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Theory of the Range of Hot Electrons in Real Metals
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The equations of Quinn and Ferrell and of Quinn for the rate of energy loss of a hot electron in a free-
electron gas are generalized to take solid-state effects into account. A general equation is derived, which in
addition to a principal term which reduces to Quinn s result in the free-electron gas limit, contains terms
which result from umklapp processes and loca1-field corrections. The additional terms are evaluated for
aluminum on a one-OPW model and are found to result in a 16—30% decrease in the rate of energy loss. The
effect of Fermi surface shape on the principal term is discussed in detail, with the aid of an exact recasting
of the term into a form which explicitly shows its dependence on the equations of the energy surfaces. It is
shown that nonspherical Fermi surfaces lead to an anisotropic hot-electron energy-loss rate, and that for
certain shapes of Fermi surface the rate of energy loss is more singular than (E&—Eo)3 near the Fermi surface.
It is found that the flatter" the Fermi surface is, the greater is the rate of hot-electron energy loss. This is
suggested as a possible explanation for the anomalously small hot-electron range observed in copper by
Crowell et al.

I. INTRODUCTION In Sec. II the equations of (A) for the rate of energy
loss of a hot electron are generalized to the case of a
solid. The result is an equation resembling Eq. (33) of
(A), but containing terms arising from umklapp
processes and from local-field effects. In Sec. III these
terms are calculated on a one orthogonalized plane
wave (OPW)r model, chosen because it is the simplest
model for estimating effects arising from the presence
of cores, which are neglected in a free-electron treat-
ment. In the case of aluminum (a metal well described
by the one-OPW model), it is found that the net effect
of umklapp processes and local-held corrections, for a
hot electron very close to the Al Fermi surface, is a
decrease in the energy-loss rate in the range 16—30 jo.
While the order of magnitude of the effect is probably
correctly given by the crude estimate, the numerical
values obtained should not be taken too seriously. The
contribution of umklapp processes to plasmon creation
is also estimated in Sec. III.

In Sec. IV umklapp and local-6eld effects are neg-
lected, and the remaining expression for the rate of
energy loss is recast into a form which shows its depend-
ence on the shape of the energy surfaces. The rate of
energy loss of electrons with energy E=E0 is found to
depend only on properties of the energy surfaces and
electron wave functions at the Fermi energy, and is
studied in detail for various shapes of Fermi surface.
For a spherical Fermi surface the result of Quinn' for the
free-electron gas, that dEo/dt~ (E,—Ep)', is rederived.
Nonspherical Fermi surfaces show an anisotropic ab-
sorption of hot electrons. It is shown that for a
cylindrical Fermi surface the absorption is proportional
to (E,—Eo)'~lnL(Eo —Eo)/Eo7t, and that it is, in
general, more singular than (E,—Eo)' if the Fermi sur-
face contains a straight-line segment, along which the
normals to the surface are coplanar. This "fl.atness
condition" is nearly fulfilled by the energy surfaces of
Cu, and it is suggested that Fermi surface shape effects

HE problem of the range of hot electrons in metals
has recently been of both experimental and

theoretical interest. Experiments by Crowell et al. ' and
others' have determined the range of very low energy
electrons in Pd, Cu, Ag, and Au. A theoretical treatment
of the problem, using a dielectric constant approach, has
been given by Quinn and FerrelP and by Quinn. o Quinns
discusses the energy loss of electrons of energies within
about 1 keV of the Fermi surface in a free-electron gas.
He neglects solid-state effects, which would be expected
to be important for electrons of such low energy, since
the energy levels and/or wave functions of these
electrons could not be well approximated by those for a
free electron. In this paper the results of Quinn and
FerrelP and of Quinn' for the free-electron gas are
generalized to a periodic lattice so as to take solid-state
effects into account. Particular stress is laid on deter-
mining the effects of umklapp processes, of local-6e1d
corrections, and of Fermi surface shape on the range of
electrons of energy very near the Fermi energy (E=Ep).
All work is done using the random phase approximation
(RPA) dielectric constant discussed by Ehrenreich and
Cohen' and no attempt is made to include additional
many-body effects. The electron-phonon interaction' is
not considered in this paper. In other words, we restrict
ourselves to considering that contribution to the energy
loss of the hot electron which arises from the Coulomb
interaction of the hot electron with the electrons of the
lattice.
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Eeeif Eresidue+Elinep with

~residue =4~&
dq e

—'(q+K, q+K", Ep Ep—,)
M*(q,K")M(q, K),

(2~) 8 fq+Kf'

~line
(2«r) 4

dqZZ
e-'(q+K, q+K", iri) (Ep—Ep,)

dry M*(q,K")M (q,K).
f:"+(E,-E,—,) )Iq+Kl'

(10)

We have introduced the abbreviation M(q, K)—= (p f
exp f i(q+K) xj

f y —q), the p dependence not being indicated
explicitly. To obtain the rate of energy loss we need only find the imaginary part of E„ii.From Eqs. (5), (6), and
(7) defining e '(q+K, q+K", ie), it is straightforward to verify the symmetry e '(—q —K, —q —K", iri)*
=e (q+K, q+K", iil). Using time-reversal symmetry, which implies that

(—k fexpLi(q+K") xj
f

—k —q —K')=(k+q+K' fexpf i(q+K") x] fk),

it is easy to demonstrate that

Iq+K"
I

'e '(q+K" q+K i&)= Iq+KI 'e '(—q —K, —q —K", in)

From these two symmetries we find

Le
—'(q+K q+K", &p) fq+Kf

—'g*=e—'(q+K", q+K, iit) fq+K"
f

—'

from which it follows immediately that El;, =El; „or Immi;„, ——0. The self-energy of an isolated electron, E~„„
which must be subtracted to renormalize E„li, is purely real. Thus, the sole contribution to ImE„li comes from
E„„d„,. According to Quinn' and to Engelsberg, ' the rate of energy loss of the hot electron is obtained by inserting
a factor 2LEp —Ep «] in the integrand of Eq. (10). Thus, we obtain finally for the rate of energy loss of the hot
electron,

e2

dEp/dl=-
7r2 «~I —a&~I

dqZ 2
Imc '(q+K, q+K", E, E, ,)—

(Ep—Ep,)M*(q,K")M (q,K).
I
q+KI'

Equation (11) is the starting point of the detailed
investigations to be described in this paper.

