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Exact Analysis of an Interacting Bose Gas. I. The General Solution and the
Ground State

ELLIOTT H. LIEB AND WERNER LINIGER

Thomas J. 8'atson Research Center, International BNsiness Machines Corporation, Yorktomn H'eights, Sew York

(Received 7 January 1963)

A gas of one-dimensional Bose particles interacting via a repulsive delta-function potential has been
solved exactly. All the eigenfunctions can be found explicitly and the energies are given by the solutions of
a transcendental equation. The problem has one nontrivial coupling constant, p. When p is small,
Bogoliubov s perturbation theory is seen to be valid. In this paper, we explicitly calculate the ground-state
energy as a function of p and show that it is analytic for all p, except p=0. In Part II, we discuss the
excitation spectrum and show that it is most convenient to regard it as a double spectrum —not one as is
ordinarily supposed.

I. INTRODUCTION cell model becomes applicable. In consequence of this
fact, the model cannot be used to check any known form
of perturbation theory.

Another drawback of Girardeau's model is that it is
essentially a zero-parameter model. It might have been
hoped that varying the density, p, or the hard-core
radius, u, would modify the spectrum in some essential

way, but this is not true. If E„(p) is any energy level
of a state having momentum p, then E„(p) is of the form

$p/(1 —pa)7'f„([(1—pa)/p7p). In other words, the hard
cores simply play the role of an excluded volume.

We shall propose here a model that in many respects
is similar to Girardeau's, but which overcomes the two
difficulties mentioned above. We consider a gas of
bosons in one dimension interacting via a repulsive
5-function potential, whose Hamiltonian is given by
Eq. (2.1) below. As we show, this problem has one non-
trivial parameter, namely, p=p 'c, where 2c is the
strength of the 8 function. When p= ~ we obviously
obtain Girardeau's results since the particles then are
impenetrable. When y=0 we have the noninteracting
Bose gas.

A useful feature of this model is that for small y
Bogoliubov's perturbation theory' is valid. This is
discussed in Sec. IV. The model agrees with all the pre-
dictions of that theory except in one important respect:
For all values of p the most convenient and natural way
to view the spectrum of the gas is in terms of a double
elementary boson excitation spectrum —not a single one
as previous calculations have suggested. Bogoliubov's
single spectrum agrees quite well with one of the spectra
we obtain, but the other is totally unaccounted for in
his theory. The principal value of this model perhaps
lies in this startling fact. The whole question of the
excitation spectrum, as well as some heuristic reason
that this duplicity of the spectrum might have been
anticipated, and why it might also exist in three dimen-
sions, are discussed in the following paper. '

We may summarize the results of this paper as
follows:

'N comparatively recent times, as the history of
~ ~ quantum mechanics goes, a vast body of literature
has developed on the quantum-mechanical problem of
a gas or liquid of particles interacting via a two-body
potential. To attack this problem, perturbation theory
has been refined and developed in many elegant forms,
too numerous and well known to attempt to summarize
here. These results have been mainly of two kinds:
attempts, based on summing series to all orders, to
make exact statements about the true solution of the
problem; and attempts to develop approximation
schemes to yield quantitative results. It is fair to say,
however, that few of these results may claim to be
mathematically rigorous. They are accepted because
they agree with our intuitive understanding of the
problem.

Faced with such a situation it would seem desirable
to find a local, time- and velocity-independent, two-
body potential (the sort of potential that actually
exists in a gas) such that, starting from the Schrodinger
equation, and without introducing any approximations,
one could derive the energy levels and wave functions
of the system. It would also be desirable that such a
model problem be three dimensional.

While there do exist several model many-body
Hamiltonians in the literature, which are solvable, with
one exception, none of them corresponds to having
a simple potential of the character mentioned above.
The one exception is the work of Girardeau' on a gas of
impenetrable bosons in one dimension. He showed that
the energy spectrum of such a gas is identical with the
spectrum of a noninteracting Fermi gas. It is, indeed,
unfortunate that, due to the inability of the particles
to get past one another, Girardeau's model can only
be thought of as an extreme high-density situation—
even though the actual density of his gas may be low.

By this is meant that if we attempt to draw a parallel
between the one-dimensional hard-core model and the
three-dimensional hard-core model, then the former
resembles the latter only at very high densities when

' M. Girardeau, J. Math. Phys. I, 516 (1960).

2 See, for example, The Many Body Problem, edited by C. De
Witt (John Wiley 8r Sons, Inc. , New York, 1958), pp. 347—355.' E. Lich, following paper LPhys. Rev. 130, 1616 (1963) (referred
to here as II)7.
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II. THE PROBLEM AND THE NATURE
OF ITS SOLUTIONS

We begin with the Schrodinger equation for E
particles in one dimension interacting via a 5-function
potential. 4

(—PP(&'/»')+2~ Z49& &(xi—xJ))4'=~A (2 1)

where 2t,. is the amplitude of the 5 function. The region
of space under consideration is

R: all 0&x,&L (2.2)

The wave function iP satisfies periodic boundary condi-
tions in each variable. We are interested in the repulsive
case so that

c&0. (2.3)

While the attractive case, c(0, has a solution, it is
not physically meaningful because there is no saturation.
It is easy to demonstrate that in this case, for a fixed
density, the ground-state energy is proportional to
—E' instead of to —X.

It is well known that a 5-function potential is equiva-
lent to the boundary condition

(
8 8 f'8 8)

Bx~ Bxp 4B$~ Bxk'
(2.4)

i.e., P is continuous whenever two particles touch, but
the jump in the derivative of P is 2c. Moreover, since
we are interested in symmetric (Bose) wave functions,
the two terms on the left side of Eq. (2.4) are by defini-
tion equal.

4 6=1, 2m=1. Z(;;& means summation over pairs.

(i) We obtain explicitly the eigenfunctions of the
problem and show how they may be derived from the
solution of a transcendental algebraic equation. This
is the content of Sec. II.

(ii) In Sec. III we find the ground-state energy as a
function of y and show that in the limit of a large system
it is analytic in p except at 7=0. This shows that
perturbation theory can at best hope to give an
asymptotic series for the ground-state energy.

