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Strong M1 Transitions in Light Nuclei*
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The nature of strong M1 transitions, particularly those observed by inelastic electron scattering at back-
ward angles, is investigated. Calculations of particular cases reveal a tendency to concentrate the transi-
tion strength in a few levels, in some respects similar to the familiar giant E1 resonance. The energy-weighted
sum rule for such transitions is examined, and an approximation is developed which exhibits the qualita-
tive behavior to be expected in 41' nuclei whose ground states have I=0=T. The results are compared
with experiment.

I. INTRODUCTION

~ XCITATION of the nucleus by inelastic scattering
- ~ of electrons has provided much information about

nuclear properties. The particular experiments toward
which this discussion is directed are those' in which the
scattered electrons are observed at large backward
angles. These experiments, which are designed to in-
vestigate magnetic transitions, select states which have
large matrix elements for transitions from the ground
state. The variation of intensity with electron energy
often permits a determination of the multipolarity, and
a number of prominent 3f1 transitions connected to the
ground states of light nuclei have been observed. A par-
ticularly advantageous feature of excitation by elec-
trons is that many of these transitions are not seen as
gamma decays because the levels are unstable to nu-
cleon emission, a much more probable mode of decay.

The operator for M1 transitions can be written as the
sum of two contributions, one of which is a scalar in
isobaric-spin space and the other a vector. In the scalar
part the neutron and proton spin contributions tend to
cancel, so that MI transitions between T=0 states (for
which only the scalar part contributes) tend to be quite
weak —a feature pointed out by Morpurgo. ' On the
other hand, the neutron and proton spin contributions
are additive in the vector part of the M1 operator which
can lead to strong transitions. This treatment will be
confined to nuclei whose ground states have isobaric
spin T=O, so that strong M1 transitions to T=1 states
are caused by the isobaric vector operator whose s com-
component is

p, = (y„—p„)gss, (k)rs(k) ——,
' P pl, (k)rs(k). (1)

The problem is investigated theoretically by use of
nuclear wave functions obtained from the Hamiltonian

K=gsKp(k)+a+pl(k) s(k)+P,& V(ii,k), (2)

which is the usual sort for a shell model with spin-orbit
coupling and two-body interactions of a central-force
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nature. In the first section specific examples from the
1p shell are treated and the results are compared with
experiment. Next, general features are pointed out and
a sum rule is evaluated. The latter has particular use-
fulness for 4X nuclei. General behavior beyond the 1p
shell is then extrapolated in terms of the sum rule.

II. PARTICULAR CASES

This section contains the results of calculations for
those 1p-shell nuclei whose ground states have T=O.
The wave functions for these nuclei are taken from an
early calculation' which used a harmonic-oscillator form
of BCp(k) in Eq. (2) and a particular two-body interac-
tion for V (i,k) that fits the low-lying levels of the energy
spectrum for I.i'. Since the M1 operator does not con-
tain any radial dependence, matrix elements are insen-
sitive to the radial wave functions. Furthermore, it has
been shown that the wave functions of many low-lying
states of the 1p shell can be obtained via a generating
procedure' without reference to V(i,k). This latter re-
sult indicates that the wave functions have a wide-
spread validity such that a large class of V(i,k) lead to
very similar wave functions for these low-lying states.
The correlations in these wave functions are probably
determined by the predominant attractive even-state
interactions, a feature resulting from fitting the two-
nucleon spectrum of I,i' and common to the various
popular forms of V(i,k).

Therefore, the general features that appear in the
calculations of M1 transitions are not likely to be sen-
sitive to the particular U(i,k). Instead, they reflect the
more basic correlations present in the wave func-
tions. The quantity best suited for comparison with
experiment is the reduced transition probability,
B(3II1;IpTp ~ IT). This is related to the transition
width F by an energy-dependent factor, namely,

I"=2.76X10-'E'8,

where the units of I' are eV and the energy is in MeV.

A. 4N Nuclei

There are two 41V nuclei in the 1p shell which are
not closed shells, namely Be' and C". Their ground

' D. Kurath, Phys. Rev. 101, 216 (1956); 106, 975 (1957).
4 D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959).
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states have I=O so that only /=1= T states can be
reached by the isobaric vector 3I1 operator. There are
eight I= 1=T states that can be formed with four 1p
nucleons (or holes). Calculated reduced transition pro-
babilities B(351;00 —+ 11) for transitions from the
ground state to the four lower I=1=7 states in each
nucleus are given in Table I as a function of the rela-

TAnrz I. Reduced transition probabilities B(M1) for magnetic-
dipole transitions in Be and Cu from the ground state (I=0= 2')
to various excited states having I=1=T. The states are labeled
by v, starting with the lowest excitation energy. Values of B(311)
are listed as functions of the spin-orbit coupling parameter a/E.
The percentage of the total B(M1) from the ground state which is
contained in the listed transitions is also given.
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tive strength' (u/E) of spin-orbit coupling. The table
also shows that over 99% of the transition strength is
contained in transitions to the lower four of the eight
possible transitions in each case.