It is helpful first to discuss Eq. (11)qualitatively and
to list the main effects which one would expect to see in
a solid which do not appear in the free-electron gas
problem treated by Quinn. The term of Eq. (11) with
K= K"=0 is the analog of the free-electron gas expres-
sion, but deviates from it in several respects:

(1) Instead of e(q, q, cd) ', the local-field corrected
dielectric constant" e '(q, q, M) appears.

(2) There appears the factor
f (p—q f

exp( —iq x) f y) f
'.

This factor is smaller than 1, corresponding to the fact
that the hot electron is not always attenuated. without
transfer of momentum to the translational motion of the
lattice.

(3) The energies and wave functions which determine
e '(q, q,oi) according to Eqs. (5)—(7) are not free-electron
energies and wave functions; this has a strong effect on
the hot-electron range.

The third of these effects is discussed in more detail in
Sec. IV.

The terms of Eq. (11) with KWO or K"NO do not
appear in the free-electron case. They can be divided
into two classes:

translational motion of the lattice, the process occurring
with weight

f (p—q f
expf —i(q+K) x]

f p) f'. These
terms clearly add to the rate of energy loss.

(2) The terms with K"AK would not appear were it
not for local-field corrections to the dielectric constant, "
which cause the e '(q+K, q+K", &e) with K"WK to be
nonvanishing. These terms may be regarded as a com-
posite effect of local-Geld corrections and of umklapp
processes. It is not obvious from inspection whether
they increase or decrease the rate of energy loss of a hot
electron.

The sum of the terms with KWO or K"WO is estimated
in Sec. III.

Let us note, Gnally, that in the limit when the hot-
electron energy E~ becomes much larger than the typical
orbital electron energy of a rydberg, the states f, (x) and

Pp «(x) are very nearly plane wave states over most of
the region of the g integration. In this case,

M*(q,K )M(q, K) 8x«, pox p

and the umklapp and umklapp-local-Geld terms drop
out. Thus, these terms have essentially no effect on the
well-known formulas for the stopping power of materials
for fast electrons. "

(1) Those with K"=RNO corresPond to umklaPP "Experemento/1vucleor phy ', dit d b E. S
'

(yobn Wiley
processes, in which momentum K (say) is given to k Sons, Inc. , New York, 19S3), Vol. I, Part II, Sec. 2.
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III. UMKLAPP AND UMKLAPP-LOCAL-FIELD EFFECTS unequal to zero. To see why the sum of these terms must
In this section we discuss in detail the effect on the be carefully estimated, let us consider the sum of the

hot-electron range of the terms in Eq. (11)with K or K" weighting coefficients of those terms with K= K":

Px~, [&p
—qlexpL —i(q+K) xglp&l

dxdx'P~ «*(xg» «(x')f, (x)f,*(x') expL —iq (x—x')] Px expL —iK. (x—x')j—l(p —qlexp( —iq x) Iy&[2

= V ' dx Iu (x) I'Iu, (x)l' —
I &p

—
ql exp( —iq x) Ip&l'= V ' dx Iu, (x)I"—1.

Here U is the unit cell volume, the subscript 0 indicates
integration over the unit cell, and u, (x) is the cell
periodic part of f, (x): P, (x)= V '" exp(ip x)u, (x). To
gain an idea of the magnitude of the integral in Eq. (12),
we use the Schwartz inequality in the form,

dx Iup(x) I'~) dx x—'Iu, (x)I' dx x

where the integrals are taken over an atomic polyhedron
containing an atom at x=0. Then Jj dxx '=4xrp,
where rJ is the mean atomic polyhedron radius, and
JIdx

I u~(x) I'x '—=Vi/r„where V~ is the atomic poly-
hedron volume. We may regard the c, so de6ned as an
average core radius since the periodic part u, (x) is
largest in the core region. Thus, we have

In metals in which the core diameter is smaller than the
diameter of the atomic polyhedron, which is usually
the case, (rI/r, )2)1 and the sum of the weighting
coefFicients of Eq. (12) is of order unity. Thus, if apart
from the weighting coefficients IM(q, K) I', all of the
umklapp terms made to the q integration in Eq. (11)a
contribution roughly equal to the contribution of the
K=K"=0 term, their net effect, when summed up,
would be to increase signi6cantly the rate of energy loss.
So we must clearly examine carefully how many K
values actually contribute appreciably.

To do this we use a one-OPW~ model for the valence
electron wave functions and energy levels, this being the
simplest model which takes into account the largeness
of the wave functions in the core region. Since the one-
OPW model accounts quite well for the valence electron
properties of aluminum, " the calculations will be done
explicitly for the case of this metal. The model will be
used only for calculating approximate estimates of the

"W. A. Harrison, Phys. Rev. 116,555 (1959);118, 1182 (1960);
B. Segall, ibid. 124, 1797 (1961).

V ' dx Iu (x) I'=Vp ' dx luy(x)l'

+ 3(r~/r. )' (13)

matrix elements; in performing the various integrations
involved in evaluating the hot-electron attenuation the
matrix elements will be treated as constants. The one-
OPW wave function for a valence electron of momentum
k in Al is given in Appendix I, along with numerical
values of its various parameters. The energy surfaces in
Al are nearly equal to the free-electron surfaces
(E~=k'/2m) over most of the Brillouin zone.