Most quantities of interest, such as the ground-state
energy, the velocity of sound, the excitation spectra
and others, derived both here and in II, have been
calculated explicitly and numerical graphs are given.
These quantities are derived from solutions to certain
integral equations which cannot be found in closed form.
The numerical work thus entailed was performed on an
IBM 7090 computer. At the end of Appendix B, an
outline of the numerical procedure is given. All of the
properties of the solutions claimed above, however, such
as their analyticity for p/0, have been rigorously
proved.

iP(0,x2, ,xy) =f (L, xm, ,xg), (2.6)

with a similar condition for the derivatives. The argu-
rnent of the right-hand side of Eq. (2.6) is not in Ri,
but by definition

P(L,x2, ,x~)=—P(xg, xg, ,x~,L). (2.7)

Hence, the original periodic condition is equivalent to
the following boundary condition on R~.

iP(0,x2, ,xg) =iP(x2, ,xg,L), (2.8a)

8 8—P(x,xa, ' ' ',xx)
~
~-0 =—4'(x2, ' ' ',xx,x)

~
x=L (2.8b)

8$ I3x

Equations (2.8), together with Eq. (2.4a), now com-
pletely cover the entire boundary of R~.

We now make the following amsats for P: Let {k)=ki,
~ . k~ be an ordered set of S numbers and define

iP(xi, ,x~) =Pi a(P)P exp(i P; i k;x;), (2.9)

where the summation extends over all permutations of
{k},and a(P) are certain coefficients depending on P.
The wave function P is thus a generalization of the one-
component Fermi function for which a(P) would be
(—)~. It is to be understood that Eq. (2.9) defines f
owly in R~, the extension to the rest of R following from
the requirement of total symmetry under all particle
permutations.

Can we choose a(P) so that tP satisfies the Schrodinger
equation in RiP Obviously Eq. (2.1a) is satisfied with

P Nk. 2 (2.10)

Let us now examine Eq. (2.4a) when xi ——x2. U all the
k's are distinct (as will prove to be the case), then the
X! terms in Eq. (2.9) are linearly independent. Let P
be the permutation that takes {k) into p, q, k „
k „and Q be the permutation that takes {k) into q, p,
k „. , k „, where q=k, and p=k, . If Eq. (2.4a) is
to be satisfied, there must be a relationship between
a(P) and a(Q) depending on p and g, and not involving
the other a(P)'s. Denote by y the common value of xi

We can go one step further than this, however, and
observe that if we define the region R& by

RI. 0&xg&xg& &xN&L (2.5)

then knowledge of P in Ri is equivalent to knowledge
of P in R. Equations (2.1) and (2.4), thus, become

PP—(8'/BxP)iP= Eg insideRi, (2.1a)

(a/a~;„a/a—x,)yl.„,=,=col.,„=., (2.4a)

The original Schrodinger equation, (2.1) is thus re-
placed by a Helmholtz equation (2.1a) together with a
mixed boundary condition (2.4a) on the boundary of Ri.

The last step is to interpret the periodic boundary
conditions on R in terms of tP defined in Ri. The periodic
boundary condition reads in part
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and x2 and substitute the two terms of 1P corresponding
to P and Q into Eq. (2.4a). We must be able to satisfy

i(v —p) La(P) —a(Q)7 exp(i(p+q)y+2;= "k.,*,)
=c exp(i(P+q)y+iP; 2 k,x;)

&&La(P)+a(Q) 7 (2 11)

for all values of y, x3, ~, x~. This is, indeed, possible if

c—i(q —p)(Q)=- (P)
c+i (q p)—

a(P—) exp(i8...,), (2.12)

(2.13a)
where

8,,=0(k,—k;),
and

8(r) =—2 tan '(r/c).

Assuming r to be real we have

~&0(r) & —~.

(2.13b)

(2.13c)

Thus, by regarding 1P as the sum of 2 (1V!)pairs of terms
corresponding to permutations such as P and Q above,
we can satisfy Eq. (2.4a) for x1——x2 for each pair sepa-
rately when the coefficients are given by Eq. (2.12).

The reader will easily verify that we can satisfy
Eq. (2.4a) simultaneously for all E 1possib—ilities
x;=x;+1 if we choose the a(P) in the following way: I.et

a(I)= 1. (2.14)

P (321j'

then for both the paths (321) —+ (231) —+ (213) —+ (123)
and (321)—+ (312)~ (132)—+ (123) we obtain the re-
sult a(P) = expi(932+021+921) ~

An alternative definition of the above rule which
makes it evident that a(P) is indeed independent of the
path is the following: %rite down k~, ~, k~ in a line.
Under it write down k „,k ~. For each k; draw a
straight line between the two points at which it occurs
in the two rows. For each crossing point of two lines
corresponding to k and kp, a(P) contains the factor

e" & whe—re k precedes kp in the set {k}'.
We conclude, therefore, that for a22y set (k}, p

defined by Eq. (2.9) will satisfy Eqs. (2.1a) and (2.4a)
when a(P) is given by the above rule. There is one
exception: All the k's in f k} must be distinct, otherwise
1P will vanish identically. Condition (2.4a) determines
only the form of 1P. The allowed values of the k's will

be determined by Eq. (2.8). It is easily verified that

R2de. If P takes {k}into (k}'=k„,k ~, then re-
arrange (k}' into (k} by the process of transposing
only adjacent k's. For each transposition, write down
the factor —e"«where k, and k& are the transposed
k's in question, k, lying to the left of k& before the trans-
position. The product of all such factors thus obtained
is a(P). There are, in general, many different ways to
get (k}' into (k} but they all give rise to the same set
of factors. For example, if

these equations are equivalent to the X equations.

(—)~ 'e '"1 =exp(i+, =P 0»), (all j), (2.15)

where we have defined

(2.16)

Although Eqs. (2.15) are X equations in X unknowns,
there will be many sets of solutions. The problem we
have here is quite similar to the one-dimensional Heisen-
berg model of ferromagnetism with nearest neighbor
interactions, first solved by Bethe. ' I,et us agree to
order the k's (assuming they are real) so that

kI(k2( . ~ (kg (2.17)

By observing that
(2.18)

k =k,+21reo/L (2.20)

is a solution for any integer eo. The significance of Kq.
(2.20) is the following: Since Eq. (2.9) defines 1P only
in R~, the k's cannot be regarded as true wave vectors.
But the sum of the k's is a true wave vector and is, in
fact, the total momentum of P; i.e.,

P.,1p= (Q ( i 8/Bx—;))1p= (Q k,)1p= p1p (in'). (2.21a)

Equation (2.19) tells us that the total momentum must
be an integral multiple of 2~/1.—an expected result.
Equation (2.20) tells us that for any state with mo-
mentum p there is a state with momentum

where
P =P+21rspp,

p= X/1.,

(2.21b)

obtained by a simple shift of the k's. Conversely for
any state with momentum ~P~ &2rp there is a corre-
sponding state having a momentum in the range

