallel to the axis us of the spiral and if the
incident beam is polarized parallel to u3 as well, the
peak for which K—a=~ vanishes, while that for which
K+e=~ increases to twice its intensity for the case of
an unpolarized incident beam. If the direction of
initial polarization is made antiparallel to the axis
u3 of the spiral we have the opposite occurring, with
the K+e=~ peak vanishing and the K—e=~ peak
increasing its intensity. Experimental detection of this
effect requires the preparation of a crystal in which
some bias is found in the size of domains with spiral
axes parallel and antiparallel to u3. The polarization
of the scattered. beam will be written down only for the
case of an unpolarized incident beam. We obtain, on
substituting (26) in (19) and setting P=O,

do 1 (ye' -'

Ss[f(K) [sX(X us)
dQ' 4 (me'

X(—~P expLi(K+e) nj~'

+ [P expt i(K—z).ng)').

Hence, the final polarization is parallel to K for the
K—e=~ reQection and antiparallel to K for the K+e=~
reAection. The effect was first pointed out in this form
by Overhauser. 4

These two examples illustrate the importance of the
omitted terms for experiments that are easily performed
with present techniques. All formulas for scattering
of polarized beams by other arrangements of ordered
spins may be derived in the same way from (15)
and (19).
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