The erst step is to calculate approximate expressions
for the components c '(q+K, q+K", &o) of the inverse
dielectric constant. We will treat the off-diagonal com-
ponents, «(q+K, q+K", cu), K"WK as small per-
turbations compared to the diagonal components
e(q+K, q+K, ~). Then first-order perturbation theory
gives

e-'(q+ K, q+K, co) =e(q+K, q+K, cu)
—',

e '(q+K, q+K", (o)=e(q+K, q+K, (u) '

XG(q+K, q+K", o)) lq+K" I-'
X~(q+K", q+K", (v)-'.

(14)

Qx"&xl &k[ expL —i(q+K) xj
I
k+q+K') I'

I&klexp[ i(q+K)'xllk+q+K)I' (15)

In the one-OPW model,

exp[ —i(q+K) x)lk+q+K&[2=1

implying that the left-hand side of Eq. (15) is much
smaller than one. Consequently, in the expression of
Eq. (7) for G(q+K, q+K", ~) we neglect all terms
which are quadratic in matrix elements of the type
&k I expL —i(q+K).xf I

k+q+K'&, K'NK. This gives'4

e
—'(q+K, q+K, (u) =op(q+K, (a)

—',

'4 Core screening effects are negligible: The core polarizability
~, is roughly equal to eV„where V, is the core volume and
n = Vp ' is the number of cores per unit volume. Thus.
n = (r,/rg )'((t.

Some further approximations on e ' are necessary in
order to make the calculation tractable. We remark that
by completeness of the N~,
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and
e' (kI e '"+"'*Ik+q+K)(k+q+KI e'"+ "i *Ik)[f,(Ei)—fo(Ei+,+z))

G(q+K, q+K", co) =— dk
~2 ~+Ei, Ei+—,+z

e~ (kI e 'iq+ i *Ik+q+K")(k+q+K"
I

i", "+z"'"Ik)[fo(Ei )—fo(Ei+&+z")p
dk (17)

~+Ei —Ei+g+z"

where qz denotes the free-electron gas dielectric constant calculated by Lindhard. The formula for ~& is given in
Appendix II. Inserting Eqs. (16) a,nd (17) into Eq. (11) and making a change of variable in the second term of
Eq. (17) leads to

with

dip 8

tA 7l «~u —e&@~

dq [E,—E,-,7[&(p,q)+D(p, q)+E(p, q)l

ei; '(q+K, (u)ei. '(q+K", (u) e'
E(p,q) = Im g P

I q+K I'I q+K" I'

2 Re[R (q, k, K,K")M (q, K)M*(q,K"))[f0(Ei,)—fo (Ei+,+z)]
&(dk, (19)

~+Ei —E~+q+z
and

ep-'(q+K, co)
I
M (q, K)

I

'
D(p, q)=Im P

I
q+KI'

The f'ree-electron gas kernel F(p,q), which arises from the K =K"= 0 term of Eq. (11), is given by

P(p, q) = Ime —'(q, ~)q
—'I M(q, 0) I

'.

In writing Eqs. (19) and (20), we have made use of the definition

R(q,k,K,K")= (kI e-'«+zi *Ik+q+K)(k+q+KI e"«+z"i *Ik).

(20)

(21)

(22)

In order to make the calculation tractable, we replace 2 Re[R(q, k, K,K")M(q, K)M*(q,K")j by an appropriate
average over k. This gives

E (p, q) = Im Q g
K&K"

op
—'(q+K, a))op

—'(q+K", (u)
(2 ReRMM*). gGp(q+K, co).

I
q+K

I
'I q+K"

I

' (23)

Let us only consider hot electrons very close to the Fermi surface, that is, with E~=Ep. Then it is an excellent
approximation to replace

I
eF(q, co) I'- in the denominators by

I
~ri(q, 0) I'= (1+k,2/q')', where k, is the reciprocal

Thomas-Fermi screening length. Using the Lindhard result in an approximation valid for small &,

Ao(2k, —q)
&F2(q, (u) = A=

=0, x&0.

(i, is the Fermi velocity, ko is the Fermi momentum, and co„ is the plasma frequency), we find that E(p,q) =2 (p, q)
+B(p,q)+C(p, q) with

2 (p, q) = P (2 ReR(q, k,O,K)M(q, 0)M*(q,K)). i,
(k.'+q') (k 2+

I q+ K
I
')

0(»,—
I
q+K I)k, ~e(2k,—,)

X
Iq+KI (k,2+ Iq+KI~)

B(p,q) = P (2 ReR(q, k,K,O)M(q, K)M*(q,O)). „
(k, '+

I
q+K I

') (k, '+q')

~(2ko —v)k ' Iq+Kl 0(»o—IqiKI)
X

q(k, '+q') k, '+ Iq+KI'
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C(p, q) = P P (2 ReR(q, k,K,K")M(q,K)M*(q,K")). &

O~KgK~ I ~0 (k,'+ I q+ K
I
') (k.'+ I q+ K"

I
')

e(2ko —)q+K"))k )q+K)0(2ko [q+K))
X

~q+K"
~

(k'"-+lq+K" I') k '+Iq+KI'

(A+8)/D =4y'(1+7')
X[ 2nv(1+&—')-'+P ln(1+v-')3,

C/D= (2M V,k, '/»r')nP(1+y')

2v(1+v') '
—= /M[' ko'
F m' y(1+y') '+tan '(y ')

n=-', [(l~,/2k, )—tan —'(X /2k, )

+ (Xi/2k, )—tan '(Xi/2k, )$,

P=o in(1+v ') —(1+v') ',

y= k,/2ko.