—m.p(p(2rp. (2.23)

We have, thus, to consider only states in the interval
(2.23). All other states are obtained by the simple
"umklapp, "Eq. (2.20), which has the physical meaning
of imparting a total momentum to the system while

preserving the "internal" state of the system. The in-
teger e2 in Eq. (2.20) is thus one of the quantum numbers

~ See R. Orbach, Phys. Rev. 112, 309 (1958). This contains
references to earlier papers.

and taking the product of all E equations in (2.15), we
find that

Qp k;= 2(2r/1. )N, (2.19)

where e is an integer. We also find, by virtue of Kq.
(2.13a), that if (k} is a solution to Eq. (2.15), then the
set (k'} defined by
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describing a state. The energy of the new state is kI such that

N 1 s 2mnz e(cV)
E'= Q (k/')s= 8+ p+ —(27rtsop)s (2.24) ki= ——2 eki +

g I a=I

where e; is an integer depending upon j, defined for
j= 1, 2, , E—1. These e s are the generalization of
ts, in Kq. (A3). Since 0» is a monotonically increasing
function of j by Eqs. (2.13), the sum in Eq. (2.25) is
negative. Therefore,

ts;&1 (all j), (2.26)

if there is to be a solution. Since

k, =ki+ (1/L)p, =t& '8„ (2.27a)

a well-known consequence of Galilean relativity.
To elucidate the nature of Kq. (2.15) we must study

the two-body problem. To avoid loss of continuity we
have relegated this to Appendix A. The principal results
are as follows: (a) The atssats, Eq. (2.9), appears to
give all eigenstates of the problem; (b) for y)0, the
case in which we are interested, the k's are always real;
(c) for y=O we obtain the noninteracting solution,
while for y= ~ we obtain Girardeau's solution' with a
continuous transition in between.

These same considerations apply to the X-particle
case. Since the k's are real, we may order them according
to Kq. (2.17). For real (k) we can say something about
the solution to Eq. (2.15).Dividing two successive equa-
tions and equating exponents, we have

8;=—(k;+i k;)L=P—, i (0„,—8„;+i)+2sn;
(j=1,2, , 1V—1), (2.25)

where

1 sr ( 1 s—i ) 2m its e(Ã)+, (2 29)
t L ~=i l L I

e(AT) =s. for X even,
=0 for Ã odd,

(2.30)

and tts is some integer, and use Eq. (2.27a) to determine
the other k's, Eq. (2.15) will be satisfied. To determine
the integer m, which is not arbitrary, we observe that

N 1 N—1

p =+ k, =cVk&+ Q—(Ã—j)8,
]. L, j=l

N—1

=—Q (E j)8,—p —Q 8,&
—2~ttsp+ e(X)p. (2.31)

Equation (2.23) then fixes tts.

As further support for the assertion that Eq. (2.25)
has a unique solution for a given (ts), we shall consider
the two limiting cases c=0 and c= ~.

c= ~:In this case all the 8's are zero, whence

lim, „8;=2m';, (2.32)

so that not only is the solution of (2.25) unique, but
(2.28) becomes an equality. It is clear that we recover
all Girardeau's wave functions and energies; the term
e(iV) just gives the extra ir mentioned in footnote 6
for the even X case.

c=0:By Eq. (2.13)

k„—kp
——(1/L)Q =p ' 5 ( )P), (2.27b)

lim. s 0(x) =—n- for x)0
for x(0,

(2.33)

b; &2~r;. (2.28)

The remaining step is to determine the individual
k's so as to satisfy Kqs. (2.15) and (2.23). If the j=1
equation of (2.15) is satisfied, the remainder will auto-
matically be by virtue of Eq. (2.25). Thus, if we choose

6 Girardeau obtained the solution to the hard-core problem only
for lV odd. For N' even, however, there is an equally simple solu-
tion. One simply uses the Fermi function satisfying antiperiodic
boundary conditions, i.e., Lk=7f+2nx, where n is an integer.
This exactly compensates the unwanted change of sign of his A
function. For two particles the ground state has ks= —kq

——rr/I.

the right side of Kq. (2.25) involves only the g's.
Equation (2.25) is thus a self-contained set determining
the 8's. If any set (I) is chosen satisfying (2.26), there
is presumably exactly one solution for the 6's. At least
that was the case for two particles and will prove to be
true for the cases we shall investigate involving a large
number of particles. Ke also note that

and, hence, Eq. (2.25) yields

lim. p 5;= 27r(ts; —1). (2.34)

There is, however, a ca~eat: if some e,=1 then b,™-+0,
but it is then not clear that we can use the limiting form
(2.33). We must ask for lim, o(8/c). Only if it is in-
finity can we use Eq. (2.33) and thereby obtain Eq.
(2.34). But if hW0 Kq. (2.33) is certainly correct.
Hence, by reductio ad absurdum, the only consistent
conclusion is that Eq. (2.34) is always correct. The
solution to Eq. (2.25) is again unique. We have, of
course, recovered the well-known Bose functions for
free particles. For E even, the e(1V) term in Eq. (2.31),
which in this case is unwanted, is compensated by the
term Q 8;t.

%e, thus, Inay conclude that the e; are a complete
set of "internal" quantum numbers for the system.
Together with tss LEq. (2.20)j they specify all states.
By virtue of Eq. (2.28) moreover, the n; may be
thought of heuristically as the spacing between the k's.
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The exact spacing depends upon c to be sure, and also
upon the relative position of 8; in the set {8}.The fact
that even for n;=const the spacing is not uniform
(except for c= ~) gives rise to the principal difliculty
in the analysis of the many-particle case. One other
peculiarity of the problem should be remarked upon.
The limiting case c= ~ proved above to be particularly
simple, but for c~ 0 the problem became pathological.
Indeed, the latter limit will prove to be surprisingly
delicate as we shall see.

III. GROUND-STATE ENERGY AND
WAVE FUNCTION

We are interested in passing to the limit of a large
system. This means Ã, L~ ~ such that p=6xed
constant. From dimensional considerations the ground-
state energy can always be written

We are, thus, led to expect that K(y) is an intensive
variable and that the process of passing to an infinite
system consists in "filling in" more and more points in
the set {k}between K—and K with the understanding
that the spacing between k's may not be uniform. This
may be shown as follows: The inequality k;+i—k; (2ir/L,
Eq. (2.28), permits us for a large system to use a Taylor
expansion in Eq. (2.25), i.e.,

e(k, —k;)—8 (k.—k;+i)

= —2c(k;+i—k;) +o(1/L'), (3 9)
c'+ (k,—k;)'

and, hence,

(k;+i k;)—= 2c—(k;+i k;)—g—r c'+ (k —k )']-'
L s=i

2'
+ +0(1—/L'). (3.10)

ED Np'l (N,——cL), (3.1) Define

Therefore,
V=c/p.

