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A 6nite-temperature perturbation theory is presented for the Heisenberg model with the object of pro-
viding a formalism in which contact can be made with the low-temperature treatment by Dyson, with the
random phase approximation of Englert, and, above the Curie point, with high-density treatments of the
Ising model. A linked cluster expansion is set up and a simple high-density classi6cation, valid above the
Curie point, is applied. The 6rst two terms in the high-density series, tree graphs and ring graphs, yield,
respectively, molecular field theory and a form reducing to spin-wave results at low temperatures. A low-
temperature classification is then developed which leads to an expansion of the free energy in powers of T
in which the terms have the form of those describing bosons with an effective interaction similar to Dyson's
Fp . The first two terms are the low-temperature approximations of trees and rings, respectively, which
justifies the use of the high-density expansion below the Curie point. The next term, including all the effects
of spin-wave interactions up to T in the free energy, contains the Born approximation series presented by
Dyson. In particular, the cancellation of T terms in the leading Born approximation is demonstrated. A
renormalized version of the high-density expansion necessary to treat the region of the Curie point is then
considered, and its approximation by an "excluded volume" sum is shown to yield the Curie point of the
spherical model, in common with the random phase approximation and with high-density approximations
to the Ising model. The extent to which the high-density theory misrepresents the effect of spin-wave inter-
actions is then discussed. In an Appendix an equations-of-motion approach to the random phase approxi-
mation and to the interactions between spin waves is presented.

I. INTRODUCTION

ECENTLY, there have been attempts' ' to provide
an approximate solution, valid throughout the

whole range of temperatures, for the thermodynamic
behavior of the Heisenberg ferromagnet. The methods
of reference 1 were based upon the "random phase
approximation" (RPA) in which the commutator of
the spin operators is replaced by the average value
of the true commutator. Similar results were obtained
by Bogolyubov and Tyabliko' using a Green's function
approach in which the approximation is an assumed
factorization of the two-particle Green's function. At
low temperatures the results of the spin-wave theory'
are recovered and at slightly increased temperatures
the theory predicts deviations proportional. to T' in
the spin-wave magnetization. As the temperature is
raised still higher, the spontaneous magnetization
decreases monotonically and in zero field becomes zero
for all temperatures above a well-defined critical
temperature. The critical temperature of the model
turns out to be that of the spherical model of Berlin
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and Kac, 4 which Brout' has shown to be a high-density
approximation for the Ising model.

It would, therefore, be desirable to know to what
approximation the RPA corresponds. A second question
exists: The results of RPA disagree with a low-temper-
ature expansion for the free energy of the Heisenberg
model worked out by Dyson. ' Dyson found that the
first deviations of the magnetization from that of the
Bloch theory occurred in the T' terms in the low-
temperature expansion.

The purpose of this paper is to investigate the cause
of this disagreement, and to remove the discrepancy
by going outside of the scope of RPA as we find to be
necessary. We further attempt to investigate the
relation between RPA and the high-density theories. '

In order to carry out this program, we have developed
a formal expansion which allows us to write down, at
least in principle, all the contributions to any thermo-
dynamic variable, for instance the energy or magnetiza-
tion. The terms in the expansion may be classified
according to their order with respect to a simple high-
density expansion at the Curie point, after the manner
of reference 5, and we have also developed a method of

4 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).' R. Brout, Phys. Rev. 118, 1009 (1960); 122, 469 (1961).
6 F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
~We shall later find it necessary to differentiate between two

types of high-density theory, one a simple high-density theory,
the other a renormalized or self-consistent high-density theory.
The first type is based on a classi6cation, given in Sec. 3, of the
terms in the free energy with respect to their explicit dependence
on a high-density parameter. The second type is a modification
of the first, necessary for the description of the Curie point. In
the version of Horwitz and Callen (see reference 12}, the simple
high-density classification is used to select a class of irreducible
graphs. The renormalized version of the high-density theory then
involves the summation of all graphs formed from articulations
of these irreducible elements, and is an approximation in which
the variational principle is maintained.
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classifying graphs with respect to an expansion in
powers of the temperature. The classes of graphs which
produce the leading and next order in the simple high-
density classification turn out to be those giving,
respectively, all the terms of leading and next order
in the low-temperature expansion. We, therefore,
recover molecular Geld. theory, exact in the limit of
infinite density, ox zero temperature, by summing the
leading class of graphs. Summation of the second class
of graphs, rings, produces spin-wave theory at low
temperatures. In the next order, the two classi6cations
select diBerent sets of graphs; the 6rst spin-wave
scattering eGects appear in this order in the temperature
expansion. Thus, one cannot hope to get a uniform
simple extrapolation based on the simple high-density
notion that also gives the lowest order sects of spin-
wave scattering.

We next consider the Curie point region. Here a
renormalized version of the high-density theory is
required. ' The formal expression for the sum of (re-
normalized) high density terms is diKcult to evaluate.
We have replaced it by an "excluded volume" sum
which approximates it in a way to be discussed. The
"excluded volume" summation is shown to lead to the
same critical temperature as that obtained by the
RPA and possesses other features in common with it.
The analysis is for convenience carried out for spin
S=1/2, but the results may be readily generalized to
arbitrary spin.

In Sec. 2 the linked cluster expansion is developed.
In Sec. 3, we review the simple high-density classifica-
tion and derive molecular field theory graphically.
In Sec. 4 we present a graphical derivation of spin-wave
theory in such a form that the contributing graphs may
be easily extrapolated to arbitrary temperature. The
low-temperature ordering is not presented until Sec. 5,
since it depends on the results of the ring graph summa-
tion. Section 6 contains the calculation of the simplest
spin-wave —spin-wave scattering graphs, which give
Dyson's first Born approximation to the scattering of
spin waves. In Sec. 7, the renormalized high-density
approximation to the Curie point region is developed
and discussed. The conclusion is that for practical
purposes the magnetization curve of RPA seems to be
adequate and that the spin-wave interaction terms of
Dyson are probably never important since the kinemat-
ical interactions set in before the dynamical ones achieve
any importance. In Sec. 8, the content of the paper is
reviewed and the application of the theory to the
antiferromagnet is indicated. Finally, the first Appendix
contains an equations of motion approach to RPA and
to the problem of interactions between spin waves.

2. THE LINKED CLUSTER EXPANSION

In this section' we derive a perturbation expansion
for the statistical mechanical averages (Q)= Tr(pQ) of

The development is similar to that used for the Ising problem
by F. Englert, Phys. Rev. 129, 567 (1963}.

H = —l'p Q; S;*——', P;,;cps,".S;,
h= ggB~) &ij+0 (2)

S; is the spin operator of the ith site and we have
chosen the s axis along the direction of the magnetic
6eld. We choose to write the x and y components of 3
in terms of the transverse operators

S+=S wiS~,

which have the commutation relations

LS,*,S,+]=h, ;5,+,

[5;*,5; ]=—5,;5;,
LS,+,5;-]= 2h;,5,*.

(4a)

(4c)

The external magnetic 6eld has been introduced for two
reasons: First it removes degeneracy, and secondly, it
provides a soluble unperturbed Hamiltonian

Hp= —h Q; S;*.

Corresponding to this unperturbed Hamiltonian there
is a factorable density matrix

pp
——e o/(Tre -8 ')=g, po"',

where

8 p
( ') —e 8&P"/ —

(T re 8&P")—
and

B,('~ = -hS;.
Denoting by Hi the interaction

Hg H Hp —-',——P;—,;e;,S——,"S;,
the average of Q becomes

(Q&= Tr(R)

(6)

(10)

=(ee~pe 8'~p+~»Q&p/(ee~pe 8' p+~»)p (11)
where

(Q&p= Tr(ppQ) (12)

is the unperturbed average of Q. The quantity exp (pHp)
XexpL —P(Hp+Hg)] can be expanded as a power series
in Bi in the familiar way:

exp(PHp) expL —P(Hp+H~)]

(—1)~ 8 8
~ ~ ~

nM n!
ZH~(p-) H~(pp)H~(p~)]

)(dPydPp. dP . (13)
9 This is a canonical ensemble in the sense of there being a fixed

number of spins.

any dynamical variable Q in the canonicalP ensemble,
where

p=e 8~/(Tre 8~), (1)

H being the Hamiltonian of the system. For the
Heisenberg ferromagnet in the presence of an external
magnetic field 8,
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Here, the operators Hi(P;) are interaction picture
operators defined by

Q(P') = exp(P'Ho)Q exp( —P'Ho), (14)

and the symbol T is the time-ordering operator of

Dyson, " placing the operators in such a way that
Hi(P;) stands to the left of any Hi(P;) with P;(P,.
In the case when H0 and Hi commute, Eq. (13) can be
reduced to the exponential series P„(1/n!)(—PHi)".
In general,

- (—1)"

4 'Q 0

&)= - (—1)"

nm g I 0

&[H (P.) H (P.)Q(o) jdP
0 0

0

&[Hi(P.) .Hi(Pi) jdPi . &IP»

0 0

(15)

Any Q will be a product of the operators S; in some
definite order. It may always be written as f(ii&ri, . . .,
i~a„)S,, '(Pi) S;„"(P), where i labels the spin
index, &&& labels the component (+, —,or s) of the spin
operator, and f is some c number. Further,

Hi(P~) = —
2 p', t v,tS'(P~) 'S&(P')

kZ', &
—&t&[S'+(P*)Sr (P')+S'*(P')S &(P')j (16)

so that the numerator and denominator of Eq. (15)
contain time-ordered averages of the form &Tn„
(S'„"(P )))o. Because po is factorable, this separates
into products of separate averages in each of which the
operators have the same spin index. The spin operators
from Q are now averaged together with spins with the
same label coming from the interaction. If it were
not for these terms, Q could be averaged independently
from the interaction terms and the denominator would
cancel the interaction term in the numerator of Kq.
(15), leaving (Q)0 only. The correlation of the spins in

Q with those of the same index in the interaction is, of
course, essential. Nevertheless, a partial simplification
of the above type can be arrived at by using a semi-
invariant method. '""The classical semi-invariants
M„(x) are defined by

ln(exp (tx))0——P —M„(x).
~-s ~!

In the problem we are considering, the quantities x(")
are the spin operators which do not commute. Here it is
necessary to introduce time-ordered semi-invariants by
a simple generalization of these definitions:

n (8/&&t& '&)".'~, , && ln&T exp(p, . S& *'&(P,.)t& '&))0
as

=M...,.„(rII [S -' (P.,)j"). (2o)

Also, we define the "raising" operators 5& '&(P,.) so
that

~- (p.,)M.(rn[s- (p.,)].-)
aj'

=M~&(T II [S""(P-)j" '[S"'(P-,)j""+') (21)
a judas

Then it follows (see Appendix B) that

&~n[s- (p»=).
as

= II(M (»"(P ))+t&"(P ))"-'. (»)
aj

This formula expresses the product on the left-hand
side as a sum of products of semi-invariants where the
sum runs over all subdivisions of the product in ques-
tion. It is an expression analogous to the expression of
the W function in terms of products of U functions as

By replacing tx by P„t&"&x&"& one defines tith order
semi-invariants of mixed arguments:

in&exp(g„t&"&x&"&))0

](t)~~-

=n z M; o(n*'"'""),
Ry ~

so that

n(8/&&t'"')""
~

i& & 0 in&exp(g„ t&'&x&"&))o

=Mr „)0(n x&"&""). (19)

"F. J. Dyson, Phys. Rev. 75, 486 {1949}."R.Brout and F. Englert, Phys. Rev. 120, 1519 {1960}.
I G. Horwitz and H. S. Callen, Phys. Rev. 124, 175'7 (1961}.