(25)

The two terms in n are, respectively, the 2s, p, and 1s
orbital contributions, with 2s, P, and 1s cutoffs of Xo/2
and Xi/2. Numerical evaluation of these formulas,

We also find, by use of Eq. (16), that

~
M(q, K) )'&&(2ko —

~ q+K))
D(p, q) = —2

~q+K~ (k.'+ ~q+K~')'

To get an explicit expression for the hot-electron
attenuation we must make several more approxima-
tions. First, we note from the expressions for the one-OP%
matrix elements in Appendix I that the quantities
M(q, K), M*(q,K"), and R(q,k, K,K") are all real, and
for small K and K" are all negative. For larger K,
M(q, K) becomes positive and then tends to zero. Since
the factors multiplying the matrix elements are largest
for small K and K", we replace M, M*, and R by
negative constants in evaluating the sums over K a,nd
K" and cut off the sums at values of K and K" at which
the matrix elements are still negative. To try to be a
little less crude, we actually use two cutoffs and two con-
stants, corresponding to the 2s,p and 1s core orbital con-
tributions to the matrix elements. The sums over K and
K" are then replaced by integrals, and finally the q
integration is performed. The results of these manipula-
tions may be expressed in the form of ratios (the
expression for F, the rate of energy loss in a free electron
gas, is given in Appendix II):

using the value 3f =0.02 estimated in Appendix I, gives

(A+B)/D = —3.7,

C/D =0.85,

D/F =0.16.

(26)

Thus (A+B+C+D)/F = —0.30. If the cutoffs are
taken as 4/3 and Xi/3 instead of 4/2 and Xi/2, the
effect is reduced to (A+B+C+D)/F= —0.16. Thus,
assuming the validity of the model used and the ap-
proximations made, the combined effect of the umklapp
and the umklapp-local-6eld terms is to decrease the hot-
electron energy-loss rate by 16—30%. Since the approxi-
mations made are quite crude and especially since the
small value of C results from the near cancellation of two
terms which are considerably larger, the numerical
results of Eq. (26) should be treated with some skepti-
cism. However, certain semiquantitative conclusions
can be reasonably drawn from the model calculation:

(1) The absolute value of the sum of terms A+8+ C
is of the same order of magnitude as D (A+B+C
= —2.6D);

(2) The net correction to the hot-electron attenuation
resulting from the umklapp and umklapp-local-Geld
terms, in the one-OP% model, " is not large and is
probably of order 30% or smaller;

(3) This correction does not necessarily lead to an
increase in the attenuation, as would be obtained if
only the umklapp term D were kept. It is clear that the
sum of umklapp-local-field terms A+B+C is more than
capable of cancelling the positive contribution from D.

It is also of interest to determine the effect of umklapp
processes and of umklapp-local-held effects on the
plasmon creation probability. Near the plasmon pole
the perturbation theory expressions of Eq. (14) for the
off-diagonal components of e ' are not valid. Conse-
quently, let us restrict ourselves to obtaining an esti-
mate of the umklapp contribution to the plasmon
creation rate, Neglecting alt locat field correcti-ops Using.
cF(q,o~) = (1—co~'/o&')+icFo, an approximate expression
valid near the plasmon pole, we And for the umklapp
contribution,

&[ —~.'/@o —&o- )'3R.—&.—») IM I' ~.—I'.-»
~
q+K~

K
f q+K(' q+KI V, 2k, )

(27)

The step function 8 expresses the condition that ~ p2 must
vanish for there to be a plasmon pole. I.et us consider

» Sy using a one-OPW model we have calculated a "minimal"
effect common to all solids and arising from the presence of the
cores. Appreciable mixing of OPW's could lead to certain of the

~p~ =)„/3, the value for which the largest number of
umklapp processes would be expected to contribute. In

matrix elements M being much larger than the estimate obtained
using the one-OPW model, and might lead to a larger umklapp
and umklapp-local-Geld eftect.
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this region, only the is core orbital contributes ap-
preciably to M(», K). Approximating 3II(»,K) by a
constant, replacing the sum over K by an integral and
carrying out the K and q integrations leads to a simple
result, which may be expressed as the ratio of D' to the
rate of energy loss by plasmon creation in a free electron
gas, F' (the expression for F' is given in Appendix II):

2pp (« —kp)O' V
3f,'

P' 2«r' inl (v —kp)/(p —It«)]

~=(k'+2m~ )"' «=(p' —2«««~ )"' p=IPI

(28)

Numerical evaluation in the case of Al, for p =4ko, gives
D'/E'=0. 37, greater than in the low-energy case treated
above. Of course, in order to obtain the total deviation
from the free-electron gas plasmon creation rate, local-
Geld corrections would have to be taken into account.
%hat is important to note here is that at certain
energies, in order to calculate the plasmon creation rate
to better than 40/o, umklapp and umklapp-local-field
effects must be considered.

IV. FERMI SURFACE SHAPE EFFECTS

In this section we discuss changes in the value of the
K= K"=0 term of Fq. (11) which result from solid-

state effects. Since this term is the principal contribution
to the hot-electron attenuation, careful study of it is
warranted. Let us 6rst consider the case of a one-OP%
metal. As we saw in the last section, we then have

o-'(q+K, q+K, pp)=op(q+K, pp)-'

and

l&p
—qlexp( —«» x)lp&l'=1.

Thus, in the one-OPW case the K=K"=0 term has
nearly the same value as in the case of a free-electron
gas. In other words, it is not appreciably affected by the
addition of core orthogonalization terms to the free-
electron gas wave function.

