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Quantum-Mechanical Calculation of the Third Virial CoefBcient of He'f*
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Using the method of binary collisions, the third virial coefficient of He4 at low temperatures is calculated
for a potential consisting of an attractive square well and a repulsive core. The shape of this potential is
chosen so as to optimize the fit of the second virial coefficient with experimental data. From a comparison of
the results with the third virial data the existence of a three-body bound state is inferred. A binding energy
of 0.26'K, calculated from the potential, brings the adjusted results and the experimental data into
agreement.

INTRODUCTION

' 'HE equation of state of a dilute gas may con-
veniently be written as

pV =KYAT(1+B/V+C/V'. ),
where 8 and C are the second and third virial coeffi-
cients, respectively. These coefficients, and higher ones,
have been calculated classically for a number of gases
and a variety of binary potentials. '

Our interest lies with He4, and for such a light gas,
at low temperatures, the quantum-mechanical devia-
tions from the classical behavior are really important.
A correct treatment must, therefore, be developed
within the quantum-mechanical framework. Such a
method for the calculation of the second virial coeffi-
cient was derived by Uhlenbeck and Beth, ' and by
Cropper, ' in the 1930's, and subsequently has been used

by Massey and Buckingham, 4 de Boer and Michels, '
and others. ' It was only comparatively recently, how-

ever, when Lee and Yang developed their binary colli-
sions method, ~ that a systematic procedure of calculating
the higher coefficients became available. The first
study of the third virial coefficient using this technique
was that of Pais and Uhlenbeck' who have considered
C(T) for several limiting cases, including that char-
acterized by strongly bound two- and three-body states.

In this work we seek to determine C(T) at low tem-
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peratures by evaluating terms in a binary collisions
expansion for the third virial coefficient of He'. We
assume a definite potential and calculate exactly the
corresponding two-body kernels, in terms of which we
carry out the expansion. The potential used has a
finite, though very high, repulsive core together with
an attractive square well. This potential was chosen
because it possesses the essential characteristics of the
true potential while being of such a form that the two-
body wave functions are expressible analytically. The
associated parameters are determined through a study
of the second virial coefficient, and a fitting to the ex-
perimental data at high and low temperatures.

For simplicity, and since it is not known whether or
not He4 has a very weak two-body bound state, ' we
assume that this is not the case. We admit no two-body
bound states in our calculation.

The numerical evaluation of the binary collisions ex-
pressions for 1 = 1.7, 4, and 8 K yield results which are
positive and increase as the temperature decreases.
This is in sharp contrast with the experimental be-
havior of the third virial which decreases with decreas-
ing temperature, becoming negative at about O' K.

We, then, consider a three-body bound state and
find that by including its contribution we are able to
bring theory and experiment into agreement. The
value of the binding energy, 0.26 K, was obtained from
an approximate calculation using our potential.

FUGACITY EXPANSION

The pressure and the density of a Boltzmann gas
may be expressed as expansions in the fugacity s

E/kT=Q b(z',

E/0=Q lb(z',

where

b, =(ni!)-r (Xt" X~i V~IXr "X~)~'Xt "~'X~ (3)

becomes volume-independent when we let the volume
9 J.E. Kilpatrick, W. E. Keller, and E. F. Hammel, Phys. Rev.

97, 9 (1955).
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SECOND VIRIAL COEFFICIENT0 become large. We shall always take this to be the
case. If II~ is the Hamiltonian for S particles and

WN =exp (—HN/k T),
At high temperatures the second virial is given cor-

(4) rectly by the classical expression:

p(gV/Q) 2sp'bed (X/Q)

we may now substitute for s in Eq. (6) to obtain

v p(ppbs')1V
pV=EkT 1—

0
L2 (spbs )—4(spbs*)'jlPsp'

(7)

(8)

Comparing this with the usual expansion for the equa-
tion of state, we 6nd that the second virial coeKcient is

8= —E62'vo'

and the third virial coefficient is

C= —1Psps(2 (spb;) —4(spbs')'$,

C= —21Pspsb '+48'

(9)

(10)

'P H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927)."J.E. Mayer, J. Chem. Phys. 5, 67 (1937); J. E. Mayer and
P. G. Ackerman, sMtg. 5, 74 (1937);J.E. Mayer and S. F.Harrison,i'. 6, 87 (1938); S. F. Harrison and J. E. Mayer, iMd. 6, 101
(1938).

