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Calculation of Atomic Hyperfine Structure Constants from Projected
Unrestricted Hartree-Fock Functions. Constants of F"
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The magnetic hyperhne constants for the P3/2 and 'PII2 states of F" are calculated from the projected
unrestricted Hartree-Fock (UHF) function where the orbitals are linear combinations of analytic functions.
Neglecting the nonorthogonality between the radial parts of spin n and spin P functions, the values obtained
are (experimental results are given in parentheses): o'=2031 Mc/sec (2010 Mc/sec), a'"=522 Mc/sec
(446 Mc/sec), a"=9952 Mc/sec (10 244 Mc/sec). The contribution coming from the Fermi contact operator
calculated from the projected UHF function is in much better agreement with experiment than that calcu-
lated either from the UHF or conhguration interaction functions.

I. INTRODUCTION
'N previous papers' (hereafter called Parts I and II)

~ ~ we have assumed that functions of the type which
are generally called extended Hartree-Fock (EHF)
should be suitable to calculate atomic hyperfine con-
stants and would give satisfactory qualitative agree-
ment with experiment, Unfortunately, as is well known,
the calculation of the orbitals which minimize the
energy of a multideterminant function is very difficult
and has not yet been carried out except for three-
electron systems. '

Among the different approximations to the EHF
function which we have previously used we shall in this
paper concentrate on the one which, from the experience
which we have now collected, seems to give by far the
best agreement with experiment for the atoms where the
"s" orbitals are all doubly filled. This method is gen-
erally called "the projected unrestricted Hartree-Fock
(PUHF) function. " The approximation to the EHF
function which is used here consists of using a multi-
determinant function which has the proper symmetry
behavior and assuming that the EHF oribitals can be
satisfactorily approximated by the UHF orbitals, that
is to say, by those which minimize the single deter-
minant UHF function. In this function the radial
functions of orbitals of spin n are different from those
of spin P.

For the calculation of the matrix elements of the
hyperfine structure operators we have been forced, in
view of the complexity of the form of the projected
function, to introduce a reasonable approximation. We
have assumed that the UHF orbitals satisfy the same
normalization and orthogonality conditions as the
usual Hartree-Fock orbitals with which the UHF orbi-
tals have two-to-one correspondence.

For F" this method then gives hyperfine constants
which are in as good agreement with those observed as
those previously calculated for 8", N", and O'~.

'N. Bessis, H. Lefebvre-Brion, and C. M. Moser, Phys. Rev.
124, 1124 (1961);128, 213 (1962).

2 A few calculations have been carried out on a limited basis for
I.i: (a) J. Kerwin and E. A. Burke, J. Chem. Phys. 36, 2987
(1962); (b) E. Ishiguro, Y. Mizuno, and K. Kayama, in Meeting
on Recent Developments in Quantum Chemistry, Hakone
National Park, Japan, September 1962 (unpublished),

IL THE PROJECTED UHF FUNCTIONS

Radford, Hughes, and Beltran-Lopez' measured the
hyperfine constants uJ and ug' which are often written
as u' and u'" for the ground state 'I'3/2 of F". Very
recently Harvey4 has measured the constant for the
state sP&7s (which is ordinarily called the a" constant).

From the experimental values it is possible to deduce
quantities which are independent of J from the follow-
ing equations:

.=(4~.s.r») «-)-(-) rs)+ .,
~~is'= (&-& /3I) (2(» ') —(r ')') —~,

=(gP-P./3J)(( ')+( ')') —'
The quantities (r ') and (r ')' are proportional to re-
duced matrix elements of operators which describe the
interaction of the nuclear magnetic moment with the
magnetic field associated, respectively, with the orbital
and spin magnetic moments of the electrons. The
quantity a, is the contribution from the Fermi contact
operator. These terms have been defined from the
ground-state function; for F" it is 'Ps~s (cf. Part II).

Previously (in Part II), we have defined two dif-
ferent types of EHF functions: (a) the orbitals with the
same values of e and l have the same radial parts for
given spin; (b) the radial parts are different not only
for different m, but also for different values of m~.

Thus, in functions of type (b) in F" one might expect
to have five different radial parts for the 2p function.
But even the best UHF approximation to the EHF
function of type (b) cannot have five different radial
parts for the 2p function because of certain equalities
between exchange integrals. One finds„ in fact, that
2p+ and 2p functions of n spin are solutions of the same
equations. The UHF function for the 'E3/& state of F is

Puirp ——
( 1st18)2s&2B&2p~&2p~g2ps'&2ps'g2p t (, (2)

where the primed orbitals are solutions of equations
which are different from the equations which give the
unprimed orbitals.