Moreover a large fraction of the strength is concen-
trated in the transition to the lowest state, especially
for large values of a/E. These particular transitions
have been discussed previously' and compared with ex-
perirnentaHy observed gamma widths from the 17.6-
MeV state of Be' and the 15.1-MeV state of C". They
are very sensitive to the value of the parameter (a/E),
and provide about the only information about this
parameter in 4Ã nuclei.

The states at higher excitation are unstable against
particle emission so gamma decay is not seen. They
are also missed in inelastic electron scattering, pre-
sumably because of their comparatively weak transition
strengths.

B. (4%+2) Nuclei

The simplest 1p-shell nuclei in this category are Li'
and N'4. The ground states of both Li' and N" have I= 1
so that strong M1 transitions are possible to states
with I=O, 1, or 2 and T= 1.Because the con6gurations
are so simple there is a total of only Ave states with T= 1
for each nucleus, including two each for I=0 and 2.

In Li' about 90% of the transition strength B(M1;
10 —+ I1) is calculated to lie in the transition to the lower
I=O, T=1 state, with a numerical value B(3E1)=23

' In (o/E) the quantity E is a representative integral of the
two-body interaction.

which is very insensitive to (a/E ). F'rom the measured
width' of this transition, which is observed in gamma
decay, one can extract B(3f1)= (24&5). An independ-
ent measurement of this transition by inelastic electron
scattering' gives B(M1)= (16&2).For low (a/E) most
of the remaining strength is calculated to lie in the tran-
sition to the upper I=2, 7=1 state at about 10 MeV.

The 311transitions in N'4 have been treated thoroughly
by Warburton and Pinkston. ' A calculation restricted
to the (1p) ' configuration shows that some 90% of the
B(M1; 10—& 11) is concentrated in the transition to the
lower I=2, T=1 state calculated to lie at about 10
Mev. Again the strength is quite insensitive to (a/E)
and has the value B(M1)=19. Experimental observa-
tion of gamma transitions indicates that this strength is
split between two states' at 9.2 and 10.4 MeV with
B(M1) values of 7 and 8, respectively. These two transi-
tions are the only 3I1 transitions seen in inelastic elec-
tron scattering and have strengths consistent with those
seen in gamma decay. Warburton and Pinkston inter-
pret this splitting of the transition strength to mean
that the (2,1) state from the (1p) ' configuration is
mixed with a (2, 1) state from the (1P) 4(2s, 1d)s con-
6guration, something one would expect at such excita-
tion energies and near the end of the 1p shell.

The remaining stable odd-odd nucleus in the 1p shell
is B"which lies in the middle of the shell and contains
many states arising from the (1p) configuration. The
ground state has I=3, T=O so that M1 transitions to
T= 1 states can occur for I=2, 3, or 4. Reduced transi-
tion probabilities for such transitions together with
rough calculated excitation energies are presented in
Table II. A noteworthy feature is that the transition
strength is again concentrated into the low-lying levels.
Although there are 14 states with I=2, 95% of the
strength lies in the three lowest levels. A similar con-
centration occurs for the 7 levels with I=3 and the 4
levels with I=4. Again the strengths are mostly insensi-
tive to variation of (a/E) in the range of physical
interest.

The experimental information from M1 gamma decay
from T= 1 levels to the ground state indicates" that the
transition from the I=2 level at 5.16 MeV is quite
weak. The results of inelastic electron scattering' show
three prominent 351 transitions at energies of 7.9, 11.8,
and 14.0 MeV. The extracted reduced transition proba-
bilities B(M1;3 ~ I) for these peaks are (8.8&20%),
(6.2~50%), and (3.1~50%), respectively. A compari-
son with Table II indicates possible identification of the

'L. Cohen and R. A. Tobin, Nucl. Phys. 14, 243 (1939).
7 E. K. Warburton and W. T. Pinkston, Phys. Rev. 118, 733