's B. Kahn and G. E. Uhlenbeck, Physics 5, 399 (1938).

then the U~ functions are defined by

&1',2'
I &sl1,2)= &1'

I Ur I »&2'I Ur l2)+ &1',2'I Usl 1,»,
&1 2 3 )IV3)1,2 3)=&1') Ur)1)&2') Ur|2)

&&(3'
I Ur I 3)+&1'

I Ur I1)&2',3'I Us I 2,3)+&2'
I Ur l 2)

y&1',3'i Us[1,3)+&3'i Uri3)&1', 2'i Usi1, 2)
+&1',2',3'/ Us/1, 2,3), etc. (5)

This is a procedure that was first introduced by Ursell'0
and by Mayer" for classical statistical mechanics and
by Kahn and Uhlenbeck" for quantum statistical me-
chanics. We see that U~ requires us to be able to solve
the l-body problem. Furthermore, in the case of a Bose
gas and symmetric statistics we are interested in 6&'

and U)'.
These problems have been treated by Lee and Yang

who have shown how to calculate U~' in terms of U~,
and how to obtain U~, for l) 2, in terms of U2. '

We are concerned with the calculation of U», U2, U3
and their symmetric counterparts. Knowing bj', b2', b3',
we may, then, combine equations similar to Eqs. (1)
and (2) to obtain

pV =XkT(1 (spbs')s ——[2(tIpbp') —2(spbs')'js' }. (6)

We have also used the fact that b~ ——b~' ——vo ', and have
let

r p= (2rrk'/mk T)PI'= Xr',

where ) z is the thermal wavelength.
Writing s as a power series in the density,

8= 2s X (1—expL —V (r)/k T$) rsdr

—16s'"$(hs/mkT)'~' P (2l+1)
t=0

&& expL —(fs'/mkT)y')5, (y)ydy, (12)

where the first term of the equation represents the con-
tribution to the virial from a, free Bose gas, and b&(y)
is the /th phase shift. Consistent with our intentions of
not allowing bound states, we have not included con-
tributions from discrete energy levels.

The experimental data which we seek to fit with
Eqs. (11) and (12) are quite old, and may be found,
sifted and weighed, in Keesom's book "Helium"" pub-
lished in 1942. We have used his table of "Adopted
values of second and third virial coeKcients for helium, "
as well as values given in his later paper with
Kistemaker '4

We found especially useful a formula given in this
latter paper which fits the second virial coeS.cient data
from 1.8 to 60' K. Expressed in units of cm'/mole,
instead of Amagat units, it reads

8= —(385.7)T '+.15.2 (13)

with an estimated uncertainty of 5%.
Newer low-temperature data have been published

by Keller" who reports on five isotherms (from 2.154
to 3.961' K), as well as reevaluates the isotherms of
Keesom and Walstra. "In both these cases the resulting
values for the second virial coefficient differ by less
than 10% from the values given by Eq. (13).

No such agreement is to be found when we consider
respective values for the third virial coefficient. Keller's
results at 2.3' K, for example, differ by more than an
order of magnitude from those of Kistemaker and
Keesom. The determination of the third virial is, how-
ever, marginal at best, and the situation is best ex-
pressed by quoting Keesom": "It is evident that the
curves drawn in the 6gure are more or less arbitrary,
and therefore rather uncertain. Nevertheless we estimate
that the general course might be real, so C seems to

"W. H. Keesom, Belie,m (Elsevier Press, Amsterdam, Holland,
1942), p. 34."J.Kistemaker and W. H. Keesom, Physica 12, 227 (1946).

"W. E. Keller, Phys. Rev. 97, 1 (1955).
"W. H. Keesom and W. K. Walstra, Physica 7, 985 (1940).

while at low temperatures we use an expression 6rst
derived by Beth and Uhlenbeck, ' and by Gropper'

8= —X(4n.h'/2mk)P"T@'2 '"
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reach large negative values below 3' K .." We note
that while at very low temperatures Keller's third
virials are smaller in magnitude than Keesom's, they
are also negative.

Our two-body potential has the following form

of tha, t given by gases composed of "compressible"
molecules. The optimum value for o is 2.1 A.

%e use the data of the low-temperature region to
determine the remaining parameters. For convenience
we chose these to be e and S, defined by

V(r)= U, 0&r&~
= —e) 0 (r(a

a—0 = (7r/2) (5'/tnk)"'(8/rr)'i',

e=ek,
(16)

will not reduce to a 5 function. ) It is, then, convenient
to choose U to be finite, though very high compared to
the depth of the attractive well. The virials will not be
very sensitive to the particular height chosen, although
we must keep in mind that for finite U the onset of the
bound state depends on the values of all the parameters.
If we again let k equal Boltzmann's constant, then
U= 10'k ergs.