Fzo. 1. An example of the way in which the structure at a vertex
determines the semi-invariant.
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given in Kahn and Uhlenbeck's classical work on the

theory of condensation. "To illustrate both the applica-
tion of (22) and the form of the time-ordered semi-

invariant, we give the first few members of Eq. (22)
remembering that (5,+)0——(5;*5;~)0=0 and (5*(P,))0 is

independent of P;:

(5*(p;)5*(p;))p——M2+MiMi, (23)

(TS'+(P')5, (P,))0

=Ms(TS;+(P;)5, (P,))

(5.+5 )o, p;)p,
p;) ~x

(Si 5'+)0, P'(P~

(TS*(Pi,)5+(P;)5 (P;)), -
=MS(TS*(A)S+(pg)5 (p,))—.

(24)

"B.Kahn, thesis, Amsterdam, 1938 (N. V. Noord-Hollandsche
Uitgeversmaatschappij), Chap. III;B.Kahn and G. E.Uhlenbeck,
Physica 6, 399 (1938); H. D. Ursell, Proc. Cambridge Phil. Soc.
23, 685 (1927).

+M (5'(& ))M (TS'(P,)5 (!3;)) (26)

Ke now use the semi-invariant development of each of
the products that appear in the numerator and denom-
inator of Eq. (15).

Ke represent by graphs each term which arises from
expressing the numerator of Eq. (15) in terms of the
semi-invariants. Each interaction is represented by a
bond carrying the temperature label and the indices of
the spins which interact. In order to distinguish between
the longitudinal and the transverse parts of the inter-
action, the bonds representing the transverse part
——,

' P;, ~;,5;+(P;)5; (P;) also carry an arrow directed
from the index corresponding to the 5+ to that corre-
sponding to the 5 . The semi-invariants are made up of
the averages of the spin operators. The spin operators
appear either from Hi or from Q. If we represent a vertex
containing operators 5+, 5, or 5* from Q by a circle 0
with the appropriate symbols (+, —,or z) written
inside, the semi-invariants are then given completely
by the structure at the vertices: The order of the
semi-invariant associated with a given vertex is the
number of bonds jointed at that vertex plus the number
of operators from Q associated with the vertex, and
the numbers of 5+'s and 5 's in the semi-invariant are
given by the number of bonds carrying arrows directed
out from, and into the vertex, respectively, together
with the transverse operators from Q. For instance, in
the graph shown in Fig. 1, the vertex labeled i corre-
sponds to the time-ordered semi-invariant

M~(TS; (p2)5;+(pi)5 (po)5,*(p~)5,*(p4)5,+(pi)5; (p6)).

The building blocks from which the graphs are con-
structed are the operators from Q and the individual
interaction terms -', v;,5; '5, ~ from II~. The nth order
term in the expansion of the numerator of Eq. (15)

is a sum of terms each containing a product of e
individual interactions. In many of the terms more than
one interaction involves a given spin index. Further, a
spin index occurring in Q may occur in one or more of
the interaction terms. In these cases, the average

( .)0 is of a product of spins, and using Eq. (22) to
write this in terms of the semi-invariants the graphs so
constructed are all those that can be made by starting
with the isolated bonds, and operators from Q, and

joining the indices labeled with the same letter together
in all possible ways. Thus, the expansion of the numera-

tor of Eq. (15) into the semi-invariant diagrams
produces all possible diagrams that can be drawn from
the bonds and vertices O. The next step is to sum all
indices and integrate over all temperatures. Then the
same graph appears m!2"'/g times, where ni is the
number of longitudinal bonds and g is the number of
symmetry operations which transform the graph into
itself. This statement follows from the fact that each
of the m factors ~~v;; appears in any one of the n factors
of B~ giving a factor n!.For longitudinal graphs, a bond
i' undirected and, therefore, can have either of its
orientations. Transverse bonds are all oriented. Hence,
the factor 2"'. The factor 2"~n t is clearly redundant if
there are g operations which turn a graph into itself, and
one must divide by g. g includes rotations, reflections,
interchange among the bonds connecting two given
vertices, and interchange of identical unlinked parts
(the definition of linked is given below).

Clearly, the m! in this factor cancels the 1/e! appear-
ing in the numerator of Eq. (15). We now define an
unlinked graph as one which separates into two or
more parts which are not connected by any bonds
(the vertices of Q are to be considered as a linked unit).
Because of the cancellation of the (I!)'s, the unlinked
graph is composed of a product of linked parts each of
which contributes independent factors, multiplied by
an additional g factor due to the symmetry between
identical unlinked parts. Clearly, the total g factor is a
product of a g for the part linked to Q multiplied by a g
for all the parts unlinked to it. Similar statements
apply to a diagram expansion of the denominator. The
expansion of numerator and denominator divers only
in that the operators of Q provide extra vertices to
which we can join bonds. The numerator expansion is,
therefore, equivalent to all graphs linked to the opera-
tors of Q, multiplied by all graphs unlinked to these
graphs. However, this second factor is just the expan-
sion of the denominator. Hence, we arrive at the linked
cluster expansion: (Q) is given by summing all graphs

Fr G. 2. A typical
graph in the linked
cluster expansion.
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linked to one or more of the operators of Q according to
the following rules:

(a) Each bond carries labels i, j,P;, and the contribu-
tron 2e;;.

(b) Each vertex specifies a time-ordered semi-
invariant whose order is the number of operators of Q
involved plus the number of bonds joined to that vertex.
The argument of the semi-invariant depends on the

type of bonds, and their temperature labeling in the

way given above.
(c) Each graph carries a factor 2 "&/g.

(d) The final step consists of free summation over
all spin indices, and integration of all temperatures
from 0 to P, with due regard to the time ordering.

For example, the graph of Fig. 2 contributes the
following expression to (TS~+(P&)S,

—
(P2)Sq*(P3)):

P P P P P

-', ~ Q(„(v )'v;(v p„, dP4 dP~ dP6 dP7 dPsMi(S*(P4))M~(TS+(Pi)S (Pf)S*(P4))
0 0

X~2(I'S*(P7)S*(PS))~4(I'S*(P~)S'(P8)S+(P~)S (Ps))~2(&S+(P6)S (P2))~~(S'(P~))

The extra -', arises from the symmetry of the graph
under interchange of the bonds Pr and Ps. The dummy
variables P4, Ps, P~, P7, Ps, l, m, e are superfluous and
will in future be omitted from graphs, Finally, it should
be noted that because the unperturbed average of a
product of spin operators containing unequal numbers of
5+'s and 5 's vanishes, in a nonvanishing graph the
bonds carrying arrows form continuous paths which
can only begin or end on a vertex containing transverse
operators from Q. It will be convenient in a subsequent
section to use the perturbation theory to calculate the
free energy F. Ii is related to the average energy by

It follows that Ii is, as usual, given by calculating the
graphs obtained by closing all energy graphs, with the
symmetry factors appropriate to the closed graph.

3. MOLECULAR FIELD THEORY

The most important qualitative features of ferro-
magnetism are given by the gneiss molecular 6eld theory
(or self-consistent field theory). This theory also gives
a successful semiquantitative account of the Curie
point phenomena apart from critical Quctuations. As
has been pointed out repeatedly, this success is due to
the fact that the theory is the leading term in a high-
density treatment of the ferromagnet. Molecular 6eld
theory also gives correctly the 6rst two terms in an
expansion in powers of exp( ——',PV) for the Ising model,
but for the Heisenberg model it must be modi6ed at low
temperatures since it fails to give spin waves.

In this section we 6rst present the simple high-density
classi6cation of the terms in the linked cluster expansion
in the Curie point region. We then isolate terms of
leading order in the expansion and show that these

terms sum to the molecular field theory. The summa-
tion, which proceeds in the manner presented by
Horwitz and Callen, "is included here for completeness,
as well as an introduction to the vertex renormalization
procedure which will be used throughout this paper.

Each bond of a graph carries a factor ~e;; and a label

P; which is eventually integrated from 0 to P. Each
vertex is associated with a semi-invariant and a spin
index i. Any free spin index (i.e., one labeling a vertex
including no spin operators from Q) is summed. For
instance, the index k of Fig. 3 will be summed, but only
over values labeling spins with which spin 5 is coupled
through B~. We shall call the number of such spins 2'.

Then the explicit dependence on (1/s)" is to be isolated
for the simple high-density expansion.

A graph containing x bonds and y free vertices and
y' vertices associated with Q carries a factor which is
approximately P*(8)*s&M~&' where we have replaced
the interactions and the semi-invariants by some
average values 8, M. However, for the molecular 6eld
model, the critical temperature is given by

P,sPS'= 1.

This enables us to write PP in terms of 1/s and we
obtain for the contribution of the graph:

(P/P. )*s~*M~+".

Thus, for temperatures near the critical temperature
or higher, P/P, &1, the order of the graph in the high-
density expansion is the number of bonds minus the
number of free vertices. The number of bonds is always
greater than or equal to the number of free vertices in
a linked graph hence the leading term in the high-
density expansion comes from the "tree" graphs for
which x=y. A typical example is shown in Fig. 4.

FrG. 3. Coupling of spin i
with spin k.

I'IG. 4. An example of a tree graph.
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FxG. 5. (a) A
simple transverse
ring graph. (b) A
simple longitudinal
ring. (c}A ring with
tree renormalization.

FIG. 7. Renormalisation of a
second-order semi-invariant by
trees.

a
3IIg

oc

E —P~(0)(S*)o
nm gI BPk

= exp Pv(0)(S*)q Mg. (29)
BPh

Fio. 6. Articulation of single
bonds at a vertex.

Because transverse bonds form closed paths, the
graphs of zero order in 1/z are made up of only longi-
tudinal bonds. The graphs of order 1/z have one more
bond than free vertex and simple examples (ring graphs)
are given in Figs. 5 (a) and 5 (b). Addition of tree graphs
to any vertex will not change the order in the 1/z
expansion so that the graph of Fig. 5 (c) is also of first
order.

%e shall now sum the tree graphs to find the magnet-
ization in zero order, which will prove to be that given
by %'eiss molecular field theory.