'H. E. Radford, V. W. Hughes, and V. Beltran-Lopez, Phys,
Rev. 123, 153 (1961).

4 S. Harvey (private communication),
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TAnLE I. Magnetic hyperf'me constants for 2P states of Po (Mc/sec).

Method

Hartree-Fock
UHF
PUHF
Exp.

2030
2194
2031
2010.01~0.02

+634
+394
+522
+446&10

10 148
9643
9952

10 244

0
221

74
101b

4 (P-P./I) (r ')

2537
2466
2466
2453b

;(p„—p,/I) (r-2)'

2537
2466
2547
2719b

E(a.u.)
—99.4075—99.4090

~ ~ ~

—99.804

a AnalytiC baSiS funCtiOnS are fOr S: Z =8.76, 2.13; fOr p: Zg& =0.7863, 1.752, 3.068, 5.954; Zgg =4.17. The numeriCal COnStant 2p&prj/I =501.6 a0 .
b These values are obtained with an error of about 5 Mc/sec.

TmLE II. Core polarization results from UHF calculations
(atomic units).

Boron'
Our

analytic Numerical
functions functions

Nitrogenb
Our

anaytic Numerical
functions functions

Fluorine
Our

analytic Numerical
functions functions

p2, 0.1054
p 1s —0.0947

0.1085—0.0913
0,9392 0.9301—0.7156 —0.7418

0.6469 0.6411—0.4894 —0.5076

a Cf. Part II.
b The basis orbitals (which are slightly better than those of Part I) are

s: Z =6.9, 1.6; p (Clementi): Z22 =0.952, 1.2264, 1.9087, 3.8675.

' I.'. C. Allen, J. Chem. Phys. 34, 1156 (1961).' D. A. Goodlings, Phys. Rev. 123, 1706 (1961).

In point of fact, the orbitals which minimize the
energy of this determinant are only slightly different
from those found from minimizing the energy of the
usual UHF function where only the distinction between
the radial parts of orbitals of cr and P spin is introduced,
which comes down in (2) to putting 2pt=2p't and
2pg= 2p'g. In addition, as the. constants found from the
projection with respect to S' of this UHF function are
only very slightly different from those found from the
projection with respect to both S' and I2 of function (2),
we only give the former in Table I. We should, however,
emphasize that it would be most unwise to assume a
similar situation would hold with the orbitals which
would minimize the KHF function.

The UHF orbitals are obtained as linear combinations
of analytic functions from a program written by Nesbet
and Watson. The "s"orbitals, as we have proposed in
Part I, are linear combinations of two series of functions
1s, 2s, and 3s using two different values of Z for each
of the three functions. The values of Z are found by
minimization of the energy. The basis set for the "p"
orbitals is the analytic fit given by Allen. '

The analytic method for calculating the orbitals
appears to be somewhat more convenient than the
numerical method for finding the UHF functions given
by Goodings. ' The orbitals obtained from our analytic
functions appear to be very similar to those obtained
numerically. In Table II we illustrate this point for the
value of s orbitals at the nucleus. The contributions p2,
and p1, to the constant a, due to the polarization of the
2s and 1s orbitals

p-= I o -t(o) I' —
I o -4 (o) I'

are given for 8", N", and F" both from analytic and

&pons =&guns=&To

1
=—(10To—2T,+T,—To+ 2T4). (3)

30

Here T~ designates the sum of determinants found by
permuting in To )2 functions n and J3.

As these determinants are built on nonorthogonal
orbitals the calculation of matrix elements of even
single electron operators from (3) is, to say the least,
extremely tedious. In order to make this calculation
tractable we have made the following approximation
for the overlap integrals:

(4/jit ijjj I)= oij.

This approximation can be readily justified. For the
calculation of F we find

(2pt2pg)=0. 9985,

(1st2sg) = —(1s&2st)~0.0025.

This approximation leads to the following for the
matrix element of a single electron operator

(o;tll 2;4)= lL&o;tll v;t)+(o;sll v;4)).
The approximations which we have used in Part II are
equivalent to these.