We now consider the high-temperature region,
'

which

determines cr. Helium gas behaves classically only at
very high temperatures. Indeed, de Boer and Michels"
have calculated the quantum-mechanical correction to
a, I.ennard-Jones gas at 256 K and found them to be
of the order of 5% of the classical answer. We shall,

therefore, in "fitting, " consider the very highest tem-
peratures listed in Keesom's table of "adopted values, "
spanning a 200'K range from 373.15 to 573.15'K.
Within this high-temperature range, and somewhat
lower, the classical virial derived from our potential
has the wrong shape and does not fit well the experi-
mental data. A classical expression for 8, suitably
approximated for high temperatures, reads

8= (2s/3)EI a' —(a'—o') (e/T) j, (15)

where (us —o'))0, (I/T) is small. 8 simply becomes
larger and larger reaching an asymptote determined
uniquely by the diameter of the repulsive core. The 8
experimental rises in value, reaches a maximum, and
then decreases in magnitude, which is a behavior typical

'" J. de Boer and A. Micheis, Physica 5, 945 (1938).

where U is very large compared to e. We seek pa™
rameters cr, a, e, U which will fit the experimental
second virial coefficient data of He4 at high and low
temperatures. We do not admit the case of a bound
state.

In the next section we shall give an operator equation
for Us, and it will be seen that Us=0 for P= 0. We also
give expressions for the matrix elements of U2. In the
case of an infinite repulsive core these expressions for
the matrix elements will not go to zero when p goes to
zero. (This is because when U is infinite there is an
excluded volume, and the solutions of the two-body
problem do not form a complete set of states for all

space, implying that the sum

2- 1t -(r')0-*(~')

where k is Boltzmann's constant. Were U to be infinite,
our constraint barring the existence of two-body bound
states would be expressed as S(1.

To obtain a good agreement between our expressions
and experiment, it is necessary that S be near i. Further,
this agreement is rather insensitive to the particular
value of e chosen, hence to the depth of the well. In
other words, the second virial is not very sensitive to the
details of the potential but responds to its strength,
which in our case nearly admits a bound state. In fact,
though we obtained the lowest residuals (best fit) for
S=0.997, v=2('K), we were able to exhibit a fit nearly
as good for 8=0.96 and m=1. The shapes of the two
curves B.„~(T) and Bii,„,(T) are different. For the
lowest temperature 8th, „, is larger in magnitude than
8 p for the higher temperatures the converse is true
(all the virials in the low-temperature calculation are
negative). The best agreement and the smallest re-
siduals is, then, obtained when we allow the two curves
to cross over near the low-temperature end.

Theoretical and experimental values for the second
virial coeKcient are found in Table I. A detailed dis-
cussion of the fitting is found in Appendix A.

BINARY KERNELS FOR A BOLTZMANN GAS

We wish to evaluate the following two binary
kernels":

Us(P) = exp( —PHs) —exp( —PT), (17)

8
X(P)= —V exp( —PHs) =—Us(P)+TUs(P), (Ig)

8

where H2 is the Hamiltonian for two particles.

Hs= T+V=H, +H,.i, P=1/kT.

&ri' rs'I UsIri rs&=&R'I UiIR&&r'I UsIr&, (20)

in which
R= s (ri+ rs), r= ri—1's,

(R'I UiI R)=(R'I exp( —PH, . ) I R)
= (m/a. A'p)'" expL —(R—R')'m/A'p j

&r'I Usl r&=p- p-(r')p-*(r) expL —p(&-)-ij
—Z.4.(r')0.*(r) expL —P%.)- j, (22)

(21)

i' T. D. Lee and C. N. Yang, Phys. Rev. 115, 1165 (1959).

H, consists only of a kinetic energy term, and U2

will factor into a product
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+m'b(x)8(y), (33)

We may now express U& in terms of the A matrix de- F(&) '&(y) '=(y —&) 'p'(&) '—F(y) 'j
fined by Eq. (29). Substituting our new expression for
R„~(r) and R„~(r') into (ki', k2'I U2I ki, k2), and using

F&(kr)F &(yr)dr = (x/2)5 (k —y), (32)
we obtain

(klA! I»=«»i(k), (34)

(&i',km'I U2I ki, k2) = (2~) 'i!(K—K') exp( —E'O'P/4m) Q (23+1)F!(cosO')
l~

—8(k' —k") ' dy(k'IA&ly)(klA&ly) cos'B&(y)P'(k' —y') '—F(k"—y') 'j exp( —O'Py'/m) . (35)

Using Eq. (18) we determine the matrix elements of X from those of Uq.

(ki', k2'
I XI ki, k2) = (2~) 38(K—K') exp( —E'!!i'p/4m) (A'/m) p (2l+1)F!(cosO~)

l=o

&& 4~(kk )-i cosmos, (k)k'(k'I A!
I k) exp( 0'pk'—/et)+8 dy (k I

A!
I
y)(k'I Ail y) cos's, (y)

&&8 (k' —y') ' exp( —O'Py'/m) . (36)

Equations (35) and (36) together with the expression
for the A matrix, given in Appendix 3, represent a
complete evaluation for our potential of the binary
kernels U2 and X. For the numerical work that ensues,
however, we wish to eliminate all references to principal
values. To this effect we rewrite integrals in the fol-
lowing way:

6f(y)(k' y') '—

both give the same result. Diagram (a) gives a con-
tribution to b3' equal to

(3!fl)—' Ui(iri, k,)U, (k,,k,)U, (k,)k,)d'k, d'k, d k,

= (3"'6) '(mk T/2s-A')'!' (38)

As diagram (b) gives the same answer, the total free
contribution becomes

(k 8) 3—5/2(y 3)—1 (39)

Fdy P—(k) —f(y) ll:k' —y'?' Vfe shall then have terms in U~U2, one of which we

represent by the diagram of Fig. 2. The contribution

+f(k)F jy (ko 2)
—i (37) of this diagram to &&' is

but this last integral equals zero and the integrand of
the remaining integral no longer requires us to take a
principal value.

