
P H YSICAL REVIEW VOLUME 130, NUMBER 4 15 MA Y 1963

High-Energy Nucleon-Nucleon Scattering*

IvAN J. MrrzrNICH$

Laurence Radiation Laboratory, University of California, Berekley, California

(Received 20 August 1962; revised manuscript received 23 January 1963)

The nucleon-nucleon problem is discussed from the standpoint of analyticity in angular momentum. A
unique continuation of the partial-wave helicity amplitudes is given. The high-energy nucleon-nucleon prob-
lem is then considered from the point of view of the various Regge poles that have the same quantum num-
bers as the nucleon-antinucleon channel. In particular, the contribution of these Regge trajectories to
nucleon-antinucleon scattering arid, hence, their contribution by crossing to nucleon-nucleon scattering is
given. The resulting formulas should be adequate to describe the total cross section and angular distribution
for energies greater than approximately 3 BeV in the laboratory system.

1. INTRODUCTION

'HE nonrelativistic Schrodinger equation provides
a framework for discussion of the continuation of

the partial-wave scattering amplitude into complex
angular momentum, /. In particular, it has been shown

by Regge" that the partial-wave amplitude continued
as a function of complex l, on the basis of the Schrod-
inger equation, is analytic in the right-half / plane. Poles
in the right-half l plane correspond to the resonances
and bound states of an attractive potential and are
called Regge poles. Recently, several authors' ' have
realized the importance of Regge poles in strong inter-
actions that are intrinsically relativistic in nature.
These poles are important for an understanding of the
analytically continued 5 matrix in energy and mo-
mentum transfer and for the formulation of the prin-
ciples of particle equivalence and maximal strength of
strong interactions. It is the high-energy behavior of
scattering amplitudes (in particular, the nucleon-
nucleon elastic amplitude) that is our primary concern
in this paper. If the Regge pole conjecture is accepted,
then scattering cross sections at high energies are con-
trolled in a very simple way by poles in "crossed
channels. "

For a relativistic scattering amplitude, Froissart and
Gribov have proposed, on the basis of the Mandelstam
representation, a particular continuation of the partial-
wave amplitude from physical values of angular mo-
mentum (positive integers) into complex angular mo-
mentum. ' Squires and Prosperi give conditions for the
uniqueness of this continuation. '

*This work was done under the auspices of the U. S. Atomic
Energy Commission.
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All these considerations (with the possible exception
of Gell-Mann eb al. ) have been made for spinless par-
ticles. This paper has a twofold objective; namely, to
verify that the above results have an analog in the two-
nucleon problem when spin is taken into account, and
to obtain results applicable to the high-energy nucleon-
nucleon problem.

Section 2 is a brief discussion of kinematical pre-
liminaries. A complete discussion of the kinematics for
the Mandelstam representation is given by Goldberger,
Grisaru, MacDowell, and Wong (GGMW)r; however,
this section is self-contained, and the reader is not
expected to be familiar with all the results of GGMW.

In Sec. 3, a unique continuation of the partial-wave
helicity amplitudes corresponding to transitions of
definite parity is derived from the Mandelstam repre-
sentation. It is in this section that an alternate set of
amplitudes can be defined that simplifies the discussion
of analyticity in angular momentum for the partial-
wave helicity amplitudes. The Sommerfeld-Watson
representation" for the nucleon-nucleon amplitude is
given. The results of this section are applicable to both
nucleon-nucleon scattering and nucleon antinucleon
scattering.

In both nucleon-nucleon (NN) and nucleon-anti-
nucleon (NN) scattering there are five independent
amplitudes, because of the spin. In Sec. 4, the question
is settled as to which linear combinations of the five
independent partial-wave EN helicity amplitudes are
associated with the various Regge poles having the
quantum numbers of the SX system. The results of
this section are presented in Table I.

In Sec. 5, a discussion similar to that in Sec. 4 for
Regge poles with the XE quantum numbers. Sections 4
and 5, although qualitative in nature, are included be-
cause the results are important for practical calculations.

Section 6 is devoted to the study of high-energy (NN)
scattering. Formulas for the high-energy total cross sec-
tion and angular distribution are derived in terms of
the Regge poles in the NN channels (crossed channels).
The trajectory of a Regge pole determines the high-
momentum transfer behavior of the nucleon-antinucleon
amplitude and hence (by crossing) the high-energy

' M. L. Goldberger, M. F. Grisaru, S. W. MacDowell, an/
D. Y. Wong (GGMW), Phys. Rev. 120, 2250 (1960).
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Fic. 1. Scattering dia-
gram for the nucleon-nu-
cleon problem.

behavior of the nucleon-nucleon amplitude is also de-
termined. The contribution to backward ep scattering
of the x and the p trajectories, in particular, is discussed
in some detail.

2. KINEMATICS

A complete discussion of the kinematical prelimi-
naries, crossing, and the choice of amplitudes suitable
for the Mandelstam representation has been given by
GGMW. ~ However, questions relevant to our purposes
are discussed in this section.

There are three physical processes related by analytic
continuation of the momentum variables,

s= —2p '(1+s„),
t= —2p„'(1—s„), (2 &)

u=4(p '+m') =4E '.

The physical region of these variables is

s&0, t&0, and u) 4m'. (2.8)

s=cos8 is the cosine of the c.m. scattering angle. The
physical region for the invariant variables is

s)4', t&0, and u&0. (2.6)

This range of variables is designated as the nucleon-
nucleon channel or the "s channel. "

For the nucleon-antinucleon process GGMW is fol-
lowed and we choose p~ to be the momentum of the
incoming nucleon, p2. the momentum of the incoming
antinucleon, —

p~ the momentum of the outgoing
nucleon, and —

pg the momentum of the outgoing anti-
nucleon. In terms of c.m. quantities the invariant vari-
ables take the form

(I) Ng+Ns ~ Ng +N2,
(II) Ng+N2 —+ Ng +N2,

(III) Ng+Ng —+ ¹+N2,
(2 1)

This domain of variables is referred to as the "I
channel. "

There is another nucleon-antinucleon channel, the
"t channel. " In terms of c.m. quantities the invariant
variables take the form

alld

s= (P~+P2)'= (P~ +P~ )',

t=(p+p )'=(p+p )'

u=(P+P )'=(P +P)',

(2.2)

with the constraint,

s+t+u =4rrl,', (2.3)

and conservation of four-momenta reads

p~+P2+pi +P2 =0. (2.4)

In nucleon-nucleon scattering, particles X~ and S2
are outgoing and their momenta are described by —

p&

and —pm, the variables s, t, and u are related to center-
of-mass quantities for nucleon-nucleon scattering by

s=4E'=4(p'+m'),
t= —2p'(1 —s), (2 5)

u= —2p'(1+s),

where the bars indicate antinucleons. The four-momenta
of the particles 1, 2, 1', and 2' are denoted pq, p2, p~,
and p2, respectively, and all momenta are taken to be
into the scattering diagram Fig. i. Each of the momenta
has the property (p;)'= tv', where m is the nucleon mass.
The metric chosen here is such that x y=x4y4 —x.y,
where x and y are four-vectors.