(1960).
8 H. J. Rose, Nucl. Phys. 19, 113 (1960). For a discussion of

3I1 strengths, see K. K. Warburton, in Electromagnetic Lifetimes
ogd Properties of Nuclear States (National Research Council —Na-
tional Academy of Sciences, Washington, D. C., 1962), Nuclear
Science Series 37, Publication No. 974, p. 180.' R. D. Edge and G. A. Peterson, Phys. Rev. 128, 2750 {1962).' L. Meyer-Schutzmeister and S, S. Hanna, Phys. Rev. 108,
1506 (1957);E. L. S renkel, J. W. Olness, and R. E. Segel, Phys.
Rev. Letters 7, 174 1961).
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TAn La II. Reduced transition probability B(3A) for magnetic-
dipole transitions from the ground state (I=3, T=O) of BM to
various excited states having 7=1.The states and their approxi-
mate calculated excitation energies are identified on the left.
Values of B(M1) are given as functions of the relative strength
(a/E) of spin-orbit coupling. The percentage of total B(M1;
3 —+ I) which is concentrated in the listed transitions is also given.
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7.9-MeV transition as the one to the second calculated
(I= 2, T= 1) state, the 11.8-MeV transition as the one

going to the lowest (I=3, T= 1) state, and the 14.0-
MeV transition as involving either the third (I=2,
T=1) state or the lowest (I=4, T=1) state (or both
states since this is a broad peak). Such identifications
are very useful in locating levels from the (1p)' con-
figuration since this is the major configuration of the
B" ground state and these strong M1 transitions in
electron scattering arise through such components of
the wave functions.

where the summation is over all possible states. The
left-hand side of Eq. (3) can be expressed in terms of the
reduced transition probabilities B(M1) by putting in
the angular-momentum quantum numbers and sum-

ming over magnetic quantum numbers with the help
of the Eckart-%igner theorem. The effect of this sum-

mation on the right-hand side of Eq. (3) is to limit the
expectation value to that part of the commutator which

is scalar in ordinary space. Since this discussion is limited
to ground states with isobaric spin T=O, all the excited
states, e, will have T=1 so the isobaric spin indices

"For this general approach to sum rules, see R. G. Sachs and
N. Austern, Phys. Rev. 81, 705 (1951).

III. APPLICATION OF THE SUM RULE

A. Formulation

In order to extrapolate beyond the 1p shell, it is use-
ful to study the energy-weighted sum rule, which
demonstrates explicitly some of the general features
found in the particular examples. The expectation
value" in the ground state of the double commutator
between the operator p, of Eq. (1) and the Hamiltonian
K of Eq. (2) is found to be

can be suppressed, and Eq. (3) becomes

In order for this sum to be useful there must be enough
concentration of transition strength in the low levels
to overcome the energy weighting and permit experi-
mental evaluation of the left-hand side of Eq. (4). Then
a theoretical evaluation of the right-hand side of Eq.
(4) will indicate the sort of behavior to expect. Such an
application is clearly limited in that the weak transitions
will often be overlooked. But in view of the concentra-
tion tendencies evident in the particular cases, one may
hope to obtain a rough rule. The 4X nuclei provide the
most favorable conditions for application of the sum
rule. This is because most of the transition strength ap-
pears to be concentrated in the lower I= 1 levels, which,
however, lie at fairly high excitation (above 15 MeV in
the 1p shell). It will also be shown that evaluation of
the commutator leads to an expression which is espe-
cially simple for the 4E nuclei.

B. Test for 4N Nuclei

FiG. 1. Contnbu-
tions to the sum on
the left-hand side of
Eq. (4) from the
four lowest calcu-
lated I=1=T states
of Be for diGerent
values of o/E. The
complete sum is also
given, and the last
column gives the
contribution to the
right-hand side of
Eq. (4) arising from
the spin-orbit term
of the Hamiltonian.
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In order to test the usefulness of Eq. (4), again con-
sider the Be' and C" examples. Experimentally only
one M1 transition from the ground state is positively
identified in each nucleus, namely the transition to the
lowest I=1=T state. The observed strengths agree
with the calculated values for (a/E)=3 in Be' and
(u/E) =4.5—6 in C". In order to get an indication of
how much of the sum in Eq. (4) is represented by the
observed transition, the sum was evaluated by using
computed strengths and energies for the higher excited
states. This procedure should at least give the order of
magnitude of these contributions. The results are shown
graphically for Be in Fig. 1 and for C" in Fig. 2 for
several values of the parameter a/E. The individual
contributions to Eq. (4) from the lower four levels are
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l.5
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I 254
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100-
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F&G. 2. Contribu-
tions to the sum on
the left-hand side of
Eq. (4) from the
four lowest calcu-
lated I=1=7 states
of C" for different
values of a/E. The
complete sum is also
given, and the last
column gives the
contribution to the
right-hand side of
Eq. (4) arising from
the spin-orbit term
of the Hamiltonian.