An analytical method of dealing with the limit
lr' —+ k, K' —+ K is given in Appendix C.

EXPANSION OF U&'

We wish to calculate b3'. In order to do so, and fol-
lowing the prescriptions given by Lee and Yang in
their paper, ~ we express the diagonal elements of U3'
in terms of U~, U2, and U3.

There is erst the free-particle contribution which is
obtained from terms in U&U&U& and is symbolically
represented in Fig. j.. There are two diagrams and they

(3!0)—' d'kid'k2d'ka U2(ki)ka ) ki, kg) Ui (ir2, k3), (40)

k) k~ k~

k
I kq k

tv

(o)

k, k~ k~

(b)

PIG. 1. Diagram representation of the U&U&U& terms arising in
the calculation of U3'.

which, as shown in Appendix D, may be reduced to a
twofold integral that must be evaluated numerically.
There are twelve diagrams of this kind. When we ex-

I
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FIG. 2. Diagram representa-
tion of a typical UIU2 term
arising in the calculation of U3'.

k,

pand U2 in spherical harmonics, we And that for even
I's their contributions are identical and add, while for
odd I's they are identical in magnitude, but not in sign,
and give a zero total.

We next consider diagrams evolving from the ex-
pansion of U3 in terms of binary kernels U2 and X.
The general matrix element of Ua, (kr, k2, k3

~
Ua

~
kr, kg, k3),

gives us the six diagrams shown in Fig. 3, which ex-
haust the terms having only two binary kernels. To
obtain (kr, k2, k3~ Ua'~ kr, k2, ka) we must, then, consider
these six diagrams for k&', k&', k3' equal in turn to each
of the six permutations of kt, k2, k8. This will give us
36 diagrams. However, we can take advantage of the
fact that we are only interested in the integral over
kr, k2, and ka of (kt, k2, k3~Ua'~kt, k2, k3). This will
enable us to express our answer b3' in terms of only
two diagrams.

Take any diagram, such as that illustrated in Fig.
4(a). There exists a:-permutation P such that this
diagram may be re-expressed as a standard diagram,
Fig. 4(b), where

k =k~~ ~, k =kg '. (41)

Instead of being formal about this, let us look at the
example shown in Fig. 5. The equality obtains trivially
as we have not changed at all the expression repre-
sented by the diagram. To obtain the second step we
consider the k's as dummy variables and in this par-
ticular example apply a permutation P: (1,2,3) —&

(2,1,3) to their indices.
We may apply the same procedure to all the dia-

grams differing in appearance from our standard dia-
gram. The mapping I"—+I'I"I ' is an inner auto-
morphism: it is one-to-one and isomorphic. This means

that any "nonstandard" diagram, and the six permuta-
tions I" associated with it, may be replaced by the
standard diagram where kr', k2', and ks' are in turn set
equal to the six permutations of k&, k2, and k3. The
problem has, therefore, been reduced to considering
the standard diagram and six different sets of k's. A
weight of six will be associated with each case.

When we write down the expression for the standard
diagram, taking advantage of the 5 functions inherent
in U&, U2, and X, as well as of the possibility of ex-
changing dummy variables, we find that we may repre-
sent the cases associated with the four P': (1,2,3) —+

$(1,2,3); (1,3,2); (2,1,3); (2,3,1))by one single diagram
belonging to the identity permutation, subject only to
the restrictions that in the expansion of U2 and X in
spherical harmonics we restrict ourselves to even values
of I and I'. We refer to this diagram as II, shown in

FrG. 4. A typical
diagram (a) with
primed variables re-
expressed as a stand-
ard diagram, (b) with
barred variables.

k'
I

kl

k'2

kp

«)

kq R;

k, kp

(b)

dp' d'k"LU, (k,',k,")U2(k, ',ka', k,",k3"))p

Fig. 6(b). It will have a weight of 24. The other two
permutations P': (1,2,3) -+ L(3,1,2); (3,2,1)) may be
represented by one of them, subject to the restrictions
that in the expansion of U2, we let I assume only even
values. We shall then see, upon evaluating the diagram
further, that this will imply that the odd values of I',
belonging to X, will not contribute. We refer to this
diagram as I, shown in Fig. 6(a). It will have a weight
Qf 12.