The customary scalar invariants are defined:

and

s= —2PP(1ys, ),
t=4(PP+m') =4EP2,

u= —2pP(1 —s,),

(2 9)

where s(0, t) 4m', and N(0 is the physical region.
In all the following, charge independence is assumed

to be valid and the formalism of isotopic spin is used.
Space-reQection invariance and time-reversal invariance
are assumed to be valid throughout. These symmetries,
together with Pauli symmetry, limit the number of
amplitudes in nucleon-nucleon scattering to five for
each value of total isotopic spin (0,1). Similarly, the
above symmetries, together with 6 parity, limit the
number of amplitudes to five for nucleon-antinucleon
scattering.

The S matrix for nucleon-nucleon scattering is
written

(~',u', y'
I (~—1) I l,t; p)

= —i(2s.)-'(m/E)'8'" (pi+ p2+ p& +p2 )Z' (2.10)

where 'A'p' and X, I are the helicities of the final and
initial particles, respectively; (—p', y') and (—p, y) are
the final and initial c.m. momenta. Since conservation
of isotopic spin is assumed, the 5 matrix depends upon
the total isotopic spin T, and not the components of T.
The normalization of the amplitude gr, called the
Feynman amplitude, is such that the differential cross
section per unit solid angle (r..m. ) is

where p is the absolute value of the three-momenta of
either particle and E is the energy of either particle
in the center-of-mass system (c.m.). The quantity

«/«I= I A. ,~, (y', y) I',

A', ~.(p' y) = (~'/4«)~'

(2.11)

(2.12)
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It follows directly from rotational invariance that
the amplitude p can be developed in terms of the partial-
wave helicity amplitudes by the expansion'

00

=—g (2J+1)A, ,v, '(8)Tv, , t,.'(W).

(2.13)

», ,x„'(W)= dsd), „,), „~(8)yg „,g„(W,s). (2.16)
1

Time-reversal invariance, conservation of total spin
(which follows from charge independence and Pauli
symmetry), and space-reflection invariance lead to the
following symmetries for the partial-wave helicity
amplitudes, respectively:

The beam is incident from the s direction and is scat-
tered into the Euler angles (0,8,0).The quantity Tz „&,„s
is the partial-wave helicity amplitude and is propor-
tional to the S matrix in the angular momentum
representation

T~ e,~e'(W) = (1/»)(S~ e,~o' —» ~~e o), (2 14)

where 8'=2E, and

((J',M'); X'tt'; p'iSi (J,M); Xtt; p)
= ass 8~sr 8 (W' W)Sg—.„),„s (2.15.)

The functions d „s(8) are reduced-rotation matrices,
and have simple orthogonality properties' which lead to

f„s r(W) = T,s ~(W)+Tsar r(W)

f,ss r(W) =2Ts~ ~(W),

JT(W) T JT( W)+T .1,T(W)

(2.19)

Because the Regge poles that correspond to definite
parity are to be considered, the set (2.19) is appropriate
for continuation into complex angular momentum.

Also of importance for the next section is a choice
of amplitudes suitable for the Mandelstam representa-
tion; this problem has been dealt with in detail by
GGMW. By use of four-component helicity spinors for
the initial and 6nal fermions and expressing gr as an
operator in the Dirac spinor space, a set of invariant
amplitudes G;r(s,l, t) is found which satisfy the Mandel-
stam representation. This set is related to the p's by

2Erhr =zm'Gs+E'Gr+m'Gs+m'zG4 P'Gs, —

2~s ———E&Gr+z(P yE )Gs—msGs+m zG4 —P Gs

2Eys ——(1+s) (—p'G +m'Gs+ E'G4) (2.20)

2E&4——(1—s) (p'Gs+m'Gs+ E'G4),

2mgs= —m'(1 —z')'" (Gs+G&).

S(S=O, 1) and definite parity (—1)~, where I. is the
relative orbital-angular momentum of the two nucleons.
The appropriate combinations are

Singlet(J=L) f~ r(W) = Trs r(W) —Tss r(W),

Triplet(J =L)f (W) = Ts r (W) T4 —(W),

and Triplet(J=L&1):

T)„,x (W) = T), , );(W),

T, ), ,,) '(W) =Tx;,)„'(W),

T x , , x ,'(W) = T~-;—,)„s-(W-).

(2.17)
The Pauli principle, which requires that the S matrix
be odd under interchange of the quantum numbers of
the two nucleons in either the initial or final state,
assumes the form

The indices X, tt, etc. , are two-valued (&1/2), and if
one counts properly there are 16 configurations of
helicities of the initial and final nucleons. However,
the symmetries (2.17) reduce this number to 6ve inde-

pendent helicity amplitudes for each isotopic spin, and,
following GGMW, the independent amplitudes are, for
each value of the isotopic spin T=0, 1:

and

Tr ' (W) Tl/2 1/2, 1/2 1/2 (W) y

Ts (W) = Tl/2 1/s, 1/2 —1/2 (W)&

Ts ' (W) Tr/2 —1/2, 1/2-1/2 ' (W)y

T4 (W) = Tr/2 —1/s, —1/2 1/2 (W) s

Ts ' (W) Tr/2 1/2, 1/2 —1/2
' (W)y

(2.18)

and likewise for the set pq „,q„.
The partial-wave helicity amplitudes (2.18) can be

combined to give the amplitudes for definite total spin

M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
e M. K. Rose, Elemeltary Theory of Ategretar Momentgm Uohn

Wiley tk Sons, Inc., New York, 1957l.

G;~(s,u, t) = (—1)'+~G,~(s, t,u). (2.21)

where ~D and „Dare the absorptive parts in the t and e
channels, respectively, and m is the pion mass. The
lower limits of integration follow from physical con-
siderations of the least massive intermediate states with
the quantum numbers of the nucleon-antinucleon pair.
The one-meson exchange contribution is not displayed.

The discussion in this section could have been
carried out for nucleon-antinucleon scattering with a
slight modification; namely, that G parity replaces
Pauli symmetry. There is an analogous set of ampli-
tudes 0;r(g,s,t) for the I channel, related to the set

The fixed-s dispersion relation takes the usual form

1 ",D;~(s,t')dt'
G;r(s, tt, t) =—

4 ' t +2Ps(1—s)

1 " D r(s, g')dg'
(2.22)

4 ~ tt'+2p'(1+z)
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G,r(s,u, t) by the crossing matrix (GGMW):

G;r(s,u, t) =P A Brr'G r'(u, s, t),

where

(2.23)

ho'= (E/p) fo',
hii~ ——(E/p) f»J,
hop'= (E/p) fop',

hi'= (E/p)fi'
(3.1)

—1 3
B= — (isotopic-spin crossing matrix) (2.24)

2 1

and

hip~ ——(m/p) fip~.