Large changes do appear, however, when the energy
surfaces and electron wave functions differ appreciably
from those of a free electron. To make the dependence
of the hot-electron absorption on the function E~ more
apparent, let us cast the K=K"=0 term of Eq. (11)
into a different form. First of all, let us neglect local-Geld
corrections. In other words, we take o '(q+0, q+0, pp)

=o(q+0, q+0, «p) ', where o(q+0, q+0, pp)—=o(q, po) is
the RPA dielectric constant defined by Kqs. (6) and (7).
Substituting the expressions for oo(q, po) obtained from
Eqs. (6) and (7) into the K=K"=0 term of Eq. (11),
we Gnd

e4—dEo/(A =—
3

7f @0(@y K'

{(E.—E —.)1&1 l~ *'*ll+q+K'&I'l&p —vlo "*I»l'
X Lfp(Ek) —fo(Ek+o+z')]&(E,+Ek Eo oEk+o+z )—)

(»)
v'I o(q, Eo—Eo-o) I

'

e4

, ,-~,-- I &oEo-ol ~=&~+q+K"—~

& I &1 I
~ "*Ii+q+K'&I'I &1i

—ql ~ "*lii&l'Lfp(Ek) —fp(Ek-o+z)])
X (3o)

l~.(E.-E.+,+ ) lq'I (q, E,-E, ,) I'

Equation (30) has been obtained from Eq. (29) by writing

dS,d(Ep —Eo,)
dg=

I ~,(E.—,-E.) I

and by denoting Ey Ey q by N, A further rearrangement of terms can be made, using the property of the zero-
temperature Fermi distribution function that

fo(Ek) —fo(Ek+o+z )=fo(Ek)I 1—fo(Ek+o+z )]—fo(Ek~o+z')L1 fo(Ek)].

Since in the integrand of Eq. (30), Ek+o+z. =Ek+~~&Ek, the term fp(Ek~o+z )I 1—fp(Ek)7 does not contribute.
We would like to explicitly carry out the integration over the variable E&, so as to be able to eliminate the factor
fp( )EI k1 fp( Ek+o+)z7= fp( E)Ik1 fp(E +a)k7 by incorporating it into the limits of that integration. We do this
by writing

dSk ——dkiidki ——dkii
I
dki/dEk I dEk,

where dk» and dk, are elements of length in the surface Ek+o~z ——Ek+~ parallel and perpendicular, respectively,
to the intersection of this surface with the surface Ek——p. We may thus write (denoting the product of matrix
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I
dp, /dE j I

p
y «)L~-~o«+ )j

element»y

yo(E~+ )&pj', (E.)L

31

dS~
I (E~ E„+,4-z ) I du„)

I

E~+a

dP d "
V (E~—Ei+o+z'

Eg+q+K'=

ow
I dEi/dI44

I
dQ /dE &I I

~
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st evalu~t~ ~
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I
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I V~EgXVgEg+q+z v — z

Ep—Eo

l

I
V~E~X V~Ei+o+z

l(kle-' *lk+q+K')I

E XVzE~+ +z I
Vi

Epe'—dEo/df =— (32)dS
Q K Ep—rxo(q, )IS

rea g t roce ure.

0

rea g d e Nowdeint e o
'

rearrangemen ph f regoinghave beenmadeint e o
E Thhe case when E~=consider t e

Ep

e&(e," )= &(E., ",
'n the denomina tors and

Eo—a

ua o re it appears inual to zero where ithen set o. equa o re ites d of Eq. (32), and ua o re
Nt tht, (,

w eh re E denotes
limits o inin the remaining
'

&4 (E E)o
dEy/df =—— I 2ds, l(y —qlt, -'& *

y

lvoE.-olv4oi(qo)' z'

I(kle-' .*Ik+q+K')I'

E XV~E~+,+z IVg
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FIG. 1. Geometric inter-
pretation of Kq. (35). The
line /' is the intersection of
the Fermi surface, displaced
by q+K', with the undis-

, placed Fermi surface.
+q+ K

of K' which do not satisfy this condition, only part of
the sum of Eq. (34) contributes. This would tend to
reduce the rate of energy loss of the hot electron.

Let us now consider in detail the effect of the shape
of the surface E~ on the hot-electron energy-loss rate.
Since we are not primarily interested in effects arising
from the detailed nature of the matrix elements, we
replace

I (kl exp( —iq x) I
k+q+K') I'by an appropriate

average over k:

=1—
q 'G(q, q, O), and from Eq. (7) and the fact that

(klexp( —iq x)lk+q+K') approaches bz, o as q ap-
proaches zero,

fo(E.) fo—%.+,)
lim G(q, q, O) = lim — dk
q~o q~o &2 ~k ~2+q

(36)
~,=z, Iv~»l

Equation (36) may be taken to define k, for a non-
spherical Fermi surface. Thus, as q approaches zero,
q2er(q, O) approaches k,2. To empha, size this we will take
cr (q,0)= 1+k,2/q2 throughout the following calculations.

I,et us now consider speci6c Fermi surface models. We
will evaluate in detail only Jo', treatment of Jz, K'%0,
would be similar. First consider a spherical Fermi
surface, »——k'/2m. Let us define L(q) by

I
(k I

exp (—iq x) I
k+ q+ K')

I

' ~
(I &kl exp( —iq x) Ik+q+K'&I'&. -2—=s(q, K')

L(q) =
~

I
v~»x v~»+, I

Denoting l(p —qlexp( —iq x)lp)l' by IM(q, 0)l' as
before, we have

F2 e4 (E2—Eo)2

dt z' 3 K'

dS„IM(q,0) I'S(q,K)

~
I V,E2, I [q'er(q, o)7'

d'or r

X (35)
i Iv~»XV~EN. ,pz I

with S' and l' the same as in Eq. (33). A geometric
interpretation of the line integral is simple. The surface
integral is over all vectors q such that —p+q lies on the
Fermi surface. For each such q, we translate the Fermi
surface first by q and then by K'. This translated Fermi
surface either does not intersect the original Fermi
surface, or intersects it, in general, in a line. Clearly
Ivw»XV2»y2~z I

is the magnitude of the cross
product of the gradients of the two surfaces at a point on
this line of intersection; dkrr is the element of length of
this line and J'dk~~ extends over the entire line of
intersection. This geometrical construction is illustrated
in Fig. 1. If the original and displaced Fermi surfaces
are tangent along a part of the line of intersection which
is of 6nite measure, the line integral

~
I V2»XV2»p, +z I

diverges. This fact leads to a strong dependence of JK
on the Fermi surface geometry. Note that the presence
of a factor q4 in the denominator of the integral J'dS2
leads to no divergences According. to Eq. (6), ~(q, 0)

l': intersection of Er,——Ep with Ek+q Ep Then it is easy
to show that for spherical energy surfaces I.(q) = 22rm2/q.