&o=Np'e(v).

(3.2)

(3.3)

It is easy to show directly from Eq. (2.1) that e(p) is a
monotonically increasing function of p. We also expect
that e(0)=0 (free particles) and e(~ ) = ir'/3
(Girardeau's solution). We can easily get an upper
bound for e(p) by a variational calculation. Using the
unperturbed Bose function, f= 1, we obtain

where / is a dimensionless function of its arguments.
But if E0 is to be an extensive variable (as will, indeed,
prove to be the case), l can depend only on intensive
variables. The only dimensionless intensive variable in
the problem is

k;+i—k;= 1/Lf(k;), (3.11)

by means of which the sum in Eq. (3.10) may be ap-
proximated by an integral by Poisson's formula to the
required accuracy in L '. Equation (3.10) becomes

2c
f(p)

dp =2nf(k) 1.-—
x c'+ (p —k)'

(3.12)

f(k)dk= p, (3.14)

The meaning of f(k) is that for a large system

Lf(k)dk=number of k's in (k, k+dk). (3.13)

The subsidiary condition determining the number of
particles is

e(p) &p.

Using Girardeau's function, ' we have

(3 4)
while the ground-state energy is given by

e(y) &7r'/3. (3.5)

Returning to Eq. (2.25), it is clear that the choice

X

E0——Q kg= — f(k)k'dk.
p —z

(3.15)

(3.6)

gives the ground state, for this choice minimizes the
8's and hence allows the k's to be as close to zero as
possible. We also see from the symmetry of the equa-
tions that if k is in {k},then so is —k. Indeed this is
always so for e;=const and implies that p=0 for such
states. Equation (2.31) determines ki in this case:

One final condition implied by Eqs. (3.11) and (3.13) is

f(k) &0. (3.16)

Let us change variables as follows: Define

k—=K'x; c=KX; f(Kx)=g(x), —(3.1—7)

in terms of which Eqs. (3.12), (3.14), and (3.15) be-
come, respectively,

(3.7)
N—1—ki= Q (N j)8;=k~=K(y). — —

EL
1+2K

g(x)dx

i X'+ (x—y)'
= 27rg(y), (3.18)

From Eq. (2.28) et seg. we see that

K (0)=0, K(~)=irp, (3.8)

~8 1

e(V) =—
X'

g (x)x'dx, (3.19)

with presumably a continuous monotonic transition in
between.

g(x)dx= X. (3.20)
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The program, therefore, consists of the following steps:
(i) Solve Eq. (3.18) for a fixed X; (ii) use Eq. (3.20) to
determine X as a function of y; (iii) Eq. (3.19) then gives

e(y); (iv) Eq (.3.17) gives E(y), i.e.,

I =pyX '=p-g(x)dx
—1

(3.21)

8+
ON —= g(x)dx

BX

Equation (3.18) is an inhomogeneous Fredholm
equation of the second kind with an inhomogeneous
term that is positive definite (i.e., +1).In Appen ix B
we discuss this equation in considerable detail and prove
the following:

(a) For any inhomogeneous term there is exactly one
solution g(y).

(b) g(y) is an infinitely differentiable (analytic)
function of X for ) &0.

(c) If the inhomogeneous term is positive definite

t as in Eq. (3.18)7, g(y)) 0 for all y.
(d) If the inhomogeneous term is bounded above

(below), then g(y) is bounded above (below).

These statements enable us to claim that g(y, p), e(y),
and E(y) are analytic functions of y (except for y=0).
Since there are then no unusual kinks or points of dis-
continuous derivatives, it becomes a straightforward
matter to evaluate all quantities numerically with con-
fidence. The proof is as follows: (b) and (c) above,
together within Eq. (3.20), imply that p is an ana ytic
function of X for X in (0,~). Equation (3.19) then im-

plies tha, t e is analytic in X; Eq, (3.21) implies that IC
is analytic in X. The problem is then to prove that (i) X

is an analytic function of y and that (ii) the range
0&X&~, in fact, covers the required range 0&p&~.
By the implicit function theorem, statement (i) will

be true if we can show that

B (c) above, the inhomogeneous term in Eq 3.24y c a
is negative definite and, consequently, h. . . y~xV, &0 .b
then applying (c) to Eq. (3.24)7. We have, therefore,

0&X h(x, z)d*

Bg(x,X)
(1, —g(x, l,))dx+2g(l, l,) (3.25)

by using the definition (3.23) and integrating by parts.
Since g(1,X))0, the integral in Eq. (3.25) is negative
definite. But this integral is just the negative of the
term in f } in (3.22). Hence, sta, tement (i) above is
proved. Ke see, incidently, that X and p are monotonic-
ally increasing functions of each other.

As for (ii) above, we see from Eq. (3.18) that

limi, „g(x,X) =1/2', (3.26)

and, consequently, from Eq. (3.20)

(3.27a)

As X ~ 0, on the other hand, the bounds mentioned in

(d) above guarantee that g(x,X) -I+ 0. LOn the contrary
g(x,X) —+ ~ in this limit. 7 Equation (3.20) then imp ies
that

lirn}, Op=0. (3.27b)

Equations (3.27) establish (ii) above.
To recapitulate, we have shown that all quantities

are analytic functions of y in (0,~ ). As the above argu-
ments tend to suggest, however, and as we, in fact, show
later, there is a very serious singularity at p=0. The
physical meaning of this singularity is that any interac-
tion, however weak (but volume-independent), leads
in the limit of a large system to a system that is in some
way basically different from the noninteracting case.
If one tries to find a series for e(y) for small y, such a
series can at best be asymptotic —a result already indi-

&( g(x)dx —X

1 —g(x)dx, (3.22)

for all X. By (b) above, L
J" i' g(x)dx7 'NO As for. the

two terms in ( },we observe that if we define

(3.23)

2~h(y, z) =n a(x,X)
GS

~'+(*—y)'

( 1—2g(1,X) i + i. (3.24)
~X'+ (y+ 1)' X'+ (y —1)'-J

and integrate Eq. (3.18) by parts several times, we
easily obtain an equation for h, viz. ,

0
l 2 3 4 5 6 T 87~ 9 lo

Fro. 1. Various numerically derived properties of the ground
state plotted as functions of y=c/p. E=cutofT momentum,
p =chemical potential, v =potential energy per particle, and
/=kinetic energy per particle. As y —& 00: J —+zp,' p~~2p2,
z ~ Q and t —& —,'7t-'p'.
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cated, but not proved, by the conventional perturbation
theoretic treatments.