By use of Eqs. (3.1), (2.18), and (2.16), the set is re-
lated to the set p by

—1
1
1

—1
—1

6 4 —4 —1
2 0 0
0 2 2 —1
0 2 2

6 —4 4

(2 24')

1

hos (s) =— ds [Eyi(W, s)—Eyp(W, s) jdoos (8),
2 1

1

hii (s) =— ds [Egi(W, s)+Ego(W, s))dpp (8),

(3.2)
2 ]

There is also a set of amplitudes @ for the u channel;
the amplitudes are related to the 6's by an equation
of the form (2.20) if p, E, and s are replaced by p„, h22 (s) ds [Ego(W s)dll (8)+E$4(W s)d—11 (8)],
E„,and s„. 2 1

3. ANALYTIC CONTINUATION INTO COMPLEX J
In this section it is shown that, given the set of

amplitudes (2.19) defined at the physical values of J
by Eq. (2.16), the fixed-energy dispersion relation
(2.22), and the assumption that the absorptive parts
iD and „D behave like powers of t and u as (t,u) —+ pp,

it is possible to define a set of functions f(J,W) with the
following properties: (i) f(J,W) =fs(W) for J=O, 1, 2,

~ (physical J) (Eq. 2.19); (ii) f(J,W) is holomorphic
for ReJ)1' (s) in the complex Jplane; and (iii)

~
f(J,W)

~

(exp —r ReJ, ~)0, uniformly for J sufficiently large.
The indices on the partial-wave amplitudes fs (W) have
been omitted here. A function of complex J with the
properties (i), (ii), and (iii) is unique; the proof of the
uniqueness is given by Prosperi. '

Furthermore, it is assumed, following the work of
Chew and Frautschi, ' that it is possible to move the
boundary E (ReJ)1V) to the left in the complex J
plane and that only poles will appear. This assumption
puts the relativistic problem on the same footing as the
nonrelativistic problem for superpositions of Vukawa
potentials, where Regge" has given a continuation
with properties (i) and (iii) but (ii) is replaced by
meromorphy for ReJ)—1/2.

In attempting to find a set of functions with prop-
erties (i), (ii), and (iii), it is found that even and odd J
have to be treated separately; this leads to the concept
of J parity which has been introduced for spinless par-
ticles by several authors. "

For a set of functions with property (iii), it is possible
to construct the Sommerfeld-Watson representation for
the amplitudes @ or 6, and this section concludes with
a discussion of the Sommerfeld-Watson representation.

To remove certain trivial nonanalytic factors, we
consider, instead, the set of functions defined by

1

hi (s)=— ds [Eitp(W, s)dii (8)—E&4(W)s)d ii (8)],
2 1

and
1

hi, s(s) =— ds ~,(W,s)d, p~(8).
2 ]

The h's are even functions of 8' and E and, hence,
functions only of s= W' because Ep, (W,s), 1(i)4, and
mgo(W, s) are related to the set G through relations of
the type (2.20), and the G's are functions of s, t, and u.
Next we use Eq. (2.20) and notice that the angle-
dependent factors are

s= doo'(8),

s (1+s)=d»'(8) =d-i-i'(8)
-', (1—s)=di i'(8)=d ii'(8), (3.3)

and

(1—s')'"= %2dM'(8) =— V2dp i'(8)—
=&2d ipi(8) =v2dpii(8).

Is=J+1
d „~(8)d „„'(8)= P C(J, 1, h;m, —m, 0)

k=J—1

XC(J, 1, h; u, —e, 0)Pi(cos8). (3.4)

The foregoing identity follows directly from Eq. (4.25)
of Rose' and the fact that dopo(8) =Po(cos8). The
quantities C(J, 1, h; m, —m, 0) are Clebsch-Gordan co-
e%cients and their phases are fixed by the conventions

When Eq. (2.20) is substituted into Eq. (3.2), a
product of d J functions is encountered because of the
effect of Eq. (3.3), and, to get rid of the d~ functions
entirely, we use the identity
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Jgm' "(s)+(J+1)g2""(s)—p'
2J+1

+m'g3s T(s),

Jgu ' (s)+(J+1)ge +'T($)
Iti is, T ($) E2

2J+1

Jg ' "(s)+(J+1)g'+"(s)
m'—

2J+1

j'g~2s, T($) P2g s,T($)
—p'g "(s),

(J+1)g ' "(s)+Jg '+' '(s)
SZ

-(J+1)g '-"(s)+Jg '+"()-
E,2

2J+1

(J+1)ga' "($)+Jgs'+' '(s)
hr J'(s) =—p'

2J+1

and
+m'ga~ T($)+E'g4s T(s)

of Rose. ' The following set of equations results:

hes T(s) =E'gr~ T(s)

(3 5)

function of the second kind (Whittaker and Watson) i

we have

1 ' P/, (x)dx
Q~(&) =- k=0, 1, 2,

2 $ 8 s
(3.8)

g' T(s)
2~p'

X[,D,T(s,t')+(—)~ „D; (s,t')7dt'. (3.9)

D;(s,t)(P& ), (3.10)

where E(s) is, in general, some complex-valued func-
tion of s. Kith this assumption and with knowledge of
the asymptotic behavior of Q/, (s) for large s Li.e.,
Q/, (s) 1/s"+'7, we see that the integral (3.9) converges
and defines a holomorphic function of k in the region'

Rek) N (s). (3.11)

The only remaining problem is to establish property
(iii); the function Q/, (s) has the integral representation"

U we use Eq. (3.9) in Eq. (3.5) and analytically con-
tinue in J, the resulting set of functions h(J,s) will
certainly satisfy condition (i) since all the steps in
arriving at Eq. (3.9) were true for integral J.

Next we use the assumption that D;(s,t) behaves
like a power of t as t approaches infinity,

m2 PJ(J+1)7r/2
him (s)=-

Pg s+'T(s) —g,s 'T(s)
2 2J+1

Q~(s) = ]—k—1(1 2Ps+ P2)
—

1/2//t(

+( 2 y) 1j2

Rek) —1. (3.12)

where
+g J+1,T( )$g s—1,T($)7

j.

gP T= P/, (s)G;T(s—,u, t)ds.
2 ]

Changing the variable of integration in (3.9) to s=1
+t/2p', using (3.12), and interchanging the order of

(3 6) integration, we have

g;T(k, s)

The fixed-energy dispersion relation (2.22) for
G,T(s,u, t) is substituted into Eq. (3.6), and we obtain

4o;(s,t)+(—1)" (o()$d(, (3.13)
+( 2 y) 1/2

1 " 1 ' dsP (s)
gP T(s) =— 4D,T(s,t')— dt'2, t'+2p'(1 —s)

where

1 ' ds Pg(s) and+— „D T(s t') d—t' (3 7)
~ 4„.2 2 i t'+2p'(1+a)

g 0 S
80

,, D;(s,s)ds

(1 2~&+g2)1/2

so=1+2(m )'/p'.

The order of integration has been interchanged (which
is certainly permissible if the integrals in Eq. (2.22)
exist uniformly in s7. The dispersion relation was
written down without subtractions and, to be com-
pletely rigorous, the subtractions should be included;
however, the explicit display of the subtractions only
complicates the algebra.

Using the Neumann representation for the I.egendre

Jf it is assumed that D(s,s) behaves like a power of s at
infinity, then it follows that o(s,g) behaves like the
same power as & approaches infinity, and we write,
for o (s,&),

o (s,])(&~ as &
—+ ~. (3.15)

' E. T. Whittaker and G. N. Watson, 3EoderN Amatysts (Cam-
bridge University Press, New York, 1927).