C. The Tv'-Body Interaction

There remains the contribution of V(i,k) to the right-
hand side of Eq. (4). To be consistent one should use
the form of V(i,k) which was chosen in calculating the

given together with the total sum for all eight levels.
Even with the energy weighting, the contribution from
the upper four levels is negligible. Two other points to
note are (1) the sensitivity of the transition strength to
a/E and (2) the fact that for the larger values of a/E
the sum for C" is about double that for Be', as indicated
by the need for difIerent scales.

The right-hand side of Eq. (4) can be evaluated by
assuming the Hamiltonian of Eq. (2) and forming the
double commutator between it and the p, of Eq. (1).
The Xo term commutes with p, so it does not contribute.
The commutator with the spin-orbit term provides a
simple result in that the scalar part of this commutator
is just

—s( -—~.+s)'t:aZ~&(k). s(k) j.
Therefore this contribution to the right-hand side of
Eq. (4) is directly proportional to the ground-state ex-
pectation value of the spin-orbit coupling term of 3C.
This contribution is given in the last columns of the
tables in Figs. 1 and 2 under the heading (SO).

Comparison of this contribution with the sum which
was evaluated theoretically leads to the conclusion that
for a/E=4. 5 and 6 the spin-orbit contribution domi-
nates the ground-state expectation value of the com-
mutator. This occurs even though such values of a/E
are still far from. the value for jj coupling —as shown by
the fact that the ground-state expectation values of
1 s in this region are only 50—

60%%uq of the maxima at-
tained at the jj limit. The dominance of the spin-orbit
contribution explicitly demonstrates the sensitivity to
a/E of the sum in Eq. (4). It also explains that for a
given a/E ~&4.5 the sum for C" is about twice as large
as the sum for Be' simply because there are twice as
many 1p nucleons present.

nuclear wave functions. However, because of the wider
validity of the wave functions discussed in the first
part of Sec. II, it is instructive to look at the general
central interactions before specializing. The general
central interaction" is

V=F( ')l g( )&( )+"A&( )g( )
+"AS(r)S((r)+"A V (r) 1'(a)j, (5)

where F (r, l,) contains the radial dependence of the cen-
tral force, while S and 1 are the singlet and triplet pro-
jection operators, respectively, for the indicated co-
ordinates. They are defined by

(6)

Diferent exchange mixtures are given by choosing the
numerical coe%cients A, and while the I.i' spectrum re-
quires "A =0.6, information about the other coefficients
is meager since it comes chiefly from higher excited
states about which little is known.

Because of the large coefficient (p„—p~), the spin-
dependent part of p,, would be expected to provide the
largest contribution to the commutator between p, and
U(r, k). This contribution comes only from the spin-
dependent part of U(i,k). The contribution to the right-
hand side of Eq. (4) from just the spin-dependent part
of p. is then

For 4' nuclei this contribution tends to be very small
in comparison with the contribution from the spin-
orbit term. In the LS limit of negligible spin-orbit
coupling, the relative numbers of singlet and triplet
couplings in the IO=O ground states of the 4Ã nuclei
are determined solely by the statistical weights of these
couplings. Hence, both the expectation values in expres-
sion (7) vanish. For the V (r', ,k) used in the Be' and C"
calculations, the contribution from expression (7) is less
than 10% of the contribution from the spin-orbit-
coupling term for all values of a/E. This very probably'
is true for any U(i, k) which does not have an abnor-
mally large spin dependence.

The small values of expression (7) for Be' and C"
means that the difference between the columns labeled
SUM and (SO) in Figs. 1 and 2 arises from the orbital
part of p, in Eq. (1), and that its contribution is not
very sensitive to a/E'. This difference has not been
evaluated explicitly.

For (4K+2) nuclei, the contribution (7) will not be
small since even in the LS limit the singlet and triplet
coupling will not cancel out jn the wave function for the
odd-odd ground state. For example, the Li' ground state
is an eigenfunction of S(r)9"(o) with unit eigenvalue in
the LS limit, and expression (7) makes a large contribu-
"L. Rosenfeld, NNcleur Forces (&orth-Holland Publishing

Company, Amsterdam, 1948), p. 1{i0,
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tion. This will lead to sums which are not very sensitive
to a/E, in contrast to the case for 41V nuclei.