In Appendix 3 an outline is given of the numerical
solution of Eqs. (3.18—20). While nonpathologic be-
havior is guaranteed by the above analyticity considera-
tions, the singularity at p=0 makes the numerical
calculation more and more dificult as this limit is
approached.

In plotting results we use units in which p = 1, so
that E/p varies between 0 and. m. We have also elimi-
nated the dependent parameter ) in favor of the inde-
pendent parameter y by using Eq. (3.20). LNumerical
values of X as a function of y can be obtained, if desired,
from the relation X=y(E/p) ', Eq. (3.21).7 Figure 1

00 p $ 4 5 6 77~ 8 9 l0

I.8-

l.6—

l.4—

l.2-

t Lo-

0.8—

01

Ql y = 0.054
Q2 y 0.12I

Q3 y=0.405
Q4 y . l.234
Q5 y =4.526
Q6 y =25.15

Q7 y=

Fro. 3. The ground-state energy ED=A'e(y). The full curve
gives e(y) obtained numerically. As y —+ ~, e~ —',w'. Curve 2
is the zero-order perturbation theory result, i.e., the expectation
value of the potential in the noninteracting ground state. Curve 3
is the result of Bogoliubov's perturbation theory, which is seen
to be good up to y 2.

still quite far from its asymptotic limit) 3' In fact,
in order to get within 10%%uo of this asymptotic limit y
must be about 37. The intermediate coupling region, by
one definition at least, is, therefore, 2 ~y &37.

There are other quantities of interest in connection
with the ground state; these are also plotted in Fig. 1.
There is the chemical potential p, , or energy necessary
to add one particle to the system, dehned by

0.6-
BEs de)

=p' 3e—v—I.
81' dye

(3.28)

0.4—

0.2—

I

I

0 I iI -2

i I I I

I

0 I

(kip)-

05
~06 OT

I

I

li

c 8 de
&O=P 7

X Bc dy
(3.29)

Also interesting is the potential energy per particle v,

which by a well-known theorem is

FIG. 2. The distribution function of "quasi-momenta" in the
ground state for various values of p=c/p. The vertical dashed
linesarethecutoffmomentaE (cf. Fig. 1).When'= ~, f=(2~) '.
For all y, f rr~f(k)dk=p.

and the kinetic energy per particle

1 de)
t= Es e=p' e——y——

~.

X dpi
(3.30)

shows E(y) while Fig. 2 shows the density function

f(k,y) for several values of y. It will be noticed that as

p —+0 small values of k become relatively more im-

portant. Figure 3 shows the end result of the calculation,
e(y). The straight dashed line is the zeroth-order per-
turbation theory result e=y, which also coincides with
the primitive upper bound obtained before (Eq. (3.4)].
The other dashed curve, e=yti —(4/3~)gyj, is the
result of Bogoliubov's perturbation theory which we
shall discuss presently. It is in fair agreement with the
exact answer up to p=2. We may, therefore, regard
0&y (2 as the weak coupling region. On the other hand,
it is interesting to note that even for y=10, e(y) is

g(*)=) (2 ) —4)-r. (3.31)

Substitution of Eq. (3.31) into Eqs. (3.19) and (3.20)

We conclude this section with a list of the asymptotic
forms of the various quantities for large and small y.

Large y. This is the easiest case. The denominator in
the integral of Eq. (3.18) may be effectively replaced by
)'. The error thus introduced in the integral is small,
but by Eq. (3.26) the integral itself is small compared to
1, so that the resultant error in g will be quite small in-
deed. This substitution leads to g(x) = const which may
be readily evaluated as
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leads (for large y) to

1 7 7
X=—(y+2), e=-',m', E=n. p,

y+2 y+2

37+2
p= pe,

y+2
p e)

y+2

7 2
t= p'e.

p+2

(3.32)

These results are accurate to 1% for y as small as 10.
Seal/ y. As we show in Appendix B, as X —+0 the

factor 2~ on the right side of Eq. (3.18) becomes an
eigenvalue of the integral equation. Consequently,
g(x,X) has a singularity at X=O. In addition to this
di%culty, the kernel of the integral equation also be-
comes quite pathological. It will be recognized that as
) —+ 0 the kernel becomes a well-known representation
for 2~8(x—y) so that in this limit Eq. (3.18) reads:
27rg(x)=2~g(x)+1. It is clear, therefore, that in this
limit g becomes unbounded —a statement borne out by
the limits on g given in Appendix B.

There does not seem to be any simple way to get a
systematic, reliable expansion of g as X —+0. We can,
however, guess the zeroth order form for g:

g(x,X)- (1—x')'", () —& 0)
2mA

(3.33)

and one can then show, using bounding arguments
similar to those in Appendix B, that the correction to
(3.33) is of higher order in X for all x, and is positive
definite. Beyond this, we have been unable to obtain
an unambiguous correction to (3.33). One of the major
difhculties is deciding what happens at the end points,
lxl =1.

Equation (3.33) allows us to find only the leading
term for the quantities mentioned in (3.32). These turn
out to be (for small y)

e=~, Z=2pg~,
p= 2p p) 'v=p) t=0, (3.34)

The equation e=p is plotted in Fig. 3. We see that
the upper bound for e [Eq. (3.4)7 is, in fact, its asymp-
totic form —a result predicted by elementary perturba-
tion theory.

It will be noticed from Fig. 1, as well as from Kqs.
(3.32) and (3.34),that for small y the potential energy
dominates the kinetic. The reverse is true for large y;
in fact z —+ 0 as p ~ ~. This behavior is exactly the
same as for three dimensions —it is often said that a
large potential behaves like a kinetic energy barrier.
This fact is supposed by some to be tied up with the
ability of particles to "go around" each other in three
dimensions. But as we can clearly see, it is also present
in one dimension. Thus, the difference between one and
three dimensions does not lie here —it is apparently
immaterial to the particles whether they can "get
around" each other or merely "through" each other.