The contribution to (kr', k2', k, '~ U3~ kr, k2, ka) from a
standard diagram reads

ki' kq k', kq kq
XP'(kr", k2", kr, kn) Ur(ka", k3))p p . (42)

kl k~ k~ kl kp k~

If we take advantage of the fact that

Ut(kt', kt") =8(kr' —kt") exp( —O'Pkr"/2m)

k'
I

k'
2 k'

I

kp ktg ki

kg kg k, kq bq k, k~ k~

k, kp kq k, ki k~

FxG. 3. Diagram representation of the terms involving two binary
kernels which arise in the binary expansion of U3.

FIG. 5. A speci6c example of the reduction of a diagram
to another in standard form.
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/

k2

(b)

k~ I'xG. 6. Diagram
representation of the
two terms arising in
the binary expansion
of U3' to which all
terms involving two
binary kernels re-
duce.

(43)

and that U2 and X are of the form:

U, (k2', ks', k2",k,")
=s(k, '+ k, '—kg" —k,")w, (k, ',k,', k,",k,"),

X(k,",k,") kg, k,)
=8(kx"+kg"- kr- k,)X(k,",k,";kr, k2),

we, then, can write Eq. (42) as

Cexp
T

('I) Keesom' Keller'
K8zW,
re-ev. " Bin.

coll.

Ctheor

Bin. coll.
8z bound

state

1.7 —2.5 10'
2.154
2.324
2.61 —2.4 104
2.862
3.105 —5.28 10'
3.348
3.721 —7.79 10'
3.961
4.0 —3.0 10'
4.245 —1.31 10'
6.0 4.6 10'
8.0 5.1 10'

—5.231 10'
—3.855 10'

—7.282 10'

—8.23 10'

—3.58 10'

—1.8 104

—4.361 10'

—1.747 10'

1.013 10'

1.8 10~ —2.2 10'

3.5 104 7.5 10'

1.0 104 5.8 10'

TmLE II. Theoretical values, for the third virial coefFicient,
contrasted with experimental data. The C's are expressed in units
of cc2/molem

0

Xexp( —@'p'kr"/2m)M2(k2 k3 k2 k3)p.

XSe(kr', k2"; kr, k2) p p expL —h'(P —P')ks'/2~j, (44)

where
k2" ——k,'+ k, ' —k, .

We always choose the primed variables to be a
permutation of the unprimed ones, and hence the delta
function has a zero argument. It is evaluated as
0/gm'. Equation (44) is the basis of a detailed evalua-
tion, given in Appendix D, which result in expressions
involving four-dimensional integrals which must be
evaluated numerically.

The diagrams involving three kernels can easily be
written. As in the previous case it is only necessary to
calculate the two diagrams shown in Fig. 7, having
weights 24 and 48. The integrals associated with these
diagrams are at least six-dimensional and we shall not
attempt to evaluate them.

RESULTS

The expressions given in Appendix D were the object
of programs we wrote for the IBM 704 and 7090 of the
AEC Computing Center at New York University.
Resulting values for the third virial coeKcients, com-
pared with experimental data, are found in Table II.

We see that Cth, „, increases as the temperature de-

k,

a The value of 1.7' K is part of a set of values determined by Kistemaker
and Keesom through extrapolation of the data of Keesom and Walstra.
These values are found to be in rather good agreement with the direct
evaluation of the C*s, when the B's were extrapolated. The values for
T =4, 6, and 8' K are taken from the table of "adopted values" from Kee-
som's Helium, and represent smoothed and interpolated values. We note
from Fig. 6, page 36, of this book that there exists no direct measurements
of C from about 4.25 to about 14 or 15' K. C changes very much in this
region, however, and our values for 6 and 8' K, therefore, represent educated
guesses at best. We have also included values for the isotherms of Keesom
and Walstra which have been reanalyzed by Keller.

b J. Kistemaker and W. H. Keesom, Physica 12, 227 (1946); W. H.
Keesom, Helium, (Elsevier Press, Amsterdam, Holland, 1942); W. H.
Keesom and W. K. Walstra, Physica 7, 985 (1940).

& W. E. Keller, Phys. Rev. 97, 1 (1955).
~ Keller, in the above reference, re-evaluates the data of Keesom and

Walstra and obtains the values found in this column.

creases and remains positive throughout the range of
temperatures that we considered. " The experimental
data behave quite diGerently and decrease with de-
creasing temperature. They become negative around
4' K. In addition, the data of Keesom indicate a sharp
drop in the value of the virial near 2' K.

To reconcile these results would require large changes
in bs'. While we expect inaccuracies in Cth„, stemming
from the use of only the leading terms in the binary
expansion, and while we suspect that C~l,„,is sensitive
to the shape of the potential, these factors would not
be expected to be of such a magnitude as to account
for this great disparity. This, as well as the sharp drop
in the experimental value reported by Keesom, sug-
gests that a physical property of helium has been
overlooked.