"This argument is similar to that of M. Froissart, Phys. Rev.
123, 1053 (196)).
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Thus, the integrals J'[~o.;(s,$)/P+'] and f[„rr;(s,$)/ term is

&
"+'] are bounded:

(J+1)gs&+& (J—1, s)+Jgs&+& (J+1,s)
t, u&i ~)

d$ (
zp+(zp' —i&' ' o+(~o —&)

k Ns—p+ (sp' —1)'"
exp(N —k)

k —S

g, r&+&(k,s) =
00 t'

Qi 1+„)
)&[~D,r(s, t)& D,~(s,t')]dt', (3.17)

with the properties

g;r&+&(k s)=g ' ~(s) where k=O 2 4

and

g
~& '(k, s)=g;s r(s), where k=1, 3, 5,

(3.18)

The functions g;~&+&(k,s) each have the desired ex-
ponential decrease for large k. We can now find the
even and odd J-parity amplitudes h'+) by evaluating
the Clebsch-Gordan coeScients and separating even
and odd J in Eq. (3.5). (The physical significance of J
parity is discussed in Sec. 4.) We obtain a set of equa-
tions identical to Eq. (3.5), except for the replacements

h, s r(s) for J=O, 2, 4 ~k;&+& r(J,s)
where i =0, 11, 1, 22, 12,

k s ~(s) for J=1,3 5 ~h &
—&~(J,s)

where i= 0, 11, 1, 22, 12;
and (3.19)

g
s ~(s) for k=0, 2, 4, ~g;&+&~(k,s)

where i=1, 2, 3, 4, 5,

g,'~(s) for k=1, 3, 5, —&g;& &(k,s)
where i= 1, 2, 3, 4, 5.

&&1n[zp+ (sps —1)ils) (3.16)

since 1n[zp+(sps —1)'~'])0 for P')0. However, the
factor (—1)s spoils the desired exponential behavior
for large k; because of this, two different sets of func-
tions are de6ned,

1 1

2z.p' 2J+1

2J+1
t'~

(J+1)Q. l
1+

2psi

t'
+JQs+il 1+

l [gDP(s, t')W„D~(s, t')]dt',
2 '3

(3.20)

this quantity being related to the ps scattering ampli-
tude through the Sommerfeld-Watson transformation.

Following the work of Chew and Frautschi, ' it is
assumed that one can move to the left of the boundary
N (3—11) and only Regge poles will appear. The posi-
tion u of a particular Regge pole depends upon the
energy s. In the nonrelativistic problem for super-
positions of Yukawa potentials, it has been shown by
Regge'' that the only limitation on the region of
meromorphy is the line ReJ= —1/2. Also, it has been
shown by Froissart, "Regge, " and Mandelstam" that
the boundary of meromorphy can be moved arbitrarily
far to the left (left-hand J plane) for the nonrelativistic
problem. In the relativistic problem, Froissart has
shown that the boundary of holomorphy can be ex-
tended to ReJ& 1 for negative s."Also, several authors
have shown that it is possible to prove meromorphy for
ReJ& 1 in the relativistic problem. "

A. Sommerfeld-Watson Transformation

Using the partial-wave expansion (2.13) and the
relations between the partial-wave helicity amplitudes
and the set k(s), Eqs. (2.19) and (3.1), we obtain the
following set of expansions:

by use of the property of the Q functions for ts=half-
integer Q„(s)=Q „ i(s), the numerator in Eq. (3.20)
goes to zero when 2J+1 goes to zero. Thus, the factors
of (2J+1) do not cause singularities in J. The only
other disturbing factor is [J(J+1)]ils in krs of Eq.
(3.19);but, instead of continuing k»'+&~(J, s), we may
consider

(3.21)

Equation (3.5), with the above replacements, satisfies
properties (i), (ii), and (iii). The coeKcients in front
of the g's which depend upon J do not change the
asymptotic behavior in J so that condition (iii) is
satished and the set is unique.

If one expects an extension to the left-half plane with
Eqs. (3.19) and (3.17), the factor of 2J+1 in the de-
nominator of certain terms in Eq. (3.19) is disturbing,
but does not lead to a fixed pole in J. A typical such

J even

kp&+&s(s)Eg(s) (2J+1)

+ Q kp& &~(s)Ps(s)(2J+1),
J Od. (j

's M. Froissart, J.Math. Phys. 3, 922 (1962l; T. Regge, Nuovo
Cimento 24, 518 (1962).

"S.Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962).
' K. Bardacki, Phys. Rev. 127, 1832 {1962);A. O. Barut and

D. Zwanziger, ibid. 127, 974 (1962); G. M. Prosperi, Nuovo
Cimento 26, 541 (1962).
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K4 i(W,z)+ps (W,z)]
= Z ~ & &'()P.()(»+1)J even

+ g hi, &
—&s(s)Ps(Z)(2J+1),

J odd

FxG. 2. Contour Cin
the J plane.

QOl k3

=! 2 Ih '+"(s)+& "+"(s)]d.'(8)(»+1)
J even

+l Z [h ' "(s)+& ' "(s)]d '(8)(2J+1),
J odd

2+4(W, z)

transformation; however, the details are discussed only
for the first of the expansions in Eq. (3.22). The':ex-
pansions in Eq. (3.22) can be formally written as con-
tour integrals where the contour C encloses all the
positive integers in the J plane (Fig. 2):

and

J even

[hpp(+&s(s) —hi(+&s(s)]d &is(8) (2J+1)

+-', Q [hss( &s(s)—hi(—&s(s)]d its(8)(2J+1),
J odd

&Is (W, )—e (W, )]
1 dJ

hp&+'(J, s)
4i g sin+ J

~p(W, z)= Q his+' (s)dip (8)(2J+1)
J even

+ P h&s (s)dip (8) (2J+1). (3.22)
J odd

We can now use the assumption that the set of functions
h(+&~(J,s) contains only Regge poles, and we can per-
form the Sommerfeld-Watson transformation and ob-
tain the set of scattering amplitudes @(W,z) in terms
of the Regge poles. The dJ functions do not cause any
difhculties when we perform the Sommerfeld-Watson

X[Ps(—z)+Ps(z)](2J+1)+(+~ —) (3.23)

[where the symbol (+ & —) indicates that another
term is to be added in which h(+&(J,s) is replaced by
)p( &(J,s) and Pq(z) is replaced by —Ps(z), and simi-
larly for P(+& in (3.24)].