IV. PERTURBATION THEORY

The well-known perturbation theory of Bogoliubov~
was at first assumed to be an expansion in the density.
That this is incorrect was realized when it was found
that the correct parameter for a low-density expansion
is the scattering length (in three dimensions) and not
J'ij(x)d'x as appears in Bogoliubov's theory. But
Bogoliubov's theory is asymptotically correct if we
regard it as an expansion in the potential. In other words,
it may be expected to give the first two terms in the
energy correctly for any density if the potential is so
weak that it may be treated by the Born approximation.
In our case, therefore, the Bogoliubov theory should be
correct for small p. On the other hand, small p may be
thought of as high density —the reverse of the usual
(incorrect) assumption mentioned above.

This last observation leads to a second reason for
believing in the Bogoliubov result for small y. One can
show (we shall not do so here) that if the Fourier trans-
form of the potential is everywhere nonnegative, then
Bogoliubov's theory is correct —at least as far as the
ground-state energy is concerned —in the limit of high
density. The 8-function potential certainly satisfies
the above criterion.

As stated in the introduction, one of the uses of an
exact model is as a check for approximation schemes.
It is indeed fortunate that the present model has a
definite range of coupling constant over which the
Bogoliubov theory may be unambiguously expected to
be correct. Our model, therefore, should serve not only
to establish the validity of the Bogoliubov theory but
should also serve as an indicator (taking appropriate
account of the difference between one and three dimen-
sions) of the range over which the theory is reasonably
accurate.

The Bogoliubov prescription easily yields the follow-
ing results: The spectrum of elementary excitations is
given by

~(P) =p'lP/pl [(P/p)'+4&i" (4 1)

We have purposely written e(p) in terms of the dimen-
sionless variable p/p. The ground-state energy is given
by

'&'(2e/~)+k Z. [e(p) —-P' —&(2e/l') 7
=&p'~[1—(4/3~)v'v7 (4 2)

The expression for e(7), (4.2) is plotted in Fig. 3;
it is adequate up to approximately p=2. Equation
(3.34) shows the leading term is exact. While we have
not found an analytic expression for the second term,
(4/3ir)y'~', the numerical results of Fig. 3 indicate
that it too is correct. It is interesting to note that the
exact equation for e(y) is so pathological at 7=0 that
it was an effort to find even the zeroth-order term for
e(y), while perturbation theory gives the first two terms
by elementary quadrature.
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As for the elementary excitations, we shall show in

II that Eq. (4.1) is also fairly accurate up to about
p= 2, but that there is another type of elementary exci-
tation unaccounted for by Bogoliubov's theory.

2, 3, etc. , are, respectively,

8=0, 2z, 4x, etc.

5=2s., 4s, 6n-, etc. (y= ~).
(A6a)

(A6b)
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APPENDIX A. THE TWO-BODY PROBLEM

To elucidate the nature of Eqs. (2.1S), we shall study
the two-body problem. To highlight the basic difference
between the repulsive and attractive cases, we shall
consider both. For the two-body problem, (2.15)
becomes

There are several ways to solve this problem and we
shall choose one which may be generalized to the Ã-
body case. Define

I.k2 ———I.ki ——-', 5; p= 0, (Ni odd) (A7a)

Lk, =-',5+7r; Lk, = —;8+m",
p=2m/L=xp, (mi even). (A7b)

Thus, we see that for every integral value of e& & 1 there
corresponds a unique state having a definite energy and
a momentum in the range (2.23). The integer ei may,
therefore, be considered the second or "internal, "
quantum number of the problem which, together with
mo, specifies a state. The ground state corresponds to
m~=1 and has zero momentum as expected.

For y&0 (attractive case), the situation is more
complicated and rather surprising. The real roots are
much the same as before except that here e~——0 becomes
permissible if y) —2. Equation (AS) is changed to

2n ei (8(2s-(ni+ 1), (ASa)

We have now to determine k& and k& separately so
as to satisfy Eqs. (A1). Substituting the value of 8»
from Eq. (A3) into Eq. (A1) we see that for every root,
8, there is in fact a unique solution satisfying (2.23)
given by

(k2 ki)L=8, y—= ', cL, - (A2)

then, multiplying the two equations (A1), we obtain

8 = 28(k2 —ki)+2m. ei
= —4 tan '(6/2y)+2mei,

(A3)

where Ni is an integer. If we invert Eq. (A3) we obtain

b/2y= —tan(B/4), mi even

= Ltan(8/4) j—', ni odd.

(A4a)

(A4b)

2s. (mi —1)&5 (2wei. (AS)

In the limiting cases the roots corresponding to m~=1,

It must be remembered that Eqs. (A4) have far more
solutions than Eq. (A3) (because ~0~ &~ by definition).
Now if z tanz=real, then z is either real or imaginary,
not complex. The same applies if (1/z) tans= real.
Hence, the roots of Eq. (A3) are either real or imaginary.
For the real roots we choose 8 positive in accordance
with (2.17). For y)0 (repulsive case), there are, in
fact, only real roots as Eqs. (A4) show. For every
solution to either Eq. (A4a) or (A4b) there exists an
integer ei such that Eq. (A3) is satisfied, and conversely
for every integer ej & 1 there is a unique positive solution
to Eq. (A3) given by either (A4a, ) or (A4b). The single
exception is m~=0 for which there can be no solution
because the first term on the left side of Eq. (A3) is
negative (h=0 is not allowed). We see that

while Eqs. (A7) remain unaltered. For the imaginary
roots, it is wise to return to the original definition of
e" [Eq. (2.12)]in order to avoid ambiguity in the defini-
tion of tan '. One finds that for e& ——1 there is always a
pair of equal and opposite imaginary roots given by
Eq. (A4b). Only one of them need be considered, for
the other corresponds to interchanging k~ and k2. If we
write b=mi (n)0), then

0.&—2y. (Ag)

By Eq. (A7a) this state has zero momentum and its
energy is

Eo —(1/2L')n'( ———-', c'. (A9)

This state, which is the ground state of the problem, is
the analog of the single bound state for an attractive
delta function in infinite space for which Eo= ——,c',
/=exp( —2ic~xi —x2~). Putting the particles in a box
with infinite walls (zero boundary conditions) would
reduce the binding energy, however, contrary to
Eq. (A9). The periodic boundary conditions are respon-
sible for this anomalous result.