The magnetization is (S*) so that we need to sum all
tree graphs rooted to Q=S*. These are the graphs of
Fig. 4, which contain only the longitudinal part—~ P;; t,;S,*S,~ of the interaction. Since all the
operators involved commute, the time-ordered formal-
ism is unnecessary here, and we may omit the P; labels
and perform the time integrations trivially. For the
graph with e bonds shown in Fig. 6, the g factor is e ~,

since the same graph is obtained by interchanging
bonds in all possible ways. The vectices at the extreme
ends are all first-order semi-invariants (S*)q, independent
of the spin index. The sum over free indices is immediate,
each producing a factor -', P; s;;=&e(0). Here we define
the Fourier components of the potential by

p(q) P . v ~iq(r~ rj)—
Thus, the contribution of the graph of Fig. 6 is

(2"/ 'e( (0)/2)(S*) j"~ (S* ~ S*)

Using the raising operator B/Bph derived in Appendix C,
we obtain for the sum of graphs in which all bonds are
joined to a common vertex labeled 2',

These are not all the tree graphs; we obtain more by
adding to each vertex of Fig. 6 extra bonds just as in
Fig. 6 bonds have been added to vertex i. If we continue
this process indefinitely, the semi-invariant of each
vertex will be changed to the value MI, say. This
process is called vertex renormalization. But M~ will be
the value obtained for (S*) from the summation of all
tree graphs. Hence,

M, = exp pq (0)M, M, .
BPh

So far, it has not been necessary to specify the magni-
tude 8 of the spin. From now on, however, we shall find
it convenient to specialize to 5= -,'. Then 3fi= —,

'
Xtanh(-', ph), so that

M ~
——q' tanhPq'P(h+e(0)M&)]. (31)

The magnetization M& given by (31) is the Weiss
molecular Geld magnetization. For zero h, the magnet-
ization disappears at the temperature T, given by
1=P,e(0)/4, which we used in setting up this high-
density classification.

4. TERMS OF FIRST ORDER IN THE HIGH DENSITY
EXPANSION —SPIN %'AVES

In this section we calculate the terms of O(1/z)
according to the simple high-density classification
presented in the previous chapter. These are the rings
with all vertices renormalized by trees. As presented in
Sec. 3, except for the case of infinite s, the classification
is only valid provided p/p, &1, so that we would not
expect to obtain results valid below the Curie point.
It will, however, be shown in Sec. 5 that the classes of
graphs corresponding to the low-order terms in the
simple high-density expansion are the same as those
corresponding to the low-order terms in an expansion in
powers of the temperature, so that the results are also
correct at low temperature.

The result of the ring summation carried out in this
section will, at low temperatures, reduce to spin-wave
theory.

We sum first the unrenormalized ring 5(a) to obtain
the simplest terms in the ring approximation to the
transverse propagator (TS,+(P;)S; (P;)). The result
will be modified later in this section by including the
tree renormalization shown in Fig. 5 (c).
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The unperturbed propagator is period P and, hence, may be Fourier analyzed:

(rs,+(p,)s; (p,)-), tanh2ph
(»;+(P,)5,-(P,))o= P

s—- p(h —a.)g
—

&/&r
—/&s&" g//a/z pr) pz

(32)
g//L/2+g //L/z -g-s&&/z p (p

where Xs=2srh/P. The unperturbed propagator (33)
As a function of (pi —pg), this function is periodic with occurs as follows in the sum over rings's ":

00

(»i (pi)5/ (p/))unrsnormalized rings= g (z) p «'iu'4iis ' ' &' »&r/
tl ' ' 'tn —1 0

dPi dP-

X(»;+(P,)5;-(P)).(»;,+(P)5';(P))' (»'. (P-)5; (P,))-' (34)

Fourier decomposition of both v, / and the propagator (33) then leads to

(»;+(p,)5 (p )),«, «ma&;zsd rings ——p p g e'"" "/'e '"" ' /'pv(q)/2] "[tanh-,'ph/p(h —ilik)]"+'
q n 0k oo

tanh-,'Ph
g g dis&rr ri&d i& s&//i —//!&-

q A: P[h —iX.——,'v(q) tanh-', Ph]
(35)

g (q), p*&pr,"
(36)

g'(q), p'(p;,
(»&+(P&)5/ (p/))unrenormaiized rings=ps e' "' "' tanhzph exp[—(p&

—p/)(h —zv(q)tanhzph)]X

where

The sum over all integers k may be replaced by a contour integral with respect to s by using the function
~p[exp(&ps) —1] which has poles with unit residue at the points s= (2 sri /p)j The .function which makes the
integrand converge for all large s is chosen. '4 The result is

g+(q) = &(exp[+p(h ——,'n(q) tanh-,'ph)] —1) '. (37)
In order to complete the summation of terms of order 1/g, it is now necessary to include tree renormalization,

replacing the unperturbed propagators (second-order semi-invariants Ms) by the sum of all multiple vertices of
the type shown in Fig. 7.

The e6ect of this tree renormalization of each M2 is given as a special case of the following general theorem:

For a semi-invariant of arbitrary order, tree renormalization causes a displacement of h to h+s(0)M&, every-
where that h occurs in the unrenormalized semi-invariant. [This result has already been obtained, Kq. (30), for
the semi-invariant of erst order. ]The proof proceeds as follows: As in the treatment of Mr(5*), we 6rst obtain the
modi6cation of the general semi-invariant 3fz~/(5+(Pr). 5+(P„)S (P~&) S (Pza)S*(Pz~r) 5*(Pz„+i))which
results from articulating all single bonds. The semi-invariant associated with the articulation of l bonds is M2~l+l.
(Ts+(Pi) .5 (Pz„)5*(Ps~i) 5*(Pz„+&+&.)). Using the generating function formalism, we have uPon integration
over pin+&+i ' ' pza+&~&':

3f2s+/+&'(» (Pl) ' ' '5 (Pza)5 (Pm+&) ' ' '5 (Pro+&+& ))dPzs+i+'&' ' 'dPzs+&+&'

~~

l'

ln T exp y dP' 5'(P')+iris+(Pr)+ +&ra„i-&5'(Pr„+&) . (38)
I~ Y i y 0 ~&l ~ a1 0 ~of2n+l ' a2//, +i=0 0 0

The sum over the index j labeling the end of each longitudinal bond has the form —', P/ n,;(5/*)o ———,'i&(0)M&. Further,
for l' such bonds the symmetry factor due to interchange of the bonds is /'. . Thus, the modined propagator is

&&0

E (2&'/i!)[-', n(O)3f,] (a/a~) 'I,=,— in(T . .)„l'=0 ~&1 a1=0 ~&2m+ l a2&+ i=0
8= exp[& (0)cV,a/aq] ~,=o—

~O'I! a1=0
"J. M. I,uttinger and J. C. '5'ard, Phy. s. Rev. 118, 1417 (1960),
&~ D. J. Thol)ess, Ang. . Phys. (N. Y.} 10, 553 (1960},

~&2n+l a2„+]=0
ln(T )&&. (39)
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AVe now show that the di6erentiation with respect to & at &=0 may be replaced by differentiation with respect to
h at its correct value. This is a consequence of the fa,ct that the unperturbed Hamiltonian is —It P, 5,*. Consider
the expression

P

ln Texp y d 'S' '+~1S+ 1+ .+&2„+~S' 2„+~ =—ln exp y S' ' d ' exp 01
0 0 Pif

Pil

Xexp y 5*(P')dP' exp[0&(P, ,)] exp[Op +i(P' +)]exp
&attn, )

zirizz ), i~ei
0

where (0,(P;,)} is the sequence of operators tr,S+(P;), o f5 (P,), o f5'(P;) labeled in order of decreasing P; The
right-hand side of Eq. (40) is

'Tr[exp(phS*) exp (PyS') exp( —P, ,yS') exp( —P;,hS*)exp (Oi)
X exp(P;,hS*) . exp(Oz„+t) exp(P, ;,„,hS') exp(P, ,„,yS')]

Tr[exp (PhS*))

because the average is performed with the weighting factor p0, and because

exp[0 (P)]= exp[exp (PHo)0 exp ( PHo—)]= exp (PHo) exp (0)exp ( PHo—) (41)

The logarithm above is, therefore,

exp(yB/BIt)ln(T exp[trtS+(Pt)+ +trz~tS*(Pt~t)])o+ln
Tr[exp(P (h+ y)S')]

Tr[exp(PkS*))

where the shifting operator exp(&8/Bh) has the effect of replacing h everywhere that it occurs by h+y. The
renormalized semi-invariant (39), therefore, becomes

exp[~(0) M ta/aq] i,=,—
~&1 ay 0 ~O'2n+1 ay~+~=0

exp(pter/tilt)ln(T exp[trtS+(Pt)+ +rzza+tS (Pffft)))o

=exp[ti(0)MB/&y]
~
r-o exp(y8/&h)Mz~t(TS+(Pt) . .5*(Pz.+t)).

= exp[ti(0)M&tj/Bh]MQ +i(TS+(Pt) S*(P2 +i)). (42)

To carry out the complete tree renormalization, it is necessary to add further single bonds to the end of each bond,
which converts the bonds into trees. This has the effect of changing M1 to M1 as we saw in the previous section.
Mt(S*(P')) determined self-consistently by Eq. (31) is not a function of the temperature label P', so that the
analysis presented above goes through with M1 replaced by M1 and the complete renormalization of a vertex by
longitudinal trees isgivenby Eq. (42) with Mt replacedbyMi, the molecular field value of Eq. (31).This completes
the proof of the theorem.

We now insert this renormalization correction into (36) and (37). Each of the factors in (36) which contains h
arises from an unrenormalized semi-invariant. Thus, the renormalization with longitudinal trees causes everywhere
a. translation of h to the value It+a(0)Mt. Our result is then

(TSt (Pi)Sj (Pj))rinita with tree renormalization=pe e' ' ~ tanh[zP(h+&(0)Mt))
g-(q), P,&P,

Xexp( —(P,—P;)[h+tI(0)Mt ——,'ti(q)tanh[-', P(h+ti(0)Mi)]]} X (43)
g'(q), P.&P;

where

g+(q)=&(exp[&P(h+ti(0)Mt —-', t(q) tanh[sP(h+v(0)Mt)]}) —1} '. (44)

For Mt&0, this expression may be simplified by using Eq. (31) to give

(TS'+(P')Sr (Pr))«etta=Re &" "' "'(TSo+(P')5 e(Pz'))rinttz-
g, P'&P=Pe e'«" "ii exp[—(P„—P,)(k+Mt[ti(0) —v(q)]})2MtX (45)

P'&P;
where

go=a[exp(+PPt+M, (t (0)—t (q)))}—1]-'. (46)



THERMOD YNAMI C BEHAVIOR OF HEISENBERG FERROMAGNET 163

At low temperatures, M& ~ -', . De6ning the frequency write Mi as follows:

~(q) =&+2L~(0)—o(V)j, (47)
M, =-', L1—2 exp( —Ph)+O(exp( —2Ph))j, (52)

we have

lim &TS ~(pa)Sj (pj))rings

=p, e*'&" "~' expL —(p;—p,)~(q)j

where

i, p'& p~
X (4g)

p;&pr,

g'=~(expl ~p~(V) j—1} ' (49)

which is, in fact, the Fourier transform of the usual
spin wave propagator. Equation (48) then gives for
the spin-wave populations

n(V)=&$. S-.+)....=LexpP (C)
—1] '. (50)

At low temperatures, the magnetization curve can then
be determined from the rule

lim &S*)„„=-', P, (1—2(S,—S,+)„„)

= l Z.(1—2&$. S-.+) )= l —O(2'/&. )'". (~1)

This result may also be obtained by direct calculation
of (S*) in the same approximation.

Thus, we have recovered spin-wave results' by ring
summation. The interpretation of these results as a
valid low-temperature approximation are given in the
next section.