The in6nity at q=0 results from the fact that as q ap-
proaches 0 the spheres approach tangency along their
entire circle of intersection. Taking the matrix elements
M and S in Eq. (35) to be unity, we find

Jo
, ,=s, I v2E.—.I

(q'+k ')'

m' 2&o&, 2&o'
stan-r I, (37)

kok, 2 k,2+4k22 k, 1

1

J =-xa'O'E ' dg
0

dg PE+2F siny+G sin2@7 '

a= (2m.Eo)"' bi= (2mEO)'

E=k 2+4PN2+4(a2 —P) cos2Xe4,

F=4N'(1 —m2) "2(u2—b2) sing cosy,

G—4N2 (1 N2) (g2 $2) sln2x

where the q integration is easily performed in spherical
coordinates with the s axis along p. Multiplving by the
factor (E2—Eo)2e'/(32r') yields a result agreeing with
the free-electron gas formula of Quinn.

The isotropy of hot-electron attenuation shown by a
free-electron gas disappears when the Fermi surface is
anisotropic. This can be seen explicitly by considering a
Fermi surface which is an ellipsoid of revolution,
»=k,2/2m, j(k,2+k„2)/2m, and taking p to make an
angle x with the k, axis. One finds that I (q) = 22rm2m,

XLm q, '+mm, (q,'+q„')7 r~', giving the following result
for Jo (again taking M=S=1):
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The forms of E, F, and G clearly show that J depends on
the orientation of p. The @ integration can be evaluated
explicitly, but the remaining integration over I cannot
be integrated in elementary functions, for general x.

Radically diRerent behavior from the spherical case
is found when we consider a cylindrical Fermi surface
of finite length, Ei,= (k,P+k„')/2m for —L&~k, &~L.
Such a Fermi surface could in principal occur in a solid,
the two "open" ends touching opposite Brillouin zone

2m'(2L —
i q, ))

q [k P
q 2/4)ll2

(39)L(q) =

Substituting this into Eq. (35) for Jp (taking the matrix
elements as unity for simplicity), setting y —q= t'
= (kp cosP, kp sing, t') and p= (kp, O, l) gives

faces. Using cylindrical coordinates and writing q, and
q„respectively, for the radial and axial components of

q, we find

2~3 2%

Jp-
kp p r. ) sing

~ [kP+2kpP(1 —cosP)+ (t—t')')'
(40)

The reason for the divergence is clearly the fact that for all displacements q for which q, =0 (axial displacements),
the displaced and original Fermi surfaces are tangent along their intersection, making L(q) infinite. Whereas
L(q)= ~ at isolated points q does not necessarily make Jp diverge, L(q)= pp along a line (a one-dimensional
continuum) in q does. In order to obtain an expression for the rate of energy loss, we must return to Eq. (32),
using which we can obtain an explicit expression for the leading term in dEp/dt when E,=Ep. The evaluation is
complicated and we only give the result:

dE~ 2e4 re'

dt x' kp

1 1 1
dt'(2L —lt —t'~)l +-

~
(Ey Ep)'—

k[(t—t')'+k, ']' 3 [(t—t')'+k '+4kp']'i

(E —Ep
X hi~ + O[(E,—Eo)']. (41)

Ep

We see that dEp/dt ~ (Ep —E,)'
~
in[(Ep —Ep)/Ep] ~,

which explains why we get an infinite answer when we
attempt to compute the coefficient of (Ep —Ep)'. Clearly
a material with a cylindrical Fermi surface would
exhibit a much greater hot-electron absorption than
would be expected on the basis of a free-electron gas
model.

Since a cylindrical Fermi surface model is a very un-
realistic one, it is importarit to look for more general
conditions under which the coe%cient of (E~—Ep)'
diverges. One such condition may be expressed as
follows:

(i) Suppose the Fermi surface contains a straight-line
segment of finite length, and that the norrnals to the
Fermi surface along this straight line are all coplanar.
Then dEp/dt is more singular than (Ep —Ep)' for all p
on the line segment.

This is easy to see. For p on the straight line segment,
the values taken by q include translation of the Fermi
surface along the line segment. For these special values
of g, the displaced Fermi surface and the original Fermi
surface are tangent along a finite portion of their line of
intersection (tha, t is, along the overlap of the displaced
and the original line segment). Hence, for all these
values of q, L(q) is infinite, making Jp infinite. A useful
special case of (i) is:

(ii) Suppose the Fermi surface contains a straight-
line segment of finite length, and that a plane containing
this line is a plane of reflection symmetry of the energy
surfaces. Then for p on the line segment dEp/dt is more

singular than (E~—Ep)'. This result follows from (i) by
noting that, if the line is contained in a plane of reQec-

tion symmetry, the normals to the line all must lie in
this plane and, hence, are coplanar. A direct, analytic
proof of (ii) is presented in Appendix III.

Note that while the conditions (i) and (ii) suffice to
make Jp inIIinite, they do cot in general suffice to make
Jx, K40 infinite. Thus, a statement analogous to (i) for
JK would require either: (iii) that the straight line

segment of (i) should be pa, rallel to K and longer than

~K~, or (iv) that there should be two parallel straight
line segments in the Fermi surface, one translated by K
from the other, with the normals to the Fermi surface
along the two-line segments lying in two parallel planes.
These conditions are more restrictive than those of (i)
and are, therefore, less likely to be approximately
realized in a real metal.