Even more surprising is the appearance of a second
bound state. We saw above that for p& —2 there is an
m~=0 real solution. In this case there is no other bound
state. But if y( —2 (strong coupling) the real solution
for e~——0 disappears in favor of an imaginary solution
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to Eq. (A4a). For this solution

cx &—2p. (A10)

By Eq. (A7b) this state has a momentum p=2m/L
and an energy

APPENDIX B. SOLUTION OF THE BASIC
INTEGRAL EQUATION

I. Existence, Uniqueness, and Analyticity
of the Solution

(i) The integral equation (3.18) is a special case of

1 2
Ee'= — (u')'+ —ir') —-,'c'.

2L2 J2
(A11)

r(y)+ E(y x)g(x)—dx=og(y),

For y= —2 the m~=0 root is 8=0 which must be dis-
carded. On the other hand, the state cannot disappear
for a single value of p. The paradox is resolved by taking
the limit y —+ —2, whereupon we find

where

R (y) =2X/(X'+y')

and X)0. Equation (111) can be brought into the form

iP'= L2+c(x2—xr)] exp i (xi+—x2), (y= —2), (A12)
1.

u(s) —p R(s—t)u(t)dt=rt(s), (82)

in E~. Two facts should be noticed about this second
bound state. Firstly, it has a nonzero momentum, but
it does not correspond to the translation of a bound state
with p=0. Translated states of two particles with zero
momentum must have momenta which are integral
multiples of 4r./L. Secondly, this state does not disap-
pear in the limit L —+ ~ as might have been hoped. In
fact, for uey fixed c we can always choose L large enough
such that y& —2 and this second state will make its
appearance. As L —+ ae both inequalities (Ag) and (A10)
approach equalities so that Eo and Eo' becomes asymp-
totically degenerate and equal to the infinite space
binding energy.

Having obtained these wave functions we may ask
if the aesats Eq. (2.9) Lwith the single exception, Eq.
(A12)j exhausts all the solutions of the Schrodinger
equation. It seems clear that it, in fact, does so, at
least for the repulsive case, although we cannot prove
that this is true. %'e are led to this view because in the
repulsive case we obtain the well-known wave functions
for y=0 (free particles) and we obtain Girardeau's
solution for y = ~ (hard cores), with a continuous transi-
tion from one to the other. For y&0, on the other hand,
the situation is not quite so clear. As y —+ 0 we recover
the free particle solutions. For p&0 we can only observe
that as 1.—& ~ we obtain the well-known bound state
and scattering solutions for the attractive 6-function
potential.

These same considerations apply to the X-particle
problem and we shall therefore suppose that Eqs. (2.9)
and (2.15) yield all the wave functions of the problem
for the repulsive case.

From consideration of the two-body problem we are
led to the following hypothesis: For the repulsive case
every solution (k} contains only real k's, which we may,
therefore, order according to (2.17). For the attractive
case, which we shall not consider further, complex k's

may appear. One should expect many types of nonreal
solutions for p&0 corresponding to two-body, three-
body, etc., bound states.

by letting y= ks, x= ht, a= 1/X( ~, ti= 2/o, u(s) = g (y),
r (s) =r(y)/o. , and

R(s, t) =R(s—t) = 1/L1+ (s—t)'j. (&3)

By definition, ~ E is positive definite if

R(s,t)u(s)u(t)dsdt) 0, (84)

rl(s) = R(s—t)u(t)dt and u*(P), g*(P)

be the Fourier transforms of u(s) and ri(s), respectively.
Then, according to Parseval's equation, ' and because
rt(s) is rea, l,

u(s)rt(s)ds= u*(p)rt*(p)dp.

As ri(s) is defined by a convolution, one has

rt*(s) = (2~)'"R*(p)u*(p),
and, thus

j„=(2m)'t2 R*(p)
~
u*(p) ~'dp.

7R. Courant and D. Hilbert, Methoden der Muthematischen
2'hysik (Springer-Verlag, Berlin, 1931), Vol. I, p. 105.

W. Schmeidler, Integrulgleichungen mit Anmendlngen in Physik
und Technik (Akademische Verlagsgesellschaft, Leipzig, 1955),
Vol. I, pp. 74, 75.

for any square integrable u(s) $0. For R to be positive
definite with respect to the interval (—a, a) it is suf-
ficient that R be positive definite with respect to (—~,
0o) because the square integrable functions with respect
to (—a, a) can be thought of as a subset of square
integrable functions with respect to (—ao, ~) which
vanish identically for ~s~ )a. Let
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R"' (s,t) =R(s, t), (BSa)

Rt'+'& (s,t) = Rt'&(s, r)R(r, t)dr) (i~1). (BSb)

From the defintion (83) of R it is evident that there
exist constants C, &0 such that ~OtRo&/Os'~ &C; for
any j~0. One has

R(r, t)dr = T(a, t) = arctan(a —t)+arctan(a+t). (86)
—a

It is easy to see that

w/2 &arctan2a& T(a, t) &2 arctana=s- —e, e&0. (87)