We distort the contour to run along a line ReJ=X
parallel to the imaginary axis in the J plane and close
it by a large semicircle R (half-plane), where this new
contour encloses the poles of h(J,s). The quantity
8[pi—Ps] then takes the form:

dJ
E[gi(W&z) —ps(W, z)]=— hp'+&(J, s)[PJ (—z)+Ps(z)](2J+1)

4i g sin&J

1 N+'" dJ
+— & "'(J,s)[Ps(—z)+Ps(z)](2J+1)

4i N; sinzr J
7r O .(")( )

[2(r(N)+1] LP-( )(—z)+P ( )(z)]+(+~ —) (3 24)
2 Rea(n))N sins-n (I)

where Pp, „(+&(s) is the residue of the nth pole of
hp(+& (J s) at. J=(r(e s); in geilel'al,

P;(+&r (s) = lim [J—(r (&s,s)]h,'+& ~ (J,s), (3.25)
J=a(n, s)

where i=O, 1, 11, 22, 12, and T=O, 1. Using the fol-
lowing formulas" for the asymptotic behavior of
Ps(&z) in J:
Ps (—z)/sins- J

exp( —Re8IImJI) exp(ReJIIm8I),

Ps (z)/sinvr J
exp[ —(s-—Re8)

I
ImJ

I ]exp(Re J
I
Im8I),

and the exponential decrease of hp'+&(J, s) for large J
derived previously Eqs. (3.16) and (3.19), one sees that

"This asymptotic behavior is due to E. Squires (reference 6).

the integral over the large circle tends to zero if

Im8& ln[zp+ (zp' —1)'~']. (3.27)

Condition (3.27) is the Lehmann ellipse, ' ' which is
nothing other than the region in 0 for which the partial-
wave expansion (3.22) converges. Both the integrals
along the line ReJ=X converge if

O&Re8&~. (3.28)

The Regge-pole terms dominate asymptotically over
the contribution from the integration parallel to the
imaginary axis. We assume that the J plane is free
from singularities, except for poles, and that the inte-
gration along the line ReJ=E is always to the left of
the Regge-pole terms. The extension to the left-half J
plane has been considered by Mandelstam. "
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In a similar way we can perform the Sommerfeld- e4 ~-
Watson transformation over the partial-wave helicity ~4=, &&+&2+z +
amplitudes and obtain the G's directly: By use of the

1 ~ 1—zi

inverse of relation (2.20)," 2s E'+eP
(3.29)

p' m (1—s')'~'m'
G =—(~-e)+-

8 p' 1+s. 1—sl and by use of Eq. (3.22), and the relation of the d~

functions to Legendre functions,
( Q3 Q4 2s

+
(I+z 1—s (1—z~)&» 4&4 ~ '(0)= I:—(1—)P "()+P '()],J(J+1)

1—s
Z $4 p4 2P

+ +-
p' 1+s 1—s m (1—s')'~' [(1+ )P."()+P.'()],J(J+1)

1—s' '~'

d&-~'(t)) = (3.30)

43 44G= ———8=
p' 1+s 1—s d, o~(0) =— ( )

P~'(z),
LJ(J+1)]"'

P. $4 p4 4&4 2@4
+ +-

p2-1+s 1 z— p2 (j. z2)1/2

we have the following set of expansions for the invariant
amplitudes:

h22'+&~ r(s) 4&4'

(2J+1)I ho'+"'(~)P~(s)— P~"(s)+—z[zP~'(z)]'
J(J+1) p

hg&+» r(s) 4&4' 2E' h, 2&+&~ r(s)
+ —[sP~'(s)]'+zP~" (s) + — —sP~'(s) +( P ),J(J+1) p' eP [J(J+1)]'" J pdd

h '+'~ (s) h22'+' ~ (s) 2L" hg2'+' ~ (s)
(2J+1) Pg" (s) — [sPJ'(z)]'+ Pz'(z) +( 2 ),J(J+1) J(J+1) m' [J(J+1)]'" J odd

(2J+1)
&h. ""'(~)P."(s)-»""'(~)LzP.'(z)7'}+( Z )J(J+1) J pdd

h ~+&~ ~(s) h '+' r(s) h '+' (&)
[zPJ'(s)]' — PJ (z) P~ (z) +( 2 )J(J+1) J(J+1) [J(J+I)7'" J Odd

1
GgT=-

+2 J even

G T

p' J even

1
G T

p'
(3.31)

J even

1
G T

p J even

1 h22'+&~ r(s)
G4r= ——P (2J+1) h»&+&~ r(s)Pg(s)+ s[zP& (z)]

p2 J even J(J+1)
h &+&~ r(s) 2(p'+m-') h&2&+&~ r(s)

sPg" (s)— zP~'(s) +( 2 )J(J+1) m~ [J(Jy1)7&&2 J pdd

The Sommerfeld-Watson transformation can be performed with the expansion (3.31); the presence of derivatives
of I egendre functions does not alter the convergence of the integration along the line parallel to the imaginary
axis and does not alter the vanishing of the integration around the large semicircle R. We obtain a set of equations
similar to Eq. (3.24), except that h;&+&~(J,s) in Eq. (3.31) is replaced by —(7r/2)P;&+&~(s), [sP~'(s)7' is replaced
by [sP '(s)]'+[—sP '(—s)], and Pz" (s) is replaced by P "(s)+P "(—s).

Asymptotically in s, the quantities P (s) and P (s) go into:

I'(a+1/2)2 z
P-(z)-

I' (n+1)I'(1/2)
(3.32)

I'(a+3/2) 2 +'s —'P-'(s)
for Ren& ——',,

n(++1) I'(a+2)1'(1/2) (2n+1)
16 The appearance of poles at J=O and J=—1 in Eq. (3.29) is spurious, since the numerators also vanish at J=O and J=—1,

i.e. P4"(s) =P,'(s) =P,"(s)=P i'(s) =0.
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and keeping only the leading terms in z, we obtain'

1 1 2E&'

Gi P ——L2n(ts)+1/go, n'&+ (s) —P22 n '+& (s)(r()s)+ P)9 tl (s) s '"'
2 sins. (r (~s) E' 1n'

X$1+exp —im(r (ts)j+(+ -+ —),
1 2j.2

Gsr ——p ——p, s „'&+' (s)(r()s)+ p)o, „'+&r(s) s~&"& '(1+exp —i7r(r(ts)}+(+ ~ —),
2 ~ sins.n(N) p' m2

1 1
Gsr —g P—)'+, )r(s)s '"' '{1+exp ii—ro((tr)}+ (+~ —)

2 sinor(r (ts) p'

7r 1 1
G4r- —Q — —$—p, s „'&+) (s)(r(n)+2&)s '&+& (s) js~&'"& '(1—+exp kr—n(rr)}+(+ —+ —),

2 ~ sin)r(r(n) p'

7r 1 ]. 2 (E'+eP)
G, ~—P —)(l„,„'&+&r(s)L2(r(n)+1]+P„,„'&+&r(s)n(e) — P„,„'(+& (s)

2 o sinor(r(tr) p' m'

Xs'"&$1+exp—i)r(r (I)]+(+~ —).

(3.33)

The foregoing analysis could have been carried out for
the )VX channel. The quantities G, s, p, and E would
be replaced by G, s, p„, and E .

4. REGGE POLES IN THE NUCLEON-
ANTINUCLEON CHANNEL

In this section the Regge poles with the quantum
numbers of the nucleon-antinucleon channel are studied.
As stated in the previous section, the position of a
Regge pole moves with energy and is said to have a
dehnite trajectory in energy which is controlled by
dynamics. Chew and Frautschi have proposed that
stable and metastable particles (resonances) are points
on Regge trajectories. ' Each Regge trajectory has a
definite set of quantum numbers: isotopic spin, baryon
number, strangeness, G parity (if applicable), etc. A
particular Regge pole will appear in all 5-matrix ele-
ments with the quantum numbers in question, regard-
less of the number and configuration of external
particles.