In the next section we show that the inclusion of a
three-body bound state will allow us to understand the
experimental results at low temperatures. Further, we
shall see that this procedure is supported by an approxi-
mate calculation which shows that such a state exists
for our binary potential.

ki k

(a)

kq

(b)

Pro. 7. Diagram
representation of the
two terms arising in
the binary expansion
of Ue' to which all
terms involving three
binary kernels re-
duce.

THREE-BODY BOUND STATE

To estimate the contribution of a three-body bound
state we follow a method originated by Pais and

~ We note that in their weak binding limit which is character-
ized by the presence of zero energy, virtual or real, two- and three-
body bound states, Pais and Uhlenbeck obtain an expression for
the third virial which is large and positive below 1 K.
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z($) —z) z(3) —z (46)

The coe%cient of z in the fugacity expansion is, then,
aside from the common factor V,

s b (1)+b&(8)&Pea (47)
and as"

2m(3m)kT sl'

b (3)— 33/2) —3

h'
we write

b 9.r' ——(b ') X '+3s"ennea. (49)

Similar results have been obtained by Pais and
Uhlenbeck.

Our next step is to form an estimate of the binding
energy of the three-body bound state. We do this by
considering the case of an attractive square well
identical, in width and depth, to the attractive part of
the potential used previously. This dropping of the core
eases our labor prodigiously and is probably not too
drastic an approximation for the estimate we seek.

We, then, proceed with a variational calculation,
using a trial wave function of a type 6rst used by
Feenberg" for the study of the triton:

p —e—X(r12+rls+r23) (50)
We obtain

p4 20
FI= 3V, 1 . s*~ ———x4+-—~s+2*s+2~+1

(21 21

15
+— ix', (51)

14 maV
where

x=Ea, V= —Vo for a radius &a.

Inserting the appropriate constants and minimizing
H by varying x, we find that we have a bound state
with a binding energy of 0.26 K.

2'Rotational or vibrational energy levels, ~&, in the triatomic
molecule would have the effect of letting b&(3) ~ 3~'9,z ' Z~ g~e &«.

~ E. Feenberg, Phys. Rev. 47, 850 (1935).

Uhlenbeck' and we approximate the physical situation
to that of two independent gases, helium atoms and
triatomic molecules, in mutual equilibrium. The true
grand partition function then reduces to the product
of grand partition functions and its logarithm to the
sum of logarithms. Using indices 1 and 3 to signify
atoms and molecules, respectively, we then obtain

lnQ &'&+ lnQ &'&

= V P, b, &'~s(,)'+ V P, b, &'& (e&'3)'s(, )' (45)

where b&(') and b&(" are the fugacity coefficients of the
gases considered separately, z(&) and z(3) their respective
fugacities. The (e&")' term arises in Q&'~, as the energies
of the possible l molecule states must include l times
the binding energy of the molecule, and is carried over
in the fugacity expansion.

If we now examine term by term the correct grand
partition function, having fugacity z, and the approxi-
mate one, we see that we must set

We now use this value" for e3 and regard our former
binary collisions result as representing the continuum
part of b3'. In Table II we show the resulting values
fox C~h„„which Inay again be contrasted with experi-
mental values.

now reproduces the most obvious qualitative
feature of the experimental third virial in that it is
now negative at 1.7'K and positive for our higher
temperatures. Since this behavior represents the most
important information to be deduced from the experi-
mental data, the exact experimental values being most
uncertain, we conclude that our new results are in
agreement with experiment.

Further, we take these results, together with the
variational calculation, as support for a proposal that
He4 has a three-body bound state.
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APPENDIX A: FITTING TO SECOND VIRIAL DATA

In determining the value of 0- we take advantage of
the fact that the leading contribution of the virial at
high temperatures comes from the repulsive core.
Further, we 6nd that when the parameters e and S
are allowed to vary within the broad range that we
shall consider when fitting at low temperatures, the
classical virial at high temperatures do not vary
appreciably. For example, if we evaluate the virial for
m= 1, 3, 4, S=0.99, 0-= 2.1, we find that it differs by
less than 1%%uq from the value of the virial for I=2. If
we allow S to change to $=0.95 our results are similar.
The high-temperature virial, then, is a function of a
only, within the range of parameters that we consider;
and we find that o-=2.1 A. This value is well deter-
mined since for o=2.0 A every theoretical virial is
smaller than every experimental virial (for the range
375-575 K) and for o=2.2 A the converse is true.
Further, even if we drag all the experimental results
down by 0.5 or increase them by 0.5, than o.=2.0 A

would still be too low and o.=2.2 A would still be too
high.