Assume now that, for a certain i ~ 1 and any j~O,
O'Ri'& (s,t)/Oss

I

&Cs (rr e)—

It is well known' that

R*(p)=R*(p)= ( /2)'t'e —
~~~ &0,

and, thus, J„&0 except for N(s)=0, that is (84) is

proved. Since R is positive definite, all eigenvalues of

(81) or (82) are positive. M

(ii) Consider the kernel R and its iterates"
&c(y x) =P, s"o-'Et'+'&(y, x). (811b)

The eigenvalues of (82) are, thus, all & 1/(w —c) and
those of (81) are &2w —2e. Property (a) of Sec. III,
that is, the existence of a unique solution of Eq. (81)
for a= 2x, is thus proved. From the uniform convergence
of the series in (89) with j& 1 follows the analyticity of
the resolvent kernel with respect to s and t.

(iii) Let X=s be complex in the expressions for the
kernel E and its iterates. Consider a closed circular
domain D defined by ~s—Xi~ &8, with real Xi, 5 and
0(O(Xi/v2. Then, if y is real, it is easy to see that
~E(y;s)

~

&2(At+5)/(Xi —O)'for anyseD. Let [s.-ei(O)]
= 2 arctan [2/ (Xi—i&)], ei(O) &0. As 8 -+ 0, the quantity

g (5)= [(Xi+ii)/(Xi —t&)]. [w —et (8)]decreases monoton-
ically to (s-—e) = 2 arctan(2/Xi), where et (t&) & e. Thus,
if 0(es &e, q(5) & s.—es for sufficiently small 8. Now as-
sume that, for a certain i~ 1 and real y, x, $,

Xi+I
~E'&(y)$; s)

~

&2' (rr —es)' '
(X,—O)'

(812)

or of the equivalent representation

1
g (y) = r (y)+— tc (y,cc)r (cc)dh, (811a)

0 0

Then, because O'R&" (s,t)/Oss' is continuous in s for all j,
one can differentiate under the integral sign and, using

(87), one gets

Then,

i

Ei"'+'& (y x; s) i

= Et'&(y, P; s)E(g,x; s)dP

O'Rt'+i& (s,t) ' OtR&'& (s,r)

8s'

&R(r, t)dr
I

& Ct(~ —e)' (88)

&2' (s —es)' '
(lit —O)'

2(X,+O)dg

i (l&.t—O)'+ ((—x)'

As (88) holds for i =0 it follows by induction that (88)
holds for all i~O. Therefore, the Neumann series and
its derivatives with respect to s taken term by term, that
1s)

Otp(s, t) OtRt'+'&(s, t)
(89)

N(s)=s(s)+p, p(s, t)s(t)dt, (810)

' G. A. Campbell and R. M. Foster, Fourier Irltegrals for Practical
A ppHcotsorts (American Telephone and Telegraph Company,
New York, 1942), p. 45.

"Reference 7, p. 112."Reference 8, p. 270.
"Reference 7, p. 119.

for j~0, converge absolutely and uniformly in both
variables s and t for all p, &1/(w —e). The same result
holds for the derivatives with respect to t as can be
proved in a similar way.

From the uniform convergence of the Neumann series
for j=0 follows first the existence of the resolvent
kernel, p(s, t), in particular for ts= 1/w, and the validity
of the representation"

i (Xt—B)s+ ($—x)

&2g(O) &2(w —es);

thus, (812) holds for i+1.As shown above, (812) does
hold for i =1, and by induction it follows that (812)
holds for all i~1. As a consequence, the Neumann
series (811b) with X=s converges uniformly with re-

spect to s in D. The kernel E and its iterates are ana-
lytic functions of s in D because D does not intersect
the imaginary axis, the only place where IC and its
iterates could have singularities. Thus, for o~1/27r,
(811b) represents a uniformly converging series of
analytic functions and, as a consequence, " «(y,x;s) is
analytic in s in the neighborhood of any ) &)0. In
particular, ~ is analytic in X in the real sense. Finally,
from (811a) follows the analyticity of g(y) as a function
of ). This completes the proof of statement (b) of Sec.
III, that is g(y) is analytic in X for o = 1/2s. .

"E.T. Whittaker and G. N. Watson, A Course of Modern
Atsotysis (Cambridge University Press, New York, 1952), p. 91.
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(iv) Using 1/(1+4a') &
~
R(s, t)

~

&1 and inequality
(87) one can prove by induction that

[1/(1+4as))(~/2)' '&
~

Rt'&(s, t)
~
g (m

—e)'—'.

Thus, there exist constants, b1 and b2, such that, for
y, & 1/m,

«b =L1/(1+4a')3 &
I p(s, ') I

1—~(w/2)

=b,& ~ (8.13)
1 p(7r e)

If there exist constants bs and b4 such that bshe(s) ~ b4,
then one obtains from (810)

bs(1+2abr) &N(s) &b4(1+2apbs), (814)

which proves statement (d) of Sec. III, that is if r(y)
is bounded above or below, then so is the solution g(y).
The proof of statement (c) of Sec. III (that is, if r(y)
is positive definite, then so is the solution g(y) j follows

immediately from (814) as bs can be chosen positive
in this case.

II. Numerical Solution

The basic integral equation (82) has been solved
numerically by applying Simpson's rule to the integral
on a grid {s,=—a+(i 1)h;—h=a/m;i=1, , 2m+1).
This yields a system of (2m+1) linear algebraic equa-
tions for the (2n+1) discrete approximate values
u;=e(s;) which can be solved by a standard method.
The quadratures involved in calculating y and e also
have been carried out by Simpson's rule. The functions
E(y) and e(y) are obtained in parametric form, that is
(E(X),yP)) and (e(X),y(X)). To obtain p, the quantities
e and p are evaluated on a suKciently fine grid of equi-
distant X values. Then,

de de dv
p= 38—p—=38—p-

dy dX d)

can be calculated by numerical differentiation.
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We continue the analysis of the one-dimensional gas of Bose particles interacting via a repulsive delta
function potential by considering the excitation spectrum. Among other things we show that: (i) the ele-
mentary excitations are most naturally thought of as a double spectrum, not a single one; (ii) the velocity
of sound derived from the macroscopic compressibility is shown to agree with the velocity of sound derived
from microscopic considerations, i.e., from the phonon spectrum. We also introduce a distinction between
elementary excitations and quasiparticles, on the basis of which we give some heuristic reasons for expecting
the double spectrum to be a general feature, even in three dimensions, and not an exception.

I. INTRODUCTION
' 'N the preceding paper' we introduced a soluble model

of a Bose gas interacting via a repulsive 8-function
potential. We discussed the nature of the eigenfunc-
tions and explicitly calculated the ground-state energy
and other properties of the ground state in the limit of
a large system.

In this paper we discuss the nature of the excitation
spectrum for a large system of X particles. The sur-
prising result, as we stated but did not show in I, is that
for all values of the potential strength, the most con-
venient and natural way to view the spectrum is to
regard it as a double spectrum of elementary boson
excitations. While Bogoliubov's perturbation theory' '

I E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963) (referred
to here as I).

'See I, Sec. IV.
3 See, for example, The puny Body Problem, edited by C.

DeWitt (John Wiley R Sons, Inc. , New York, 1958),pp. 347—355.

gives one of the spectra quite accurately for a weak
potential, the second spectrum is entirely unaccounted
for (see Figs. 3 and 4). The second spectrum exists
only for values of the momentum satisfying

~ p ~

&m p.
We may summarize the results of this paper as

follows: (i) In Sec. II we discuss the nature of the energy
spectrum of the problem and show that there are two
elementary spectra. These are always well defined and
are explicitly calculated. We show that there is no
energy gap and that the two spectra have a common
slope at P=O which means that they propagate sound
at the same velocity. The velocity of sound at absolute
zero derived in this way from an atomic picture4 —' is
shown to be identical with the velocity of sound defined
by the usual macroscopic considerations Lcf. Eqs. (1.1)
and (1.4)$.

4 R. P. Feynman, Phys. Rev. 91, 1291 (1953).
'" R. P. Feynman, Phys. Rev. 91, 1301 (1953),
R. P. Feynman, Phys. Rev. 94, 262 (1954).