We infer from (i) a general qualitative result:
Flattening of the Fermi surface tends to increase the
hot-electron absorption. Recent band calculations" and
hot-electron experiments' on copper suggest a possible
confirmation of this rule. The Fermi surface of Cu is
greatly Aattened in certain regions. This is illustrated in
Fig. 2, obtained from the band calculation of Segall, "
which shows the intersection of the reQection plane
(110) with the Fermi surface. Clearly, much of this line
of intersection is very nearly linear, and hence the condi-
tions of (ii) are approximately satisfied. One would,

"B.Segall, Phys. Rev. 125, 109 I,'1962).



1664 STEPHEN L. ADLER

COPPER

X

Fro. 2. Intersection of a (110)plane with the surfaces of constant
energy for Cu. The estimated Fermi energy is —0.183&0.010
Ry. The dashed curve is the intersection with the free-electron
sphere. Note the flatness of the Fermi surface as compared with
the free-electron sphere.

thus, except an unusually large hot-electron energy-loss
rate in Cu for hot electrons near the Bat region of the
Fermi surface. Recent photoemission experiments' on
Cu indicate an anomalously short hot-electron range.
It is possible that these results, rather than being due to
oxidation of the Cu surface, as suggested by Crowell
et al. ,

' may be attributed to unusually large hot electron
attenuation produced by flattening of the Fermi surface.
Further experiments on copper, with special efforts to
guard against contamination of the surface, would be of
interest, as would be numerical calculation of Jp using
available information"'~ on the energy surfaces in Cu.

It is worth pointing out that the effects of fiattening
of the Fermi surface on hot electron attenuation and on
the anomalous skin effect' are very similar: the Qatter
the Fermi surface, the greater the hot-electron attenu-
ation and the greater the anomalous skin effect. Thus,
there should be a rough correlation between the sizes of
these two efIects in different metals. Copper shows a
very large anomalous skin effect," so the anomalously
large hot-electron attenuation in Cu found by Crowell

et a/. ,
' if correct, would provide an example of this

correlation. The similarity also suggests that it might be
possible to use hot-electron attenuation as a tool for
studying Fermi surface properties, via Eq. (33), much
as the anomalous skin eGect is used for this purpose. '
However, complications introduced by the electron-
phonon interaction, ' by umklapp and local-field effects
discussed above, by many-body corrections to the RPA
and by uncertainties in the p to be used in Eq. (33)
arising from direction changes in scattering and from
crystallite structure of samples, might make such an
application of hot-electron range experiments un-
feasible. Further investigation of this question would be
worthwhile.
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APPENDIX I
We give here the one-OPW wave functions for valence

electrons in Al and outline the procedure used to obtain
from them the estimates of the matrix elements quoted
in the text. Letting X denote the number of unit cells in
the crystal, V, the unit cell volume and R, a lattice
translation vector, we may write the one-QPW wave
function lf „(x) as'

Ps(x) = (EV.)—'~' exp(ik x)
—iV '"Q, Q~, t exp(ik R,)A„r(k)u„t,.g(x —R„).

The atomic wave function 1„&., k is given by

N„t., g(x) =x—'E.i(x) Vis(x k ),

where I'„~ is the radial part, I"~p is a spherical harmonic,
and k„ is a unit vector in the k direction. The core
orthogonalization coefficient A„&(k) is given by

A„t(k)=[4m. (21+1)V„'7'l'P dx xP„t(x)jt(kx).

Evaluation of (p—q~exp[ —i(q+K) x7~p) using this
wave function leads to the result

(p —q~exp[ —i(q+K) x7~p)X,1V, ,

=5,o
—~(K) 2- A-*(p—q)A- (p—q —K)& [(p—q). (p —q —K).7

+Z. A. (p)A. *(p+K)~,[p. (p+K).7—P., P„., A„,(p)A„, *(p—q)

X dx I*„t., s s(x) exp[—i(q+K) x7u ~ s(x) . (Ai)

"A. B. Pippard, Phil. Trans. Roy. Soc. (London) A250, 325 (1957).
's A. B. Pippard, Proc. Roy. Soc. (London) A224, 273 (1954).
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Here S(K) is the crystallographic structure factor, P& is the /th Legendre polynomial, and the normalization factors
are defined by X,'=1—S(0)g ilA„i(y) I'.

In calculating the orthogonalization coeflicients in Al, orthogonalized Slater radial orbitals" are used (in the
following equations, ao is the radius of the first Bohr orbit in hydrogen):

Pi, Ar——exp( X—,r), P~, Cr'——exp( —X~r) —Dr exp( —Air), P2„Br'——exp( —X2r);

B= (2/V3)) 2"' C=B (1—n') "', D=An(1 —n') '~'

These radial orbitals lead to

24 X»~X 3~~

0.=—,'Ag=
V3 (Xi+f2)4

12.7 4.4

Co

4 "' 2A~ 4w "'-C(3X22—k') DXi
A„(k)=,A2, (k) =2

v (~, +a') ' '
v ) (~,'+a') p„'+a')

12~ '(' Sk.B
A2~(k) =i~

~

V (X2'+k')'

Using these expressions, we obtain an explicit form for the 1s orbital contribution to Eq. (A1):

4n-

&p qlexp[ —i(q+K)'x]lp)18 p ~—%. ~x, o
— 16XpS(K)(pi'+ Ip ql'] 'pii'+ lli —q—KI'?'