The position of a Regge pole (r(N), where I is the
square of the center-of-mass energy of the channel in
question is conjectured to be an analytic function of I;
its imaginary part vanishes for (real) u below the
threshold of this channel. The physical points of the
Regge trajectory are those points such that Re(r(N) is
an integer, and these points correspond to resonances if

'r In Eq. (3.33) the residues have been redefined

I (o+ I/2)2" ~(+I)~(t/2)'"
,(~)r I'(n+3/2)2 +'

(~)
I (o+2)i (I/2)~'"

and
,(~)r I'(u+3/2)2 +'

(~)r"=r.-(-+I)& "~(-+2)~(I/2)"
The quantities P;(+&r(N) are defined as follows P;(+)r(1)

=P (+) (N)(so/2p„'), sphere i=0, 1, 11, 12, 22 and so has been
taken to be 2ms by several authors (reference 4).

I is above threshold, and to bound states if I is below
threshold. Also, for I above threshold the imaginary
part of n(u) at resonance energy is related to the half-
width of the unstable configuration by

MI'= Ima/(d Reo(/dt's), (4.1)

where M is the mass of the unstable con6guration. The
real part of (r(N) is assumed to be a monotonically in-
creasing function of I for I below threshold and in the
region in which resonances occur. Also, Imn(N) is
assumed to be small for sharp resonances. The value of
I for which (r(u) turns around and acquires a negative
slope is purely a question of dynamics.

Also, each Regge trajectory is assumed to have a
definite J parity, (—1)s, and the physical points of the
Regge trajectory occur for either even or odd J, but
not both simultaneously.

The foregoing has been elaborated in detail by Chew
and Frautschi. ' From here on, the number of Regge
trajectories accessible to the nucleon-antinucleon chan-
nel is studied; in particular, the important question
concerning which Regge trajectories are contained in
the various amplitudes in Eq. (2.19) is answered.

The quantum numbers of the nucleon-antinucleon
systems are as follows:

(a) baryon number = strangeness =0,

(b) isotopic spin = T =0, 1,

(c) total spin = S =0, 1,

(d) parity = I' = (—1) +',

(e) G parity = G = (—1) +s+r,

where I. is the relative orbital angular momentum of
the nucleon-antinucleon system. Each Regge trajectory
is assumed to have definite baryon number, strangeness,
isotopic spin, parity, 6 parity, and J parity. The
nucleon-antinucleon system that is coupled to a given
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Regge trajectory has the same quantum numbers as
this trajectory; thus, (a), (b), (d), and (e) are specified.
The total spin is not independent but is specified by

(—1)'=—P(—1)'G (4 3)

and the right-hand side of Eq. (4.3) is specified by the
Regge trajectory. Since (—1)s is given by Eq. (4.3)
and S is either 0 or 1 for two spin-1/2 particles, S is
determined. Therefore, if the quantum numbers of a
given Regge trajectory that is coupled to the nucleon-
antinucleon channel are specified, then this trajectory
is contained in either the singlet or triplet partial-wave
amplitudes (2.19), but not both.

There are two important classes of trajectories to be
considered separately for the nucleon-antinucleon chan-
nel; they are

(a) P(—1)rG= —1,

(b) P( 1)rG=—1.

It is easily seen from Eq. (4.3) that S is 0 for class (a)
and 1 for class (b).

The J parity of a given trajectory is determined by
the even or odd nature of (—I)~. For trajectories of
class (a) where S is 0, then J is equal to L by the usual
rules of addition of angular momenta. In this situation
(S=O), J' parity is redundant to the parity of the
nucleon-antinucleon system, since

(-1)'=(-1)'=—(-1)~'=-P (4.4a)

The Regge trajectory in question is thus associated
with hs'+&r(J, u) only, and (—1)r=GP.

For trajectories of class (b) where S is 1, then J is
either L~1 or L by the usual rules of addition of
angular momenta; this statement also holds for all
points on the Regge trajectory coupled to the nucleon-
antinucleon channel. In this situation, J parity is not
specified by ordinary parity (the parity of the nucleon-
antinucleon system), since

(—1)~= (—1)i= P for J=L, —
(4 4b)

(—1)~=—(—1)~=P for J=L+1.

TABLE I.The independent quantum numbers of the NN channel.

G T P

(+)
(+)
(+)
(+)
(+)
(-)
(—)(-)
(-)
(—)
(—)
(+)

(+)
(+)
(—)
(—)
(—)
(+)
(+)
(+)
(—)
(—)
(—)
(+)

(—1)J S (—j)JI'

(+) ~ (+)
(-) o (-)
(+) o (-)
(+) ~ (-)
(-) & (+)

(—)
(+) & (+)
(—) j- (—)
(+) & (-)
(-) ~ (+)
(+) o (-)
(—) 1 (—)

Vacuum, ABC

quantities when the nucleon-antinucleon channel is to
have the same quantum numbers as some given Regge
trajectory.

To summarize the results of this section, all the
"good" quantum numbers of the nucleon-antinucleon
channel including J parity, are given in Table I. Also
S and (—I)~P are given so that the amplitudes con-
taining the Regge trajectories can be easily identified.
Some particles whose quantum numbers have been
indicated experimentally are entered at the far right.
From the table it is seen that there are twelve inde-
pendent sets of quantum numbers. In those cases in
which S is 0 (class a), J parity and parity are not inde-
pendent; this fact reduces the number from 16 to 12.
There would be 16 independent sets of J parity and
parity were always independent.

S. REGGE POLES IN THE NUCLEON-
NUCLEON CHANNEL

This brief section is devoted to the study of Regge
trajectories with the quantum numbers of the nucleon-
nucleon channel. Such a study is important because
the deuteron and the enhancement of the singlet np
scattering" cross section at threshold can be considered
as points on Regge trajectories.

The quantum numbers of the nucleon-nucleon system
are

However, Eq. (4.4b) leads to the important result that
the value of (—1)~P determines whether a particular
Regge trajectory is associated with J=L triplet or
J=L&1 triplet partial-wave amplitudes for class (b)
trajectories. In particular, for

and

(a)

(b)

(c)

(d)

baryon number=8= 2,

strangeness =0,

isotopic spin= T=O, 1,

total spin= S=O, 1,

(—1)~P=—1,

the trajectory is associated with hr'+&r(J, u); for

(—1)~P=1,

thetrajectoryisassociatedwithh»'+& (J,u), his'+& (J,u),
and h„&+&r(J,u).

It is worthy of note that in all the foregoing the
quantities L and S are specific to the nucleon-anti-
nucleon system, and constraints are imposed on these

( 1)l.+s+T—

"A. O. Bsrut, Phys. Rev. 126, 1873 (1962).