At low temperature we fit the second virial coefficient

"If we determine es by requiring that the addition of the bound
state bring perfect agreement with the data of Kistemaker and
Keesom at 1.7' K, then ~3=0.4' K.
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to the experimental data over the range 1.7 to 8.2' K.
These bounds stem on the one hand from the lack of
reasonably accurate experimental information at lower
temperatures, and on the other hand from the need for
large number of angular momenta to evaluate accurately
the second virial at high temperatures. Already, at our
highest temperatures this factor limits our accuracy to
not much better than 1%, although we use phase shifts
of angular momenta l=0, 2, 4, 6, 8, 10.

APPENDIX 8: EVALUATION OF THE A MATRIX

Given a 2-body potential of the following form

U(r) = U for 0&r&o
for 0 &r&u

=0 for a&r,

I= U(p'+k') 'S(r2Lip jc(kr)jc+1(ipr)
—kj,+, (kr)jc(iPr))} ~ o,

II= o(K2 k2)—1

X m fr'$K jc (kr) jc+1(Kr)—kj21.1(kr)jc(Kr))}~,', (55)

III= o(K2 —k2)—1

X8(r'LKjc(kr)r/c~, (Kr) —kjc+1(kr)r/c(Kr))} ~,',

and we have used the following formula

x's, (nx) s, (Px)dx

= (x'[ps/(nx)sc+, (px) —nsc+1(nx)sc(px))} ~,
'

X (P' n') ' (56)

We have let s stand for any linear combination of j&
and g~ with real or imaginary coefficients.

If we evaluate 8,, S, 8 by using the boundary condi-
tions on the wave functions, we 6nd that

(52) e=m(«25 )-'
m= Z&y coshc(y)(jc(ya) —tanhc(y)~1(ya))

Xt Z,jc(Ka)—rg, (Ka))
—',where

p = (2/2U/k2 —y')"',

K = (222 o/52+ y2) 1/2

e= —mr, (Z,)-1,

where 6 and l are defined by
This expression for 43 insures that

where U is very large compared to c, we wish to deter-
mine the appropriate radial wave functions for the case
y'& (r/2/k2)U. Corresponding to the three different re-

gions, we have
41=8jc(ipr),
c2——m jc(Kr)+62/c(Kr),

C 2
——y[coshc jc(yr) —sinh/2/c(yr)),

Co —+ r ' sin(yr —l2r/2+51)

as r becomes large. The j's and p's are spherical Bessel
and Neumann functions, respectively. In terms of ordi-
nary Bessel functions, they may be written a

(21+1)/21 j&(ipo——)K/tl2/2 1(KD) ()+1)—2/1+1(KO))

—.(-)('p)Dj .('p-)-(i+1)j, ('p-»,
(58)

(2l+1)I'1——j/(ipo)Ktl jc 1(KD) —(i+1)jc+1 (KD))
—j/(«) (ip) Djc-1(ipo) —(i+1)jc+1(ip~)).

jc(P) = (x/2P)"~/+, (P),

2t/(P) = ( 1)'(2r/2P)'"~ —cc+l) (P).

We recall our previous definition of the 2 matrix
200

&k I ~/I y) = —k '(~/&2) « ~/(kr) U(r)eo'(r)
0

(53)

j ('*)= (—')'~ ( ), (59)

We do not write the A matrix in terms of these expres-
sions already at our disposal as it would not then be
written in terms of real quantities only. Rather, if we
look at the trigonometric representation of the spherical
Bessel function, we will observe that if we let

=—(222/A2) dr r2j/(kr) U(r)C Lcosh/(y)) ' then p/ will be real for all l, whenever x is also real. The
introduction of such p's results in a definitive expression

(54) for the A mat. rix in which all the terms are real.

where

= (222/A2)Lcoshc(y)) '(I+II+III),

(k
~
Ac~y)=yL j,(ya) —tanhc(y)2/c(ya))LA/ jc(Ka)—r,2/, (Ka))-'

x{( U/k)LPj, (k.)y„,(P )-kj,„,(k-)y, (P.))L.(P+k))-
+ (2/2e/A') 6[f a'ttKj1 (ka)j 1/1 (Ka) kj [+1(ka)j $(—Ka)) D'pKjc (kD)j—[+1(KO) kj 1+1(ko)j—c(KO))}t

K' —k')—'
—(2/2o/k')

r/(a'(~pc�(ka)2/1~1

(Ka) k) 1+1(ka) gc(—Ka))
—D'I Kj1(ko)2//+1 (Ko) —kj1+1(ko)2/1 (Ko))}LK'—k')—'}, (60)

p (//2 U/$2 y2) 1/2
K (222 o//2/2+y2) 1/2 y2 &2/2 U/$2

(2t+1)I'1 pc(pcr)KDjc——1(KD) (l+1)j/+1(—KD))+j /(KD)ppck/ 1(po)+ (3+1)Q/+1(po)),

(2i+1)~/= 4 /(po)KDnc-1(«) —(i+1)ac+1(«))+ac(«)pD4/-1(po)+ (1+1)01+1(po))