5. LOW-TEMPERATURE ORDERING

In the previous sections we considered the application
of a simple high-density ordering whose derivation
was valid in the region of, and above, the Curie temper-
ature. In this section we shall complement this high-
density ordering by a low-temperature ordering which
classi6es the graphs according to a power of T or to
expL —~2Po(0)j, which is negligible compared to any
power of T at low temperatures. This classihcation will
enable us to select the graphs of lowest orders in the
temperature expansion, for comparison with results of
Dyson. ' %e shall also see that the low-temperature
and the high-density classifications select in low orders
the same classes of graphs, so that the results of the
high-density summations of Secs. 3 and 4 may be
employed below the Curio point

Ke shall 6rst arrive at a simplification of the longi-
tudinal elements of a graph, by examining the low-
temperature values of the longitudinal semi-invariants.
The unrenormalized longitudinal semi-invariant of
order n can be obtained by operating I—1 times with
the raising operator 8/8(Ph) on M~ ———', tanh-', Ph. We may

so that M„»~exp( —Ph), and for finite field, at low
temperatures M» becomes "exponentially small"
compared to 3fi. If the tree renormalization of each M
is carried out, h ~ h+e(0)M~ and M»~/M~ is propor-
tional to exp{—PL:',v(0)+It]} and the ratio is negligible
even in zero 6eld.

Thus, any graph containing a tree renormalized
longitudinal semi-invariant M„with n&1 is exponen-
tially small and can be discarded for the purposes of an
expansion in powers of T. It also follows that the low-
temperature limit of the magnetization, for example,
of the Ising model is completely included in those
graphs whose vertices are just 6rst-order semi-invariants
with tree renormalization, that is, the molecular 6eld
trees. Furthermore, this class of graphs contains also
all the graphs in which one renormalized semi-invariant
is allowed to be of order higher than one, so that we
recover from this temperature ordering the well-known
result that the molecular-field description of the
Ising model is correct at low temperatures apart from
corrections of order fexpL —x2pn(0) 1}'.

Now we examine the transverse parts of graphs. %'e
found in our examination of the ring summation that
it was convenient to Fourier analyze the propagators
M2(TS (A)$ (P2)), because of the convolution nature
of the sum with respect to time and space. The Fourier
analysis with respect to time has for the low-tempera-
ture ordering a further advantage which we shall now
develop. It is simply that having placed all the depend-
ence on p, , ps into factors like e'""'» o'&, the integrals
over p&, p2 which have to be completed to evaluate the
ring are of the form Jot'dp~ e'o'&"&+"~'=pb(X, +Xq) since
e't'"&=1 for all j. That is, the temperature dependence
associated with each of the integrals J'dp; is simply a
factor P. The only other place in which a temperature
dependence arises is in the Fourier coefficients M2(X)
=tanh(-', Pgh+n(0)M~j}(Pt h+w(0)M& —iX~]} ', where
we have again included tree renormalization. Here it is
possible to make a low-temperature approximation by
replacing 2M~=tanh(2PLh+o(0)Mqj} by one. Because
of the ), q-conservation around the ring, any ring
element is then of the form

L2p~(q) j"
~; ~ - t P(h+ ',.(0) 9;-)5-+'—

=2 Z (PLh+l(~(0) —~(q)) —2~j)} '. (53)

Since P, ~ J'q'dq and u(0) —w(q) ~ q', in the limit of
zero 6eld this ring element is proportional to T'I'.

%e now generalize this procedure to the discussion
of the temperature dependence of graphs containing
more complicated vertices. The general semi-invariant
M2a+&(TS+(p&) $*(p'&)) is a function of 2n+1 time
labels P& P2„, P'~. . P'g. The following argument shows
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Tr[exp( —PH2)T(S ~ S )S& ' (0)],
Tr[exp( —PH2)S& "(P)T(S . -S. )],

M2~, (»+(P,)" S.(p.)S (P-+.)
XS (P2.)S*(p'1) S*(P'1))

=+2(—1)" '(h —1)!{v2} (54)

respectively. However,

exp( —PHp)S& "(P)
= [exp( —PH2)S& "(P) exp(PH2)] exp( —PH2)

=S& "(0) exp( —PH2), (55)where (v2} means the sum of all divisions into h separate
averages of the set of operators S+(Pi) . S'(P'1).
Consider any spin operator S' "(P,) of the semi-
invariant. Keeping all other times fixed we put p; in
turn equal to 0 and to P: In any part of the semi-
invariant, the average in which S& "(P;) appears then
changes from having, in the first case S& '&(0) to the
left of all the other operators, to in the second case
having S& "(p) to the right of the other operators,

so that the second case, P;=P, is identical with the first,
P,=O, using the cyclic invariance of the trace. Thus,

M2 +l(P =P) ™2~1(P,=0), (56)

with all other time variables arbitrarily Axed.
Thus, we may write M2~~ as a multiple Fourier

series:

that it is periodic in each of these variables and can, that is,
therefore, be Fourier analyzed. "

M2n+1(Pl PnPn+1 .P2nP'1 P'1) = Q M2s+l(4 1&2sy 11'1 1&'1)
)&,I ~ ~ 4'g

where
Xexp[—i(phi+ +p.& P.~&4—1.—P-2 4 +P 11& 1+ ' ' '+P l~ 1)] (5't)

P P

M2n+l(1&1' ' 'i&2 ~ 1' ' '1& 1) P dpi' ' ' dp 1M2 +l(pl' 'p &)exp[i(pl)il' ' ' P2 ~2 + ' '+p Ll& 1)]~ (58)

The time translational invariance of M2 +1(Pi
P24'1 P'1) implies that M2~&(1&1 'A'&) vanishes unless

—)2.+)'g . .+)'g=o.

Thus, in computing M2~1(1&1 1&'1) according to Eq.
(58) we may discard any parts of the integration which
will not lead to a factor b~,+...+),„),„,... )„.+...+), , 0 since
these parts will cancel among themselves. We may
extract the explicit time dependence of M2~+1(Pi P'1):

M2n+1 (Pl 'p 1)=m2~+1 exp[ h(P1+ ' ' '

+P P~+i P2~)]—, —(59)

where I is constant within a given time ordering. Then
the time integrations of Eq. (58) are integrations of
factors like exp[P, ( h + il&," . )]within a given

time ordering. Only the 6nal integration has limits
(0, p), and this integration only may give rise to the
8 function. It can only do so if the integrand has a
term whose only P, dependence is exp[+P;(Xl +X„—1&„+1 +1&'1)], that is, containing all the X's. Such a
term will result from doing the preceding integrations
and evaluating them at their upper limit only. This
provides us with a simple procedure for evaluating
Eq. (58). Evidently, the result of the integrations over
a given time order can give rise to no additional h
dependence beyond that already in m2~&. Thus, a
further simpli6cation appears: For the purposes of a
low-temperature expansion, we may evaluate Eq. (58)
by the method outlined above, neglecting al/ tinse
orderings which have m2„+& exponentially small

Thus, for example, of the six possible time orderings of

M~.(».(p.)S (P.)S (P-.))=(» (P.)S (P.)S (P -)).-(S*(p ))o(» (P)S-(P.)).,
only pi& p'1& p2, for which m2+1= —1, leads to results for m2+1 which are not exponentially small. Then

PI P'I

M2+1(Xi)&2) '1) =p '
dpi dp'1 dp2( —1)exp{ [pl(h —iX&) p2—(h il—&2) ip—'lX'1]}—

(60)

= —b')., 1,+1., 2[p(h —ii&2)P(h —il&2+il&'1)] '.

We now make the assumption tha, t m2„+1 is exponentially small [at least of order exp( —ph)] except when

all(pi .p„)&all(p'1 p'1}&a11(p~+1 p2, }.

(61)

(62)
This is the case for low-order semi-invariants examined in detail (M2, M4, M2+1 M2+2) but a general proof has not

"A similar result has been obtained for the propagators for systems of fermions or bosons by P. C. Martin and J. Schwinger,
Phys. Rev. 1IS, 1342 (1959).
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yet been found. From the assumption, using the argument above it follows that

+2»+l()11' ' '~n)1»+1' ' ')12»)1 1 ' 'X l)

t S22-1

m»xp-l2»+1)

{&a)

dp. dp;„ dp;„, .

x II expL P'()1 &)1*)+P +'()l i~ +')] II expLiP))1')] (63)

where (i2} are all distinct sequences formed from the set of numbers 1 to 26, to (J&} are all possible sequences

formed from 1 to l, so that the integral is over all time orderings satisfying Eq. (62), and m2„+1 '" is the value of

m.~~ corresponding to any of these orderings, a constant of order 1. The result of the integrations is

)if 2»+l(~1" )1'l)™2+1n'*p """"l111+-.+1»-1~1 --12»+11-+11,o 2 2 [()1—)1'2»)(2)1—2)1'2»—2)1*2» 1)

{ig} {jul

X(22)2 i),;2—„.—i)1;—,)(Dl+iX';,)(Dl+i) ', ,+i)1';, ,) (.Dl+iV, ,+ . . +i)1';,)

X (D2—)2+iX;„)(D2—2k+iX;„+9„.„,) (D2—(22—1))2+iX;„+ . +i);2)], (64)
where

D,=~h —9;,„—"—9
D2=Dg+i)' + ~ ~ +i) ', ,=eh —iX;,— —iX; .

Recombination of the terms in the sum g ~,,~
leads to

M2»+l(X1' ' 'X2»X 1' ' ')1 l) =m2»+l 811+."+1»—1»+1... 12+1'1.»+1'1,0[P.(.k $X1)p(k—Z)12) ' ' 'p(k $X )p(nk )in+1) ' '

(65)

(66)

XP(I2—i) 2„)]—' Q [P(D1+iX';,)P(D1+iX';,+2K'1, ,) P(D,+2) ';,+A';, ,+ +i) ';,)] ' (67.)

When )=0, the last sum goes over to PD2, and the semi-invariant is

m2»m»"&1, .-+1„-),~,"-1,„,2p(()2 —i)11)+ + ()2—i)1 )]
M2 ()11 )1 X„+1 )N, 2 )=

P ()1 A1)P—()2 iX2) —P(h i.) „)—P (I2 92„)—
(6g)

Under tree renormalization, )1 -+ h+s(0)M1 in the
above equations. From now on we assume that tree
renormalization of all vertices has already been carried
out. Having derived the form of the general semi-
invariants, we may deduce the temperature dependence
of any graph by the same method as was applied above
to the simple transverse ring.

Consider first purely transverse graphs. The most
general graph of this type is a set of m transverse semi-
invariants of order greater than two joined by n ring
elements (with tree renormalization everywhere).
Along the ring elements, and at the vertices, there is
momentum and frequency conservation, and the
value of the graph is then obtained by summing over
all Q-independent q and )1 variables. The contribution
from a tree-renormalized ring element without its
frnal vertices is [jg(h+ —22(0) —ix)]2(PLh+ —2, (v(0) —~(q))—i)1]} ' where the momentum and frequency of the
ring are q, X, respectively. The values of the vertices
are given by inserting into Eq. (68) the appropriate n's
and )1's, and replacing )2 by )1+212(0). In a free-energy
graph the denominators from the vertices cancel
exactly the factors [j9(h+-'22(0) —i)1)]2 in the contribu-
tion from the ring elements and the final sum over the

Q-independent ) 's and q's is of a product of 22 factors
hice (pLh+21(v(0) —s(q)) —9.;]}—1, one for each ring
element, multiplied by a product of m sums of single
terms [j9()2+22@(0) iX,)] fr—om the numerators of the
semi-invariants with 22) 1. Each of the Q sums over )1

is replaced by a contour integration as in the treatment
of the simple ring. The values of the sums are deter-
mined by the poles from the product of denominators,
as a function of the Q-independent X's, so that the total
sum is a product of Q spin-wave distribution functions
21(q,), multiplied by a product of (22—Q) denominators
each of the form g, pld(q;) '2 The product .of m sums of
terms Q(h+ '2v(0) iX~)—]bec—omes a product of 222 sums
of terms 2Ps(q;) so that the final contribution to PF—
has the form p„...,z(2pg) (peg) & "(n) , which is
proportional to T(&~ ).