(S 2)

(e) parity=P= (—1)~,

where L is the relative orbital-angular momentum of
the nucleon-nucleon system. Not all the above quantum
numbers are independent, however. For the scattering
of two identical fermions, Pauli symmetry imposes the
following constraint for the nucleon-nucleon system:
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Once the parity and isotopic spin of the Regge tra-
jectory with the same quantum numbers as the nucleon-
nucleon system are specified, the total spin is no longer
independent but is determined by FIG. 3. The x-meson

trajectory.

Re a(~, U)

(5.3)

And, as in the nucleon-antinucleon channel, there are
two classes of trajectories to be considered separately.
They are (a) P(—1)r= —1 and (b) P(—1)r=+1. In
class (a), S=O, and in class (b), S=1.The results of
Sec. 4 are immediately applicable for the nucleon-
nucleon channel. If P( 1)r= ——1, S=O, and J=L,
then the trajectory is associated with ho&+& (J,s). If
P( 1)r=1,—S=1, J=L, or L&1, then there are two
possibilities: P( 1)~=1 w—here the trajectory is associ-
ated with hi&+&r(J,s), and P( 1)~=—1—where the
trajectory is associated with h»&+&r(J,s), h»~+&r(J, s),
and h, 2&+&r(J,s).

Table II shows the independent quantum numbers
of the nucleon-nucleon system together with 5 and
P( 1)~. If one—counts properly there are six inde-
pendent trajectories with the quantum numbers of the
nucleon-nucleon channel. This is only half the number
for EX channel because G parity is not well de6ned for
states with baryon number= 2.

6. HIGH-ENERGY NUCLEON-NUCLEON
8CATTEMNG

In this section we treat the exchange of systems with
the quantum numbers of the nucleon-antinucleon chan-
nel as Regge trajectories of classes (a) and (b) men-
tioned in Sec. 4. In particular, the pion and p-meson
trajectories are considered, the Pomeranchuk trajectory
already having been discussed by a number of authors. 4

The ~ and p trajectories are not considered, since they
are isotopic spin 0 and do not have the quantum num-
bers of the n channel for ep scattering that is of primary
interest for backward scattering.

-0.02 Im ~2 4m~2

ho&+»(J,u) (Sec. 4). From Eq. (3.30) the contribution
of the pion trajectory to the invariant scattering
amplitude in the u channel is,"from Eq. (3.33),

Gi'(u, s, t) =— p, -'+"(&)L2 ( )+1]
P.„' sins.n(m) s,i

&& L1+expArn(n. )], (6.1)

Gi'= 6,'= 6 '= 6,'= 64'= 64'= 65'-—65'-—0,

and

Gi"' (s I f) = —-'Gi'(N, s,&')-,
' (3,1),

G2&' '& (s,u, t) = —,'Gi'(m, s, t)-', (3,1),
63'"& (s,u, t) = 46,'(N, s, t) 2 (3,1),
G4i"& (s,u, t) = ——,'6,'(N, s,t)-,' (3,1),

Gs i"& (s,u, t) = ——,'6,'(u, s,t)-', (3,1).

(6.2)

where n(n) is the position of the Regge pole for the
pion. Following the work of Chew and Frautschi' we
assume that Rem has a positive slope =1/50m ' as
shown in Fig. 3. Note that s„=—1—(s/2p„') in
Eq. (3.33).

The amplitude Gi'(N, s,t) satislms the Mandelstam
representation and has only the singularities required
by unitarity; hence, po &+&'(u) has a zero of order E„'
at Z ~=0 so that Eq. (6.1) be finite at E '=0

Using the crossing matrix (2.24)', the contribution of
the single-pion exchange to nucleon-nucleon scattering is

TABLE II. The independent quantum numbers of
the 1VÃ channel. '

(—1)'
(+)
(+)
(—)
(—)
(+)
(—)

(—1l~P

(+)
(+)
(—)
(+)
(—)
(+)

deuteron

a The deuteron has been entered at the appropriate place and the
asterisk indicates the enhancement of the singlet np system at threshold.
Experimentally, these are the only two trajectories that reach the right-halfJ plane. As explained by Barut (reference 18) the virtual singlet S state
of the NN system corresponds to a trajectory that turns around just before
reaching J =0.

A. The Pion Trajectory

The quantum numbers of the pion are such that the
trajectory is associated with the partial-wave amplitude

From Eq. (2.20) the contribution to the "physical
amplitudes" of nucleon-nucleon scattering is

x Po, &+&'(N)$2n(m)+1]( s )
Ey, &o i&(W s)=—

ks, isinn n(m)

&( $1+expi~n (n.)]2 (3,1),
(6.3)

vr po &+&'(u)L2n(~)+1] ( s )
Ey, &0 i&(W s) =——

4 sin~n(~) & s,i
)& $1+expin. n (m )]-', (3,1),

and Qi= Q4= Qg= 0.
Note that this amplitude will vanish as u approaches

zero because of the residue po&+&'(I). The vanishing of
the amplitude at I=0 (backward direction for nucleon-
nucleon scattering) will be true for all the class (a)
trajectories of the nucleon-antinucleon I channel.
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Similarly, using Pauli symmetry (2.21) and the
crossing matrix, (2.24)', we can calculate the contribu-
tion of the single-pion exchange in the I, channel to
nucleon-nucleon scattering; the result is

Rea (p,u)
05~

29m tI-

FIG. 4. The p-meson
trajectory.

~ P, .&+&'(t)L2~(~)+1)p s ~.& "&

&4 ""(W, )--
4 Sin2r(2(2r) & Spi

X!1+expi2r(2(2r)) 21(3, —1)
and (6.4)

2r pp, &+"(t)L2u(2r)+1) S ))
F1t)4(0,1)(W s)~

spisin2r(2 (2r)

XL1+expi2rn(2r))2(3, —1),

where $1=$2=$0=0. Note that the single pion of the

nucleon-antinucleon t channel will give zero contribu-
tion to the nucleon-nucleon amplitude in the forward
direction.

B. The y-Meson Trajectory

The quantum numbers of the p meson are such that
the trajectory is associated with the amplitudes
h11( &'(J,u), l'222& &'(J,u), and h12&

—&'(J u) (Sec. 4). The
contribution of the p meson to the invariant ampli-
tudes 6 asymptotically in s„ is:

7r 1
61' (u, s) t)-———

2 Sin2rn(p) E„2

2E„2
P22, p'—"(u)~(p)+ P», p' "(u) s-"("(I—expL —i~~(p)]},

m'

7r 1
6,'(u&s, t)———

2 sin2r(2(p) p,,2

2E 2

—P», ," "(u)~(p)+—P 2," "(u) s-"'" '{I—expl: —ix~(p)]},
ns'

6,'(u, s, t) -0, (6.5)

64'(u, s, t) I
—P22, ,'& "(u)(2(p)+2/12, '& "(u))s„&~) '(1—expL —22r(2(p)]},

2 Sin2r(2(p) p
'

64'(u, s, t)
2 sin2r(2(p) p„'

2(E 2+F2)—t3-,"-&'( )I 2 (.)+I)—~-,'-&'( ) (.)+ ~-,'-&'( )

XS '"(1—expL —i2r(2 (p)]}.