One then finds the following simple relation:

(44)PUB F
S 162r p~p, 1 S

(p2s+Pls) = -(42.)uav. (4)
S+1 3 IJ 2 S+1

7 P. O. Lowdin, Phys. Rev. 97, 1509 (1955).
SThis approximation for the contribution due to the core

polarization also holds for the case where the s orbitals are not all
doubly filled (reference 10). Thus, for the '5 state of Li the ap-
proximation for the constant as given by Eq. (4) is 320 Mc/sec
while the rigorous projection of the function gives u, =hL'/2
=323.73 Mc/sec. (The value given in Phys. Rev. 117, 1504
(1960) is in error (private communication from Dr. Sachs). $

numerical functions in Table II. The contributions to
the constants coming from the "p" orbitals are equally
very close.

III. CALCULATIONS

This UHF function has the advantage of being an
eigenfunction of 12 if not of S'. The projection operator
associated with S' applied to this function gives a linear
combination of 108 determinants which can most
simply be found by generalizing a method given by
I,owdin7
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IV. CONCLUSIONS

Ke give in Table III a recapitulation of the results
obtained from using this method for other atoms of the
second period for the calculation of u, and in Table IV
the results for the ratio (» ')'/(» '). We should recall

TABLE III. Contact term from different methods (Mc/sec).

UHF
PUHF
Exp.

5.1
1.7
0.11

N14

24
14
10.45

O17

34—17—18

F19

221
74

101

that in the usual Hartree-Fock function u, would be
zero and the ratio (»

—')'/(» —') would be equal to one.
In general, we feel the qualitative agreement between
theory and experiment is satisfactory and much better
than is found from the UHF functions themselves.

Our conclusion may appear to be in disagreement
with those of several other authors. Marshall, " for

9 Our attention has been called to the fact that one would
obtain other expressions for the terms (» )'oHF and (r ')n+F from
the equations of Goodings (reference 6) for aa/Q and a//2, These are

(r )nnF=9/10(2pl, ~r 'I2pl)+1/10(2pf~r '~2pt'),
(» ')nnx'=I/2(2pllr '12pl&+'I/2(2pt'I» 'I2p1'&.

From these one finds: a~/2=2194 Mc/sec, aa/g'=386 Mc/sec,
ai/2=9788 Mc/sec, The difference between these formulas and
Kq. (5) is that, while of course there is no dif6culty for the con-
stant aa/2, Goodings has defined a function for the state J=1/2
and, as we have mentioned above, this seems to us to be a ques-
tionable procedure.

'0 W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961).

For Ruorine

(» ')Pu»= (2pS I» 'I 2p&) = (»
—')UHF ——(»

—')'uHF,
(~)

(» ')'PuHF= sL(2pg!» 'I2pg)+2(2pgl» 'I2pg) j.
We wish to recall (cf. Part II) that it is difficult to

define the quantities (» ') and (»
—')' for the UHF func-

tion which is not an eigenfunction of S'. We have as-
sumed here that Eqs. (1) which determine the hyperfine
constants as a function of the terms (» ') and (»

—')' are
still valid, and we have calculated (»

—')uris and

(» s)'rrnF from the UHF function for the sP3/s state
which is unambiguously defined LEq. (2)].'

TABLE IV.Results for (r ')'/(r ').

(» ')'/(» ')

PUHF
Exp.

O17

1.05
1 ~ 13

F19

1.03
1.108

"For further details see N. Bessis, Cahiers de Phys. 16, 345
(1962).

example, argues that the value obtained for the con-
stant a, with the UHF function should be better than
that obtained with the projected UHF function
because it is nearly equal to the constant that would be
obtained from the EHF function. But one should not
forget, as we have also shown in Part I, that this demon-
stration only holds to first order, that is the equivalence
will no longer exist for calculations carried out with the
orbitals obtained after the first iteration. The equiva-
lence no longer holds when higher order terms are in-
cluded, that is when the iterations have converged. It
appears that for the atoms where the unpaired electron
is s-like, there is a fortuitous cancellation of errors. In
the atoms where the s orbitals are all doubly occupied,
the UHF function gives very poor results both for a„
which is too large, and for the ratio (» ')'/(» ') which
remains equal to one (cf. Table III).

Finally, we should note that the CI (configuration
interaction) method given in Part I and II gives very
poor results for fluorine (a,= —11 Mc/sec; (» ')'/(» ')
=1.06").The projected UHF method, thus, seems to
be a definite improvement over the usual methods. Of
course, we should like to find a better agreement for
(» ')'. An improvement might be to use a better ap-
proximation to the EHF orbitals than those given by
the UHF orbitals.
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