This rule needs modification in two exceptional
cases. The erst is when n (n&2) of the ring elements
have the same momentum (and, therefore, the same fre-
quency), as for instance in the example (n=2) given in

'~ Compare J. M. Luttinger, Phys. Rev. 121, 942 {1961).' Henceforth, tree renormalization, which is everwhere implied,
is not shown explicitly in our diagrams. We further simplify the
diagrams by omitting the structure (bonds and M2's) of the
ring elements.
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FIG. 8. A trans-
verse graph in which
two of the ring ele-
ments have the same
frequency and mo-
mentum.

Fig. 8."Then the product of Idenominators [P(h+cd (q~)—iX~)] contains fj3(h+to(tl') iX'—)] On . carrying out
the sum over X', the multiple pole from this factor does
not give rise to a factor [Into(Il')] ' but it removes (n 1)—
factors [j3(h+Tts(0) iX—'+ )] -s P —',Ptt from the
numerator. Then the contribution to PF is —of form

of n ring elements with the same q, contributes to
PF—a term

PF—(Q,Q', m, p ) ~ 1'",

=[-:(Q-Q)+Q --+ ~ p.(--1)] (70)
at ~2

For example, the graph of Fig. 9 gives a term ~ T'.
In order to carry out a similar analysis for the general

case with mixed semi-invariants, we use Eq. (67) to
replace the longitudinal bonds in a (tree renormalized)
diagram by equivalent vertices V in an otherwise
completely transverse diagram. This is represented
pictorially for a section with l bonds in Fig. 10, and

Z (-'~ )"='0 )'-" "'( )'- 1'" '-"'. (69)
Qi ' ' 'QQ

The second exceptional case is when, because of fre-
quency conservation, the frequency of one ring element
appears with opposite sign in the frequency of another
(as for instance X~ does in Fig. 9). Then two poles
contribute to the sum over this frequency, one yielding
n(q), the other (1—m). The (1—n) term then fails to
produce the usual T3/2 factor. However, the factor in
the denominator is still of the form Pcs, so that the final
contribution, instead of being T'", is T.

Thus, in general, a transverse graph with Q-independ-
ent q's, of which Q' appear with both positive and
negative sign in the labeling of the ring elements, ns

semi-invariants of order greater than 2, and p groups

FiG. 9. An example of a graph with Q= 5, Q'= 1, ns=4, p2= 2, and,
therefore, a contribution to —PP proportional to T'.

2

FIG. 10. Replacement of longitudinal bonds by an equivalent
transverse vertex Y.

corresponds to summing over the l ) ', 's, and inserting
l factors of —,'P8.

Consider the general vertex of this type with l
longitudinal bonds and d diBerent parts which it joins,
with altogether Ã incoming and E outgoing transverse
arrows. From Eq. (67) it is evident that the 6rst 2tt
denominators of each &2~~ contribute to the final
vertex a factor which is exactly the 2&V denominators of
Mo&(hl' ' 'Xo+) ~ The d tt functions from the mixed
semi-invariants produce X conservation for the final
vertex, and also give d —1 restrictions on the 1 sums
over X'. There then remain the extra [sums of products
of (2l —d) denominators] from all the mixed semi-
invariants, and the l factors oPB from the bonds. Hence,
the final vertex is

h~ " x, ,o(Ptt/2)'
V P [Sums of products of (2l—d) denominators). (71)

P(k+ott(0) At) ' ' 'P(h+o'v(0) —zoo~) l —0+2 of the x"s sod o's

Each of the products of (2l—d) denominators consists of d factors, each of the form of the last summand of
equation (67) with the appropriate Dt"', and h replaced by it+-,'o(0). The sum over all independent X"s will then
produce a product of I—1 denominators, each of which is just a function of the D~").Furthermore, the denominators
must be sums of PDt"' simply because of X'-conservation cross the longitudinal bond. Thus, the complete vertex 1s

b&,"—x,„,o (P&/2) '
V [Sums of products of l—1 denominators,

P(h+-,'o(0) —8 t) P(h+ ,'o(0) i7 o~-)—
each of form P P ~;~ Dt"']. (72)

When such a vertex occurs in a general graph, it behaves
like a transverse semi-invariant of order 2$, except
that it possesses the factor (88/2)' and l—1 extra
denominators of form P Q Dt&", and lacks the sum of

single terms [ll(h+oo(0) iX;)] [C—ompar. e Eq. (72)
with Eq. (68).] When computing the complete graph
by summing over all X;, the extra poles that can occur
from the denominators P g Dt&"'& can be neglected,
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since these lead to distribution functions of the type
(exp++-,'v(q)] —1} ' When the values of X~ X2~

determined by the poles of the ring denominators are
inserted into P Q Dq&", a sum of Pv(q) terms is obtained

(as was found in the transverse case for the numerators

P(&+&rI(0)—iX;)]}.The effect of the equivalent vertex

is, therefore, the same as that of the 2nth order semi-

invariant except for a factor (PP/2)'/$(Pt7/2)(PP/2)' 'j,
proportional to P', independent of l, d, and T.

Thus, the temperature dependence of the contribution
to PF —from a graph with m vertices of order greater
than 2, of which m' are equivalent vertices is again
given by Eq. (70).

Since Q~&m+1, the lowest order graphs are those

with m and p small. All graphs with p )0 are at least
of order (T'&) and any semi-invariant or effective
vertex of order greater than 4 requires at least Q= 3 and

is, therefore, also negligible to 0(F'). The only graphs
whose contributions to PF are 0—(T') or less are those

drawn in Fig. 11. There, the vertex is the sum of M4
and all equivalent vertices of this order.

This completes the low-temperature ordering. One

final important point should be noticed, namely, that

-P FocT

+ . . .

-PFm g 2

q& q&
+ "+ (+..

FIG. 11. All graphs contributing to —PF a term of order T'
or less. The vertex is the sum of M4 and all equivalent vertices
of fourth order.

(~) (b) (c)

FIG. 12. Graphs yielding the first Born approximation to the
scattering of spin waves.

the classification of graphs with respect to powers of
the temperature is the same in the first two orders as
the simple classification of graphs with respect to powers
of (1/s) [the leading term in each expansion, O(1), is
the single longitudinal bondj. This explains why the

ring summation becomes valid again below the Curie

point to O(T"), as was noted in Sec. 4.

6. SPIN-WAVE INTERACTIONS AT
LOW TEMPERATURE

Dyson' has very carefully developed a theory which

gives the power law deviations from spin-wave theory
at low T due to spin-wave interactions. His theory
neglects exponential effects and hence becomes in-

adequate once expL —2'Pn(0)] becomes of 0(1). In the
preceding section it was seen that the first corrections
to spin-wave theory at low temperatures are given by
the free-energy diagrams of Fig. 11 which contain
more than one ring element. These are all the contribu-
tions to powers less than T4& in the low-temperature
expansion of P. In this section the formalism we have
developed is used to examine the effect of these graphs,
for comparison with the results of Dyson.

We shall calculate in detail the simplest of these
graphs, Figs. 12(a), (b), and (c), obtained by taking
once the simplest part of the vertex of Fig. (11), to
show how the T' part cancels between these graphs
les,ving a contribution to F of O(T'). We then show the
equivalence of this set to the first Born approximation
to spin-wave scattering calculated by Dyson.

The graph of Fig. 12(a) is composed of transverse
semi-invariants of second and fourth order. Examina-
tion of the detailed expressions for these, Sec. 2, shows
that m2 '*=1, m4 ' = —2 so that using Eq. (68),
apart from terms of 0(expL ——,'Pv(0)]),

M2 (XgX2) = bg, g,[jS(h+-,'s (0)—9~)j—',

—28',+)„,g,~g,g(h+-', m(0) —i4)+P(h+-,'e(0) —A2)$
M4(XrXRXBX4)=

p(h+ 2w (0) iXg)p(h+—g v (0) k2)p(h+—2 ~ (0) 93)p(a+—g
~8 (0) iX4)—

Thus, the contribution to the free energy is given by

(73)

(74)

—PF"'=—s z z z z 2Dl(I+2v(0) —f&)+P(1+2~(0)—~l')j
ay~2 eg 2 )I,V q, g'

L
—P~(V)/21"' L

—P~(V')/2j"*
X (75)

Di(&+Is(0)—@)J"'+' Dl(1+2~(0)—+')j"~'
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apart from terms of 0(exp[ ——,pv(0) j). Here, ni is the number of bonds in its erst ring, nq is the number in the
second ring, and we have used the q —,X—conservation to reduce the ) and q sums to two sums. The result of
summing over all ng and n2 is

m(k+l (0)—&)+P(k+l (0)—'&')j- —P (q)/2 ' —P (q')/2
pp()= —Q Q

»" qq' [jS(a&(q)—iX)p(ru(q') —A') j p(h+gv(0) i—g p(h+-', v(0) —iX')

The sums over ), X' can be converted to contour integrals with respect to 2', s', by inserting into the integrand
factors f+(z) =~p(e+~' 1)—' and f+(z'), which have poles with unit residue at z, z'= (2n i/p)j Si.nce there are at
least two denominators containing s and at least two containing s', both integrals converge at infinity for either
choice of f+ In .either case we 6nd

—PF(') = —P n(q)n(q')-', P[v(q)+v(q'))+0(exp[ ~Pv(0)3). (77)

The low-temperature values of the graphs of Figs. 12(b) and 12(c) may be calculated in a similar way. As outlined
in the previous section, the effect of the longitudinal bond of momentum q" can be replaced by an equivalent
vertex, M 4,q„;„~, t, which is arrived at by summing [2pv(q")/2) times the two third-order mixed semi-invariants
over the frequency ) ' carried by the longitudinal bond:

M'4euu;, g„t(X)X4Xg 4) =PV(q") Q), M~) (X)XQ')M~1 / 4X4—X'). (78)

M~)(X(4X') is given by Eq. (61) or by Eq. (67) with the appropriate value (—1) of m~) ' and h~ h+v(())M, .
Hence, the vertex is

M 4 equivalent(~1~3~4~4) pV(q )~4+'4'4+14

X[jS(h+zv(0) —9))P(h+zv(0) —Aq)P(h+-', v(0) —the)P(h+ —', v(0) —F4)] ' (79)

where tree renormalization has been included. The contributions of the graphs of Figs. 12(b) and 12(c) are,
resp ectivel

[-Pv(q)/2]"' [-Pv(q')/2j"*
PF"—'=z Z EPv(q")JS(q —q' —q")& ~

qual ql l ~~l at 1aq 1[p(k+zV(0) —9)jut+1 [p(k+zV(0) iy)]a"1

[—Pv(q)/2g "4 [—Pv(q')/2j"4—PF("= z Z Z Pv(q")l~(q") 2 Z
qq'q" », ' at-1 aq-1 Pt(k+zv(0) —4XH"'+ Pt(k+zv(0) —$X)g"~

(81)

Again the sums over ), ) ' are carried out by contour
integration with the results

pp"'= p„n—(q)n(q')-,'pv(q —q'),

PF"'=Zqq—n(q)n(q') 2Pv(0)

Summing the results so far obtained,

(82)

(83)

p(p(t)+ p(q)+F(4))
=-,'p g„'n(q)n(q') [v(o) —v(q)

—v(q')+v(q —q') J, (84)

which is the result of Dyson's first Born approximation
to the scattering of spin waves. As was pointed out by
Dyson, the free energy in this approximation is of 0(T4)
though the constitutent graphs each give a contribution
of 0(T').