V

+Pi'+lpl'] '[xi'+lp+Kl ] '—1@i'[4xi'+lq+Kl'] 'Pi'+Ipl'] 'Pi'+lp ql') '& (A2)

Now let us use Eqs. (A1) and (A2) to estimate the matrix elements. In Eq. (A2), we notice that for q, K, and

p —q small compared to ) ~, the three terms in the curly bracket are nearly equal, and so the negative part cancels
half of the positive part. We assume that this is approximately true for Eq. (A1), i.e. , that

&1
—qlexpL —i(q+K) x]11)&A-.=~x, o

—kS(K)(Z-~ ~-i*(p—q)~-t(1 —q —K)Pt[(p q) (1 1 K)
+z-t ~-t(P)~-l*(P+-K)Pl[P- (1i+K)..]} (A3)

Equations (A2) and (A3) are now used to calculate, for
small q, K, and p —q, numerical estimates of the
averages of the squared matrix elements over the direc-
tions of p and p —q. Using Ai, (ko)=0.149, ~u. (ko)
=0.084, A2„(ko) =0.068, we find that

& I M(q, K) I'),.=0.02,

& IM, (q,K) I2)..=0.008=0.01,

where M(q, K) is the entire matrix element, Eq. (A3),
and M, (q,K) is the 1s orbital contribution, Eq. (A2). In
the numerical estimate of the contribution of umklapp
processes to the plasmon creation rate quoted in the
text, the value of the matrix element IM, I

2 given in (A4)
was multiplied by ~, a correction for the decrease of M,
with increasing K.

From Eq. (A2) we see that M, (q,K) is negative for
small K, but then becomes positive as K increases, since
the first two terms in the curly bracket decrease faster
with increasing K than does the third term. Thus,
neglecting p and q in comparison with K, we find
that M, (K)(0 for IKI (0.8'Ai, and M,,(K))0 for

I Kl )0.8Xi. Qualitatively simihr behavior is expected
for the full matrix element M. This behavior is the

'9 H. Eyring, J. Walter, and G. E. Kimball, QNuntum Chemistry
(John Wiley & Sons, Inc. , New York, 1958), p. 163.

reason for the choice of the is and 2s, p cutoffs as
smaller than 0.8) &, and 0.8) 2, respectively.

3M~ 1 1 s—p+1
(q, )=1+ —+—[1—( —~)'] 1

g 'vo 2 8s S p

1 s+p+1
+—[1—(s+ii)'] ln

Ss a+p —1
(AS)

&«(~/8s)[1 —(s—~)'], I
s —u I

&1«+v
0,

where s=q/2ko and p=&u/qv, .
'0 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 28, No. 8 (1954).

APPENDIX II
We state here some properties of the free-electron gas.

The RPA dielectric constant for the free-electron gas
was first calculated by Lindhard. "It is given by

6F—6Fi+ZEp9)
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The rate of energy loss for a hot electron of E=Ep in a unity for simplicity)
free-electron gas is4

d5 dkl 1

dE, 2m't 4 — 2kpk, 2kp
+tan '

dt 3n-kpk, P k, '+4kp'
(E,—Ep)'.

k.
(A6)

The rate of energy loss due to plasmon creation in a
free-electron gas, in the notation employed in the
text, is4

dEy me'co„' v —kp
ln

P P
(A7)

APPENDIX III

We give here an analytic proof of the assertion (ii):
Suppose the Fermi surface contains a straight line
segment of hnite length, and that a plane containing
this line is a plane of reQection symmetry of the energy
surfaces. Then for p on the line, dE, /dt is more singular
than (E,—Ep)'.

Proof: Let us take the straight line segment to be
along the s axis of our coordinate system, with the origin
at p, which is assumed to lie on the line segment. Let the
energy surfaces be symmetric under the reQection
x —& —x. Then we clearly may write

E—Ep+yp (s)+y2G (x2 y s)+ x2+ (x2 y s)

We assume all the functions appearing here to be
analytic in a neighborhood of x=y= 0. The condition
E=Ep defines a surface y =& (x,s); by hypothesis
A(O, s) =0. Consider now the two possible cases:

Case I: E(x',O, s)WO.
This implies that R(xp, O,s)=x~ 'r(s)+0(x~) with

S even, X&~2 and r(s) finite. Thus h. (x,s) =x~H(x', y, s)
with finite H (0,0,s).

Case II: R(x'Os)=0.
This implies R(x',y, s) =yQ (x',y, s), so that E equals Ep

on a strip of the xs plane, making Jp clearly singular.
Let us restrict ourselves to the nontrivial Case I. We
may write E=Ep+ Ly

—x~H(x', y, s)$8 (x',y, s), where
the function 8 is well behaved for small x and y. We
wish to calculate a lower bound for the integral Jp,
which we recall is given by (taking matrix elements as

7

~
I v,E, , I

q'pi(qo)' v I v~E~Xv~E~+pl

5 Ey q Ep 1 intersection of Ek ——Ep with Ek+q =Ep.
Clearly,

E,=Ii p

~k +0

~k+q ~P

implies

implies

implies

qp=qz H(qz, qz, qz) j

k„=k,~H (k,',k„,k,);
k„+q„=(k,+q,)~

XHI (k,+q,)', k„+q„,k,+q,j.

with n((0, 0,k,), (0,0,q,)) finite. Now it is easy to
calculate that

~,E, lf=Il(k)l lljq ir-iH(k)~~-i 1 0)
q

frnira—(k)V ~H(k),

VQEiz+p I f—8(k+q) I

—Xqz 'H(k+q) (n+ 1) ' 1 Oj
—q.~(a+1)~B(k+q) v gH (k+q),

where the subscript f mean. s that the derivatives have
been evaluated on the Fermi surface. Thus, for
Ek=Ek+q =Ep we have

I»E.&«.E&+pl ~& I&(k)&(k+q) I

XÃl:IH(k)Ilail"

'+ IH(k+q)lla+1I" '&q." '

+0(q,N) —=q.~ 'y(k, q),

with y finite. Writing fd5, =J'dq+q, lsecn (q) y I,
where n„(q) and y„are unit vectors, we have

I
seen. (q) y. l dq.dq, dklI

(AS)
~ l&,E,-, lq"i(q, O)' q. -'

v v(k, q)

which clearly diverges, since 3 ~& 2. Thus, Jp is singular,
and dE,(dt is more singular than (E,—Ep)'.

Combining these equations gives

k,"H (k,',k„,k,)+q,~H (q,', q„,q,)
= (k,+q.)vHf(k, +q,)', k„+q„,k,+q,j

which for q @0 implies that