The quantity(2(p) determines the trajectory of the p meson; the real part of 42(p), Ren(p), is equal to 1 at u= 292&2,2,

and is illustrated in Fig. 4. From Eqs. (2.24)' and (2.20), the contribution of the p meson to the "physical ampli-
tudes" of nucleon-nucleon scattering is

NtS
(0'1) (W s) = 2&22(g 1 g 1)—(P2+F2)g 1 (g 1+g 1+6 1) 1 (3 1)

2

(0,1) (W s) 2(p2++2)g 1
! 2&22g 1++2g 1+(p2++2)g 1) g 1 1 (3 1)

2

I m' E' I
2EP2&' '& (W 2) = — —(62'+64')+ —C72' +—61' —' (3 1)

2p' 2 2 4
(6.6)

and

22&4(0" (W s) =— (p2+F2) G4' 2242

+—(62'+ Cp') —,
' (3,1),

p'- 2 2

2&42 (ut)'"
2214yp""(W s) = — (62'+64'+Gp')-', (3 1).

4 2
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Keeping only the leading terms in s= —2P '(1+s„) and (u/2P') (2P'= AT&, & 100m ', where TI. is the lab sys-
tem kinetic energy, Tr,&3 BeV), we have

1
2Ey&" '& (W s) = 2Ey—4" '&(W s)

2 sin~n(p)

r2~(P)+11P&&, (I)+ P&2, (+) P», (+)+(P)
m2 4''

( g )~(p&

Xl —
~

L1—exp~~~(P) j-'(3,1),
Sp

1 Q I
2E$2jo,&&(W s)=2E@3~o,&&(W s)~ P22 ~~

—&&(u)n(p)+ —Py2, ~~ &i(n) — L2a(p)+1jP&y ~ & (~)
2 sin~n(p) m2 4''

(s) (»
X( —

[
P1—expire(p)g-', (3,1),

Sp

(6.7)

m (ut)'" 1
2nup&;" "(W,s)

2 4p' sinmn(p)

—r2&(P)+1)&».p' "(&) &».p' "(")+2&»,p' "(I)+ &», p' "(I)2'
( s ) "&»

X (

—
)

$1—exp~~~(P) g-', (3,1).
Esoi

Similarly, using pauli symmetry (2.21) and the crossing matrix (2.24), we find the contribution of the Regge
trajectories in the 3 channel with the quantum numbers of class (b) (Sec. to 4) the nucleon-nucleon channel to be

( 1)1'BTT'
2EP&r(W s) =2E@3 (W)s)~

2 &' sine'n

t t s—(2n+1)P~ &+ &'(t)+—P~2'+' '(&)— P22'+' '(t)n — (expi&m~1),
tS 4' Sp

( 1)EBTT

2Ey, '(W, s) = 2E@4r(W—s)-
2 r'

and

t s
X —P»&'&'(~)~+—P»&'&'(~) — (2~+1)P»""(~) —

~

(exp'~~~1), (6.g)
ns' 4m' spi

~ (~[)1/2 ( 1)TETT'
2E@5r(W s)

2 4p' r' sinn n

t s
X —(2n+1)P11&+&

' —P22'+& 'n+2P»'+' '+ P»'"& ' —
~

(expi~u~i),
2nP soi

where (—1)rBrr' is the isotopic spin crossing matrix

—1
&=4&, &„„/4, (6.10)

the incident beam. For unpolarized incident beam,

0 = (4~/P) Im[Tr Uy(W, O)$ (6.9)

The total cross section is given by the optical
theorem: (~/P) ImZ 'Z&x'&&, &, & '4x„',&„(W,O)

= (2'/P) ImLy&(W, O)+y3(W, O)j. (6.11)

in matrix notation, where U is the density matrix for For example, from (6.8), the contribution of the P
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meson to the ep and pp total cross sections is

(p,o)

[2~(P,0)+1]P»,.' "(o)—
2pE Sp

and
7r2 (s i, ,o&

[2~(p,0)+1]P»,1' "(o)I—
2pz l so

(6.12)

The difference between the above cross sections con-
tains the quantum numbers of the p and x mesons in
the t channel; however, the x meson does not con-
tribute to the forward amplitude in Eq. (6.11), and

the back ward peak in np scattering; from a study of the
energy dependence of da/dh' for small fixed 6' (BP«2m'),
cr(p, dP) can be determined in the region of LP equal to
zero. Equation (6.16) will be useful for a study of the
dependence of the combination of residues in the curly
bracket upon 6' as lP is increased. The pion trajectory
has not been included in Eq. (6.16), since the pion
trajectory lies below the p trajectory and dominates the
high-energy differential cross section to a lesser degree.

The quantity P(N)/(P, ') is real for u&0i9; the ratio
of the real parts of the amplitudes in (6.7) to the
imaginary parts has the definite value of tan(mu/2).
The imaginary part of P& and P4 for rip scattering for
n= iV=0 is

7r' (p,o)

~nn ~-u= [2~(p,0)+1]P»,p' "(o) — (6 13)
E sp

]sq'&»—8»' "(0)[2~(P,0)+1]I —
I

l so)
(6.1S)

for an unpolarized incident beam. The differential cross
section per unit momentum transfer, 6'= —I, is related
to the differential cross section per unit center-of-mass
solid angle by

do/did = (n./P')do. /dQ. (6.15)

Thus, the contribution of the p meson to the ep dif-
ferential cross section near the backward direction is
from Eqs. (6.7) and (6.14) (keeping only the leading
terms in s and the linear terms in A')

do m' t' s

dA2 16p'E', l so
I [2 (p)+1]P, , ,'-&'( —&') I'

252
+Ip, , ' "(—A') (P)l'+ Ip, ,' "(—~')I'

X (6.16)
(cos[~n (p)/2])'

where rr(p) =n(p, u)=o. (p, —d'). For 6'«2nP, we have

dr +3 s

dA~ 16p~k~ so

I p„., — (-A)[2-(.)+»I
X

'
-- (6»)

(cos[m n (p)/2])'-

The combination of residues p2~rr+(&'/2m')prr drops
out for small 6' since this combination has a zero of
order Lg at LP=O from Eq. (6.5). Equation (6.17) will

be useful for the analysis of the energy dependence of

The differential cross section per unit center-of-mass
solid angle is given by

do
X'p, 'Xp

dQ

=-'(I@ I'yly2I'pl@ I'yly41'+4lysl') (614)

which is given by the optical theorem in the difference
of the pp and ep total cross sections, Eq. (6.13). Also
by use of Eqs. (6.17) and (6.13), this difference of total
cross sections is related to the ep differential cross
section by

(o.»—o. „)'=16~cos'
-mn(p, 0) do „,

2 — d~' ~'=o
(6 19)
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'7. CONCLUSIONS

The high-energy nucleon-nucleon problem has been
considered from the point of view of the Regge tra-
jectories with the quantum numbers of the nucleon-
antinucleon channel. In particular, the analyticity of
the partial-wave amplitude in total angular momentum
was discussed, and a unique continuation was found.
In the last section, the contribution of the p- and z-
meson trajectories to NN scattering was found, and the
resulting formulas (6.16), (6.17), and (6.19) should be
useful for an analysis of the Np differential cross section
near the backward direction for energies greater than
=3 BeV.2o