%'e shall not carry out in this paper a complete
calculation of the remaining contributions from Fig. j.i.
But as an indication of the general trend we make the
following points.

The first terms in the vertex of Fig. 11, namely,
~4+~4 equivalent, combine to a product of four denomi-

nators [jS(v(0)—iX;)) multiplied by the following func-
tion of the incoming momenta:

P(qtqqqqq4) =S(q)+qq qq
—q4)[V(qt qq)

—V(qq)
—v(q4)+v(qq —

qq) j. (8S)

[We have replaced the frequencies which occur in the
numerator of M4 by the spin-wave frequencies co(q;)
associated with the ring elements to which the vertex
is joined. ) The interaction of Eq. (85) is the eB'ective
interaction I"„„«i-~3~obtained by Dyson, and used by
him to obtain the Born approximations.

The remaining factors in the calculation of the graphs
of Fig. 11 result from carrying out the sums with
respect to X of the product of spin-wave denominators
(co(q,)—zA;). There is always at least one more denom-
inator than there are independent X;. Thus, after
completing the sums there remain one or more denom-
inators D which are linear combinations of the co(q,).
Such a factor D appears in Dyson's second Born
approximation and will appear in all higher ones.

The spin-wave distribution functions n(q;) which
also result from the sums over X; cannot be treated so
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simply, but the above discussion does show that there
is a close correspondence between the successive graphs
of Fig. 1I and the successive Born approximations to
the spin-wave scattering.

Finally, an alternative method of arriving at the
corrections due to spin-wave interactions is given in
Appendix A.

(S, S,+)
tanh[-,'P(h+ v(0)M'i) )

exp[8{h+v(0)M, ——,'v(q) tanh~2P(h+v(0)3IIi)) j—1

(86)

To complete the theory one must add the sum of
longitudinal rings with tree renormalization [Appendix
D(i)j:

(S S, &=[1-~ (~)(-:-M")j-. (8n

For Pv(0)))1, where Mi —',, Eq. (86) leads to spin-wave
theory. Further, it contains only exponential deviations
from spin-wave theory at low temperatures and in the
same limit, Eq. (87) is exponentially small. For 4Pv(0)
=0(1) and h —+0, when Mi 0, Eqs. (86) and (87)
can be expanded and lead, respectively, to

(S-a Se+&„~ 2[1 lPv(q) j ', — (88)
M1~, A—v0

(S- 'S *) [1 'Pv(0)j '
M1~, A~

(89)

Thus, as pointed out in reference 5, for M~=0 the
quantum and classical theories merge for the class of
simple ring graphs. Equations (88) and (89) present a
Curie point at x4p,v(0) =1. The difFiculty of the above

f. APPROACH TO THE CURIE POINT IN
HIGH-DENSITY APPROXIMATION

In reference 5, simple summation of longitudinal
rings was discussed as a possible approximation to the
Ising model. This approximation, which has the same
critical temperature as the molecular held model, was
shown to be inconsistent. to O(1/s) and, hence, is not an
adequate approximation. Nevertheless, it is a theory
that has some of the features of ferromagnetism which

go beyond. the molecular field theory. We, therefore,
6rst present the corresponding simple theory for the
Heisenberg model and then give the modi6cations
required to make it a satisfactory approximation.

The sum of transverse rings with tree renormalization
was performed in Sec. 4 with the result [cf. Eq. (43)]
that

theory is that at the Curie point it leads to infinite
fluctuations. Thus, if (86) is used to determine the
magnetization from the sum rule, whereas at low T,
there is perfectly normal descent. of the magnetization
curve with temperature increase, when the Curie point
region is reached the curve turns up and the magnetiza-
tion becomes inhnite at T..

As mentioned in reference 5, this type of inconsistency
can be eliminated in the Ising model calculation by
passing to the spherical model which keeps the Auctua-
tions finite. A more systematic approach was taken in
reference j.2 where it was shown that a variational
principle based on consistent vertex renormalization
eliminates the difhculty. Each of these methods
represents a renormalized version of the high-density
theory. 7 The difference in these two theories is negligible
even for near-neighbor interactions. By consistent
vertex renormalization, we mean that if a subset of
graphs (rings and trees in this instance) is taken as a
basic approximation, then each vertex of a skeleton
structure (a ring or a tree) must have s.rticulated to it
any number of times the same skeleton structures. In
this way it is possible to get a reasonable approach to
the Curie point.

In the high-density case, the skeleton graphs are
rings and trees, which is fortunate since these are just.
the graphs which dominate the low-temperature spin-
wave region. Ke now proceed with the formalism
required to renormalize vertices with these fundamental
elements. Some of this renormalization has already
been carried out in Sec. 4. Equations (38) and those
that follow give the complete tree renormalization.

Consider now the combined eGects of articulating
single bonds and longitudinal rings at a vertex. In
Appendix D the contribution of an unrenormalized
longitudinal ring to (TS*(8')S*(P")&is computed. We
denote by 62~ its value excluding the semi-invariants of
the 6nal vertices. The self-energy 62~, which is a
functional of the semi-invariants M2(S*(Pi)S*(P~)) is
found to be independent of P', P", so that we may use
the same techniques as were used in calculating the
renormalization due to single bonds alone. If we
articulate v longitudinal loops and p, longitudinal bonds
to the vertex whose unrenormalized semi-invariant is
Mmi+i, each bond contributes a factor 2v(0)Mi and
raises the order of the semi-invariant by one by intro-
ducing an extra factor J~vdP' S*(P') into its argument,
and each longitudinal loop contributes a factor 62~
and raises the order of the semi-invariant by 2. The
g factor associated with p, bonds and v loops is p, ~ 2"v.'
so that the value of the vertex now becomes

(-', v(0)M, )~ (62~)" il ~+'"
2p

p 2v Bp y=0 ~O1 a1=0 ~&2Ic+l aors+~=0

Xl & exp V ~P'~' P' +o.h+ i +. +o.2I;+~~' u+E
0 0
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The renormalization of the vertex produced by all single bonds and longitudinal loops is, therefore,

exp[s(0)MiB/By+2G2~B'/By']~, 0

~olj. aI=O ~o'2k+i a2g+l=0

y, ln T exp y d 'S' '+nlS+ ~ + +n2l, +
0 0

= exp/u(0)MiB/Bh+ 'G2 —B'/Bh']%21+i(TS+(Pi) ' ' 5'('P21+~)), (90)

following the same reasoning that was used in Sec. 4 starting from Eq. (38).
Full renormalization with this class of diagrams, bonds and longitudinal rings will involve the articulation of

extra bonds and rings onto the vertices of each bond and ring already articulated. This is equivalent to performing
the 6rst renormalization with renormalized rings and bonds. The completely renormalized vertex is, therefore,
given by the self-consistent set of equations

~»+l exp[s(0)KB/B&+ ,'G2 B-/B~ ]~»
where

62~ =Gp(llfm(S' 5*)). (92)

This is an extension of one of the results of Horwitz and Callen. "
The renormalization produced by transverse loops is much more dificult to treat. The main reason for this is

that the factor Gsr(P', P") obtained by attaching a transverse ring to a vertex is dependent on the temperature
labels P', P" of its extreme bonds (see Appendix D). It also depends on the value of the semi-invariants 3f2(TS+5 )
The articulation of v transverse loops, therefore, changes the vertex 3f2I,+l to

P P

~»+~'= —II dP'' dP"* G2'(O''P"') ~»+2~~ TS+(Pi) 5*(P»+i) II (5+(P'*)5 (P"'))
~

P~ s-l 0 0 i~1 )
Summing this over all v and using the generating function for the semi-invariants we, therefore, arrive at a re-
normalized semi-invariant

crf2k+i T=
1 8 i9

~ ~ ~ II dP'' dP"*G2'(P', P" )
& ~ ~01 a&=0 ~O2k+l a2p+& 0 = 0 0 8p' y —0 Br,-, —0

Xln(T exp[p{y,S+(P',)+I';5 (P";)}+aqS+(P)+ +, ,5*(P„,)]),. (94)

~2a+l=&r&ZÃ2k l, (95)
» T'he renormalization can be performed at low temperatures,

using the methods of Sec. 5. Also the renormalization caused by
unrenormalized transverse rings can be evaluated for temperatures
above the Curie point, where 62 is independent of P', P". Ke
there 6nd that R~ is the operator that puts XIS++XRS in place of
hS' wherever it occurs in the semi-invariant and then operates on
the resulting function with expLG2T(8/N, I) (8jBX2)j ~

~, ~, 0.
However, further renormalization will introduce a time depend-
ence into G2~ so that the method is not adequate to give the
self-consistent renormalization.

Clearly, this is further renorma]ized by articulating
single bonds and longitudinal rings at the same vertex
which adds an extra factor Er, =exp[s(0)M~B/Bh
+~G+B'/Bk'] in the same way as before. We have not
been able to reduce the effects of the articulated
transverse rings to as simple an operator as in Eq. (91).'9
However, let us suppose that they may be represented
in this way by an operator E&, so that the expression
(94) is ErM»+$. Obviously, Er is a functional of G2 .
The complete renormalization within the class of rings
and chains will then be

where
+T &r (g2') g2r =G '(m4(TS+5-)), (96)

and
&r.=&1.(~i,g2'), g2'=GP(~2(TS*S*)). (97)

This provides a formal solution to the problem in
zeroth and 6rst order in the renormalized version of the
high-density expansion.

The main problem in the investigation of the high-
density terms is the evaluation of the operator E~. The
complications appear when one tries to perform the
integrations J'o~ dP';, J'Ot' dP"; of Eq. (94), for the
variables P';, P"; label the position of the operators
5+(P';), S (P";) in the time-ordered semi-invariant, as
welj as appearing explicitly in G2 . %e are interested in
evaluating the renormalization of ilf2(TS+(Pq)5 (Pz))
and here we remove the complication by means of the
following approximation: We replace the (2m+2)th
order semi-invariant of Eq. (93) (4=1, /=0) by (—1)"
times the sum of all products of second-order semi-
invariants which do not result in unlinked graphs. Thus,
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FIG. 13. Articulation of transverse rings at a vertex.

we have replaced the renormalization of the vertex i
shown in Fig. 13 by the approximation obtained by
taking just the linked graphs from Fig. 14. In the 6gures,
each of the vertices has the same spin index i. The
subdiagrams obtained from approximating v articulated
graphs have to be divided by the g factor ~ ~ associated
with the original diagram. If we introduce the dotted
line notation of Brout' in which a dotted line connecting
two vertices i, j denotes the spatial function —5;;, the
approximation sums the diagrams of Fig. 15. The corre-
sponding longitudinal diagrams are the "excluded
volume" diagrams summed by Brout. ' Our approxima-
tion is, therefore, the quantum-mechanical analog of
Brout's approximation, and the errors made are analo-

gous to the difference between Brout's result and the re-
sult of Horwitz and Callen, who summed the classical
analog of the series drawn in Fig. 13. The two treat-
ments of the classical model are in close agreement.