D. Extrapolation to the (2s —1d) Shell

The insight obtained from analysis of the 1p shell
enables one to make a reasonable extrapolation to the
(2s—1d) shell. The M1 strength should again be con-
centrated in a few low levels. Furthermore, strong M1
transitions in 4E nuclei should arise when the spin-
orbit term dominates the right-hand side of Eq. (4).
A semiquantitative approximation, valid for 4E nuclei
in which the transitions are from an I=0=T ground
state to I= 1=T excited states, is then

P„(E„—Ep)B(M1; 0 —+ p)
=' —~(i -—~~+2)'(0IZ~l(&) s(&) I0) (8)

Since the 2s nucleons give zero contribution to the ex-
pectation value in Eq. (8), that value depends only on
the degree of filling of the 1d5~2 and 1d3/2 levels. The
right-hand side of Eq. (8) would have its maximum
value if the 1d5~2 level were full and the 1d3~2 level were
empty. Therefore, as one proceeds through the (2s—1d)
shell, the sum for the M1 transitions is expected to
build up from very weak transitions at the beginning of
the shell to strong transitions in the region of Si'8 and
S"where presumably the condition of a filled 1d5~2 level
and an empty 1d3~2 level is most closely approached.
Then the strength should drop quickly as the 1d3~2

shell is filled. This behavior agrees qualitatively with
what is found" by inelastic electron scattering.

When more detailed experimental results are avail-
able, they can be interpreted in terms of the filling of
1d6)2 and 1d3/Q levels in Eq. (8). For this purpose one
requires wave functions for the ground state. The
simplest approach in such a semiquantitative procedure
is to estimate the expectation value of Pl s by using
wave functions Xo consisting of groups of 4 nucleons in
Nilsson" levels. This leads to different values of the ex-
pectation value of Pl s depending on the levels and the
value of Nilsson's parameter q. An interesting possi-
bility occurs for Si", where for oblate deformation with
g= —4 and with levels Nos. 5, 6, and 7 filled, one gets
(1 s)=8.0; for prolate deformation with g=+4 and
levels Nos. 6, 7, and 9 filled, one gets (1 s)=4.3. Thus
one may be able to decide which deformation is appro-
priate. It may eventually be worth the eGort to see how
far the model can be pushed by including the full com-
mutator of Eq. (4) together with ground-state wave
functions for which angular momentum is a good quan-
tum number rather than the Xo approximation.

"W. C. Barber, J. Goldemberg, G. A. Peterson, and Y. Tori-
zuka, Stanford Report HEPL —276 (1962) (unpublished).' S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).

IV. CONCLUSIONS

The most striking feature which arises from the analy-
sis of strong M1 transitions from ground states in the
1p shell is the tendency to concentrate the strength in a
few transitions. Just as for the giant E1 resonance one
can say that the T=1 magnetic-dipole state, p,iso, is
localized. But whereas the E1 resonance is concentrated
in the high-excitation states of a given I, the M1 reso-
nance is concentrated in the low-excitation states of a
given I.

For 4X nuclei with T=O, the energy-weighted sum
rule provides an indication of where to expect strong
M1 transitions. This semiquantitative rule is appro-
priate to the experiments on inelastic electron scattering,
in which the strong M1 transitions from the ground
state are prominent. There seems to be at least qualita-
tive agreement with observation in the region of the
(2s —1d) shell.

In order to attempt a more nearly quantitative appli-
cation of the sum rule, one would require ground-state
wave functions. These can be obtained either via pro-
jection4 from Nilsson many-nucleon functions or by
doing intermediate-coupling calculations. The interac-
tion U(i, k) should also be included in the commutator
with p, . For (4/+2) nuclei it might appear that expres-
sion (7) can lead to some restrictions on the interac-
tion coefficients "3, "2, and 332. However, only "A
which is already quite well determined is likely to be
important, because for these nuclei the expectation
value multiplying (1—aid) should be much larger than
that multiplying (332 —"A). Eventually an accurate
evaluation of the sum rule would require consideration
of small admixtures to the pure shell-model configura-
tions that were assumed. Because of the energy weight-
ing, their effect may be magnified; but it is likely to be
a higher order effect for these light nuclei.

For odd-A nuclei whose ground states have T= ~ the
operator p, of Eq. (1) is still likely to provide the strong
transitions. However, one can now have transitions to
other T=-,' levels as well as T= ~ levels so the eGect of
concentration is probably much less pronounced.

At any rate, the simple features of the sum rule are
most appropriate for the 41K nuclei whose ground states
have I=0= T. In these nuclei one can interpret the ob-
servations qualitatively in terms of the model Hamil-
tonian of Eq. (2) and the operator p,, of Eq. (1).Whether
more refined comparison is possible remains to be seen.
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