The summation of the diagrams of Fig. 15 is similar
to the ring summation, and is carried out in Appendix E.
There it is shown that if we make this approximation

e(q)

~ 1 k—pl:&(q) 1—1
(100)

FIG 15. Excluded volume approximation to renormalization
with transverse rings.

The energy of the excluded volume ring is

e'"~' ', v(q)M-2(X)
EE.v.= limQ, (101)

e'~'e, & 1——',PLv(q) —ii() )JM2(X)

which in the limit of zero long-range order becomes

to the renormalization with transverse rings self-

consistent by renormalizing in a similar fashion the
semi-invariants of the added "rings, " we obtain the
following equation for the renormalized semi-invariant.
Writing

M, (X)i (X)=g,.(q)M, (qP ), (9S)

where M2(q, }i) is the transform of M2(TS,+(P')S; (P")),
we have

e(q)Mg() )
M, (l~)&(X)=P (99)

1-APL (q)-~0)]M.(~)

In the limit of vanishing long-range order, ii(X) becomes
zero for all XWO, snd the equation satisfied by ii=—ii(0)
is then

2e(q)
&n.v.=P

~ 1 kP—L~(q) i l—
(102)

+ i +. . .

FIG. 14. Approximation of the vertices of Fig. 13 by products
of second-order semi-invariants.

After renormalization with all single bonds, which
are themselves renormalized with renormalized bonds
and excluded volume rings, Eq. (101) gives for
(S, S,+) the value

e*"»' tanhLi p(h+v(0)R) j
(S, S,+)= lim Q

P(&—&.+ (0)~—lL (q) —p(4)3 ta hrlP(&+ (0)~)])
(103)

where E. is the magnetization determined self-con-
sistently from (103). Except for the term ii(Xq) in the
denominator this is our previous ring graph summation
and hence spin-wave theory at low T. From Eq. (98),
it is seen that ii(X) is O(g, e(q)e(q})=O(T"). The
presence of p(X) in the denominator, therefore, rep-
resents an approximation to spin-wave —spin-wave inter-
actions due to a diagram of the type shown in Figs.
12(a) or 12(c) but now with arbitrarily many transverse
loops articulated on to each vertex of the skeleton
graph. At the Curie point this theory extrapolates to
the spherical model from Eq. (103). In the "excluded

volume" approximation, the longitudinal and transverse
loops do not mix. Thus, the energy of the Heisenberg
model in the "excluded volume" approximation is the
sum of longitudinal and transverse energies, the
longitudinal part being given by the spherical model
approximation of Brout. At T„ the sum, therefore,
reduces to the spherical model approximation to the
Heisenberg model and for low T to spin-wave theory
again with incorrect T' corrections. The magnetization
is given by substituting Eq. (103) into the sum rule
(51).

This approximation includes two LFigs. 12(a) and
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M~ ———,
' tanh[-', pv(0)M ]. (105)

Now for finite s, v(q) will cut off at q ~s "'. Hence, in
the sum of q in (A7) there will be 0." 1/s terms of the
"spin-wave" type and ~ (1—1/s) of the molecular-field

type. At low T, only the Grst type gives a contribution;
the remaining terms will be exponentially small. Hence,
at low T, one will have a pure spin-wave-type behavior.
To see this more clearly, let us approximate the
potential by

v(0) —v(q)~v(0)s'"q' for q(s '",
v(0) for q)z '".

12(c)] of the three graphs corresponding to Dyson's
first Horn approximation corrections to spin-wave

theory but omits the third graph [Fig. 12(b)]. An

exact calculation of this third graph shows that it
goes to zero at the Curie point. In an intermediate
region, this graph together with those corresponding to
higher Born approximations to the scattering of two

spin waves may be important. For reasonable z, this
intermediate region will not be very extensive. %'e will

present the argument for this at the end of this section.
Since the theory sketched above is extremely similar

in its behavior to RPA, derived in Appendix A, the
latter theory is probably preferable because of its
simplicity. In common with the above theory, RPA
gives spin-wave theory correctly to T' ', the spherical
model at T„and it does not possess the disadvantage of

presenting infinite fluctuations at T.. On the contrary,
at T, it presents the normal infinite slope magnetization
curve and has most of the allure of a molecular field

theory. For T& T. this theory gives Ornstein-Zernicke

type critical Quctuations which leads to a correlation
distance ~ (T T,) v'. All —in all, RPA represents the
qualitative facts of the Heisenberg ferrornagnet very
well and probably gives many features with considerable
accuracy even for near-neighbor interactions.

%e now study the temperature range where spin-
wave —spin-wave interactions are most important, since
these are misrepresented by theories of the above
type. The interactions become most important just
below the temperature at which spin-wave theory
breaks down and gives way to molecular-Geld-type
theory. One may use as a tool for this study either
Eq. (103) or RPA. We shall use RPA. In the form of
Eq. (A7), this gives for h=0

(5,—S-,+}=2Ma(exp[P(v(0) —v(q))Mx] —1) '. (104)

The first thing to notice is that for s~ ~ [i.e., v(q)
-+ 80@(0)]this theory goes over correctly to the Weiss
theory. In fact, (A7) becomes

1 1
Mg ——— 1—4M' P

2 e expPv(0)M, —1

1 2' j

2 expPv(0)Mg —1
oi

The magnetization is then [using (104) and {A7)]

43f I
3fg= — 1—

2 2~2z

4M g[1—(1/2v's) ]-
(106)

In the second term of the bracket we have changed
variables to z'"q. This term is the spin-wave contribu-
tion and the third term is the molecular-field term.
These two become equal at a temperature which we
denote by T,. T, is given approximately by

2x'z e 0 2m'z
(107)

For T&T„ the spin-wave contributions dominate,
and Dyson's corrections will have a role in this region.
For T&T., the principal effects are a result of the
kinematic interaction.

In the limit of infinite s, (107) gives T,=O. For finite
z, representative solutions of the transcendental
equation are: for s = 10, T./T, 0.2; for s = 100,
T./T, 0.15. [We have put kT, =-', v(0).] Thus, we
Gnd that spin-wave eBects dominate the behavior of
the model up to about 20% of the Curie point. In this
range, Dyson's correction which is of O({T/T,) ~') of
the usual spin-wave theory is quite negligible. Therefore,
for the calculation of equilibrium properties it is
probably no great error to forsake spin-wave corrections
in order to use interpolation formulas either of the
RPA type or of the "excluded volume" type, Eq. (103).
This will introduce an error of 0 (5%) at T, and will
extrapolate to a Curie point which is accurate to 5%
if Ising-model calculations are to be believed.

It should be emphasized that our arguments are
valid for macroscopic properties only. In low-ternpera-
ture spin-wave resonance or neutron-scattering experi-
ments it should be possible to pick up energy renormal-
ization effects. Such experiments would, indeed, be
most valuable.

8. CONCLUSION

In this paper, a finite temperature perturbation
theory for the Heisenberg model ferromagnet has been
presented. Summation of subsets of graphs has been
accomplished by the use of vertex renormalizations.
The selection of graphs is determined by high-density
and low-temperature classifications. At low tempera-
tures, molecular-Geld theory, spin-wave theory, and the
leading effects of spin-wave interactions are found by
summation of graphs. In particular, we have arrived at
the Born approximations to the scattering of spin waves
and have demonstrated the cancellation of the T' terms
in the free energy in the first Born approximation.

The simple rings corresponding to spin-wave theory
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do not extrapolate in an adequate way to a Curie point
since they lead to a divergence in magnetization.
Complete vertex renormalization by rings, which
would lead to a consistent theory without this diver-
gence, " is extremely dificult to carry out in the
Heisenberg model, so the "excluded volume" approxi-
mation to these articulations is formulated. The en-
suing approximation leads to spin-wave theory at low
temperatures (with spurious T' interaction terms) and
extrapolates to the spherical model at T,. The same
behavior is characteristic of RPA which is a simpler
theory but without graphical justification in the pres-
ent approach. For reasonable s, once kT&0.2kT, the
qualitative features of the magnetization are those char-
acteristic of the gneiss 6eld.

Since the 6rst two terms in the simple high-density
and low-temperature classihcations are the same, one
has in low orders the possibility of constructing an
extrapolation approximately valid for all T. (The
molecular 6eld is the leading approximation of this
type. ) As remarked above, self-consistency has also to
be imposed in order to obtain nondivergent results at
the Curie point. The third terms in the low-temperature
expansion, which represent the leading eGects of spin-
wave scattering, are not completely included to any
finite order in the high-density expansion, so that an
extrapolation to high temperature containing also the
spin-wave scattering sects could not be constructed
on the basis of a high-density theory.

It should be remarked. that a similar analysis can
be carried out for the antiferromagnet. Here, of course,
the ground state is unknown. However, the graphical
approach immediately shows Anderson's spin-wave
theory'e to be valid to O(1/s). If one chooses the zero-
order Hamiltonian in this case as a molecular 6eM of
value sH, then the energy denominators in the perturba-
tion expansion are 1/(s8). An Nth order ring graph then
carries a factor s"-'8~/(s8)"—'=8. The "unperturbed
energy" is s8; hence, the ring graphs yield a contribution
of O(1/s). The nonring graphs are of still higher order
in 1/s. Summation of rings again yields for the anti-
ferromagnet spin-wave theory. The thermodynamics
and approach to the Weel point are now being worked
out.

APPENDIX A. EQUATIONS OP MOTION
APPROACH TO THE PROBLEM

Here a formalism is presented which allows a simple
derivation of random phase approximation (RPA) and
of the eBects of spin-wave —spin-wave interactions at
low temperature. " Its limitations will be discussed at
the end of this Appendix.

The Hamiltonian, Eq. (2), may be rewritten in
Fourier space by de6ning the operators

s,=p; e'~"'s;.

~ P. %. Anderson, Phys. Rev. 86, 694 (i952)."R.Brout and I'. Englert, Bull. Am. Phys. Soc. 6, 55 (1961).

Then

H= —hSO* —
2 Q, e(q) (S,+S, +S,'S,*),

where we have used P~v(q)=0. The commutation
relations are

[Sa+ S' e' ]=-2'
[Se*S-.'"1= +Su-a'.

(A2a)

(A2b)

A simple way to 6nd the spin-wave excitations from
the ground state is to operate with the Heisenberg
equation of motion for S—on the ground state, since
the spin waves are elementary excitations with (S*)= ~2K
—1 and, therefore, linear combinations of S; ~0). The
equations of motion are

—f8' = [H,Sq ]=hSq P, ' [—s(q') —v(q —q')]
XS, ,"S, . (A3)

(S,*)=boqM),

and then determine M& self-consistently from (51).
This is the random phase approximation. The fre-
quencies are then obtained by replacing S, ," in (A3)
by its mean value (A4). This gives rise to

+co(q) = [v(0)-—e(q)]Mr+h. (AS)

The magnetic equation of state is obtained from (51)
in the form

M =3[1—2Z. (S. S ')]
Taking the expectation value of the commutator in
(A2a) shows that in this approximation the boson
operators are S,+(2M~) '" since these operators would
have the property of giving unit commutator. Thus, we
write (A6) in the form [with I(q) the number of
excited bosons of type q]
M&——F2[1—4M& Q, S(q)]

=-,'[1—4M, P. [em{P[(s(0)—.(q))
XMy+h]) —17 ']. (A/)

Equation (A7) is the RPA equation of state. At the
Curie point, it reduces to the spherical model with
h2', =x~s(0) —O(1/s). At low T, it gives deviations from
spin-wave theory proportional to T3 in disagreement

In arriving at (A3) we have used v(q)=s( —q) and
ps(q)=0. Since S, , *~O)=8«~~0), operating with
Eq. (A3) on the ground state produces an equation of
the normal mode type 8, ~0)=us(q)S, ~0), where
~(q)=h+-,'[e(0)—e(q)]. These are the spin-wave
solutions. This simplicity stops when more than one
spin wave is present. However, the following generaliza-
tion allows an approximate extension to higher tempera-
tures. In order to obtain the excitations from the ground
state we replaced S; by its "vacuum expectation"
value, i.e., 80,/2. It would then seem reasonable to
adopt this idea at all temperatures and replace S~' by
its thermal average:
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[Scc+,S, 1=8„. (AS)

with Dyson's theory which shows that the correction
starts in T4.

The advantage of this method is that spin-interaction
terms are handled in a self-consistent manner through
renormalized frequencies. It turns out that this idea
is still useful and Dyson's lowest order results can
be interpreted in these terms, as first shown by
Eever and Loudon. "We pursue the reasoning of Brout
and Englert" as it gives the form which is most useful
for the present paper.

We adopt the point of view of Dyson and invent
boson operators S," (the a, of Dyson) which obey
boson commutation relations with Sq the creation
operator:

Ke must then 6nd an operator S;which is formed from
S,+, S, such that the commutation relation (A2b)
is given correctly in terms of the new operators. This
will insure that the equations of motion (A3) describe
the evolution of these new operators. The procedure is
clearly equivalent to Dyson's invention of an interaction
Hamiltonian in terms of the gq which has the same
matrix elements between the boson states as does the
original Hamiltonian. The operator in question is then

S,*=—g, S, s S,—++,'3e,- (A9)

Kith the term gBoq, the magnetization is correctly
given according to the sum rule (51) in terms of the S,.
Substituting Eq. (A9) into (A3) gives the equations
of motion of the S, operators:

iS, —=co(q)S, Qcc c—c- [v(q")—v(q —q")]S. .. cc.-5,.+5,"—.

This equation may be written more symmetrically to resemble Dyson's form

—iS. =~(q)S. —s Z.'- [v(q")+v(q q' q"—) v—(q'+—q") .(q q—")3S,—;;.-S, +S,--. (A11)

Equation (A11) is the equation of motion that would be derived from the following Hamiltonian involving only

operators S, obeying commutation relations (AS):

&=&'D"-+&'D"-=Z.~(q)S. S .+ 'Z L-v(q—")-+v(q q' q") v—(q'+—q")—v(q q")7— —
qq q '

XSe e sSs +S—s —S~+ (A12)

This is of the form that Dyson obtained by double
commutation.

From the Landau theory of Fermi liquids'3 we know
that the low-temperature properties of a quantum
liquid are describable in terms of noninteracting quasi-
particles whose energy is

e(q) =~(q)+&(q), (A13)

where i(q) is the forward-scattering amplitude of the
particle of momentum q in matter. The lowest order
corrections calculated by Dyson may be given a physical
interpretation of this kind. Dyson showed that Born
approximation is a good approximation to t(q): In
the worst case, spin 1/2, 6rst Born approximation
accounts for 50% of the corrections. Born approxima-
tion in a medium possessing translational invariance
is the same as Hartree-Fock theory. This is obtainable
either by evaluating (H'nv„„) in one of the eigenstates
of H Dysp11 or by contracting two of the operators in the
second term of the right-hand side of (A10) into the c
numbers 8(q) =(S, 5,+), the number of spin waves of
type q. We do the latter. The first contraction is
obtained by letting q=q". This term recovers RPA in
the unsymmetrized form (A10). We now see that the
inadequacy of RPA at low T comes from taking expecta-

~ F. Keffer and R. Loudon, Suppl. J. Appl. Phys. 32, 2 (1961).
~ L. D. Landau, Zh. Eksperim. i. Teor. Fiz. 80, 1058 (1956)

Ltrsnslation: Soviet Phys. —JETP 3, 920 (1937)j.

tion values in the equation of motion too soon. The
other contraction is obtained from q"= —q' and corre-
sponds to an exchange term. The result of grouping
both terms is

—iS;= (q)S;+P, [v(0)—(q), (q)
+ v(q+q') )8(q') Sc, , (A14)

where

@«)=(S-. S.+)=[expP (q) —13-',

at temperature T. We then find that in Hartree-Fock
approximation

e(q) =~(q)+Z. [v(0) —v(q) —v(q')

+v(q+q')]8(q'). (A15)

Assuming an isotropic crystal, we write v(0) —v(q)
=nq'+pq4+ ., so that

e(q) = snq [1—12(p/n)P ~ q' 8(q')l. (A16)

Since g co(q)fl(q) ,'n Q qsfi(q)—isthe excitation energy
at temperature T, the fractional decrease in co(q) is
proportional to this energy, which is the result of
Ke6'er and Loudon. For near-neighbor interactions it
turns out that the relationship is more precise. Here
the fractional decrease in co(q) is exactly equal to the
energy divided by the ground state energy. In general,
this decrease is proportional to T"'. As the number of
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spin waves at low T is ~T"', the total correction to
the magnetization is then T4. The correction to the
total energy is

E—&0——Q co(q)tf(q)+2 Q~~ [s(0)—s(q) —s(q')

+s(q+q'))tt(q)R(q'). (A17)

It should be stressed that in this treatment we have
ignored the "kinematical interaction" of Dyson. The
above treatment is not complete enough to justify this,
though from the work of Dyson, or the temperature
ordering of Sec. 5 it is known to give exponentially small
effects at low temperatures.

Finally, because of the interest in the derivation of
Dyson's results by Green's function methods, we
remark that the above equations of motion [Eq. (A3)
or Eq. (A10)) can be immediately cast into Green's
function form. '4 However, in order to solve the equa-
tions by a simple uncoupling [corresponding to the
contraction of (A10) into c numbers tt(q)) valid at low

temperatures to T4 it is necessary to work with the
opers. tors 5 so that the inhomogeneous term!i(t —t')

X([Z (t), S (t'))) in the Green's function equations
gives a factor proportional to 1, and not a factor
t&(t—t')([S+(t), 5 (t'))) proportional to the average
magnetization, which would produce T deviations.

APPENDIX B. PROOF OF EQUATION (22)

From the definition of the semi-invariants it follows that

where

(7'Il (5'*'(P-,))" ')o= ll (~/~t"')" 'I «-'- Q(t"'),
as

(t(~a&) »a;

Q(t"')=exp II Z M -«; oI 7'II(5"'(P-;))""
n-; I

(B2)

This is most clearly seen by exponentiating the time-ordered form of Eq. (18). Hence,

t&Q ~ t (ay&»»~—I t(a') ~a;

n x
'

~.,c.. ~x &~' (&.»":)e~~"&
c&t&» ~;-i (e,.—1)! '~ ~;0 n., !

(B3)

t(a;) na;

=Q(t'*') Mi(5"'(P-;))+ II E Mr-. ,+»i 7' II (5'*'(P-;))" '(5"'(P-))~+' (B4)
a; n;=0 asy4a7'

Therefore,

so that

=LM.(5- (P.,))+~ - (P.,))Q,
Bt& ~)

Q=exp{LMi(5"'(P- ))+~"'(P-))t"'}Q(t"'=o)

(B5)

(B6)

(B7)

Ke use the same method to extract the explicit dependence on each t' ~':

Q= g exp{[M (S' "(P f,.))+5 "(P„))t ' }, (B8)

since Q(0,0, 0)=1.Hence,

(~n(5&- &(p.,))-').= g [M,(5&- &(p.,))+~&- &(p.,)).-'.
as

APPENDIX C. RAISING OPERATOR FOR S' ln(e' ') =ln{Tr[es" 'e' *]}—ln{Tr[ee" *]}, (C2)
IN THE CLASSICAL FORMALISM

so t at after the first derivative, it/itt is equivalent ton is case e semi-invanan s are e ne y q.

M.(5*)= (8/c&t)"
i i 0 ln(e's') (C1) M (5*)=(r7/ctPh)" 'M (5') (C3)

However, ~ R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962).
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APPENDIX D. RING CONTRIBUTIONS

(i) Longitudinal Rings

Here it is not necessary to use the time-ordered
formalism. ~ The product of interactions, each now with
a factor P, is again of convolution form in Fourier space,
and the series is again a geometrical series. The result is

~i@( s—rg)

(5''*5"):=Z.
1—pv (q)Mp(S*S')

Tree renorrnalization of each vertex takes M2 into
(~~ —Mrs), with Mi given by Eq. (31).

(ii) Self-Energy Parts

These are obtained from the results of Eqs. (36) and
(D1) for the propagators by removing the final vertices.
The results are

Gpr(Pi —Pp) =g, v(q) tanh-', Ph exPP —(Pi—Pp)k]

g(q), p)p,
X (D2)

g"(q) Pi &Pp

v(q)
G ~=+

p 1—Pv(q)Mp

APPENDIX E. EXCLUDED VOLUME DIAGRAMS

have the same time dependence as a ring with no
dotted line insertions. Hence, the sum p(pipp) of all
dotted-line insertions made between two vertices of a
ring depends on P&, P2 in the same way as the ring
"self-energy" Gp (pi —p&). It can, therefore, be
Fourier analyzed as follows:

~(pi,pp)= Z e'""" "~(&i) (E1)

p(li)Mp(X)
+p (E2)

p 1——,'P(v(q) —p(X)]Ms(li)

and the energy associated with such an excluded volume
ring is

e""e'v(q) Mp (lI,)
lim -', P' '" 1—kpLv(q) —~(&)]Mp(&)

(E3)

Equation (E2) for p(X) simplifies at the Curie point,
where M. (li) ~ hi„p. We there obtain p(X) =piii„p, where

Then the effective interaction between the two vertices
is modified to v;, —p(X)8;, for frequency X. Calculating
p(X) self-consistently, this gives for each X

(v(q) —p(X)]Mp(X)
MpP~)p(li)=g

1—-', PLv(q) —p(X)]Ms(li)

The effect of a dotted line in a ring is to put the
connected indices equal without affecting the time
ordering. Thus, all dotted-line insertions in a ring will

v(q)
~=K

~ 1 ppLv(—q) I ]— (E5)