(61)
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We also require an expression for the tangent of the phase shifts, this is derived by imposing the boundary conditions

C 2'(~)/c 2(r) =+8'(~)/c 3(~),
where r=a. We then easily obtain

where

9/(2~+ 1)]LV~-~(y~)—(~+1)j~+r(y~)] —v~(y) j~(y&)
tansy(y) =-

EX/(2t+1)]De-~(y&) —(t+1)n~+~(y&)] —v~(y)n~(y&)

x[h&/(2l+1)]/l j& ) (~a) —(3+1)j&~&(~a)] —z/I'&/(2l+1)]D&& &(~u) —(1+1))t&~&(~u)]
v~(y) =-

j,(~a)a, q, (~a)r—,

K= (~6/A2+y2)1/2

(62)

(63)

APPENDIX C

The limit of the matrix elements of U2 requires
special mention. In evaluating the limit of

has a value of zero. We then obtain

dy LL(k, k) —L(y, k)]Lk' —y'] ',

(k' —k") ' dy f(k,k',y) where L(k,k) is the limit of L(y,k) as y-+ k.

APPENDIX D

U~ U2 Diagrams

&&LP(k'-y') '—P(k"-y') '] (64)

by l'Hospital's rule, we must be careful to recall that
we may not with impunity commute the diGerential
operator 8/Bk and the P (principal) value. We must
first go into the complex plane and evaluate the
principal-value integral by considering it to be half of
the sum of two integrals: one taken over a contour
skirting the singularities from the top, the other skirt-
ing the singularities from the bottom. The limit will
be given by

We now evaluate the contribution to 63' of the U~U2
terms, a typical term being represented by the diagram
of Fig. 2. There are twelve of these terms and they may
be associated with the possible configurations of the
diagram. The free line, representing U&, may not be
vertical, hence we have three positions available for
its upper end point, and two positions for its lower end
point, giving us six possibilities. Then, for each free-line
configuration the interacting lines representing U2 may
or may not be crossed.

Suppose that we write the equation corresponding to
the dia ram drawn.g

dy f(k, k,y) (k' y')-', (63)—
0 b,~= (n3!)—' d'k, d'k, d'k, U, (k,)k, ) k, ,k2) Ug(k2, kg)

where both integrals must be understood to be evalu-
ated in the manner specified above. Taking then ad-
vantage that in the same sense

= (03!) ' d'kid'k2

(68)

f(k,k, k) dy $k' —y'] '=0,

we may, then, write our answer as

(66) x U2(k), k~, k~, k2) exp( ph'k22/—2m)

We see that precisely half of our diagrams will look
this way (modulo changes in dummy variables). The
other half will give as a typical term

where

P dy L(y,k) (k' —y') —',

L(y, k) =—P(k, k,k) —f(k,k,y)]P' —y'] '

(6&)
(Q3!)—' d'k, d'k, U2(k&, k&, k&, k2) exp( —ph'k22/2m).

If we introduce variables k and K, by
and where we have used the equivalence of an integral
having a first-order singularity and the specified con-
tour, and the 8 value of such an integral. We can now
eliminate the need to take a principal value if, as has
been done in the section on binary kernels, we subtract
from the integral another principal-value integral which

K= (k,+k,), k=-', (ki —k2))

then we may write

U2(kg, k2, k„kg) = U;(k, K; k, K),
U2(k2, kg, k~, km) = Ug( —k, K; k, K).
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we may then, inln sp herical harmonics vExpanding
this case, write U2 in t e

' ' 4m P (2l+1)

S Y. LARSEN

ill+, which equals k k, wi

hile the terms a otribution, w i e
momenta.

Q(2') ' exp, ——'x( pE—h/ )

(p k) (7o)XP((cosa~ ft
nomenclature, we haveour former nowhere, in terms of o

As 2 ——~
— ' ——4E'+k' —R.k, we m ya writeAs k22=-'(K —2k)'=-,

k k' 2/ 1 ), — k'E' Sm) exp( —PA'k'/2m)E2E dk k' 2/ 1) )(P,k) exp( —3PA'E/ mb3'= (2/m. ) dE E dk k' 2/ 1 dp exp(Pk'Ekp/2m)
L 0,

'E' Sm)(21+1) dk dE E exp( —3ph E /= (4/ )p-'(2 /&')

into account. Usingtaken all 12 diagrams into accwhere we have tak.en a

—k'k'/2m) fi(P,k), (72X sinh(PA'Ek/2m)k exp( —P

8' 4A) (8/4A) (n/A)'",' sinh(8E)EdK= exp(8exp( —AE') sin (73)

we shall then obtain

where

1 ', —Ph'k'/3m),—'" Xr
—

1) dk k'-f((p, k) exp——3/2 y 3)—1 P (21+1b, = (64 )3-3~'(X, 1 (74)

f (p,k)=(2-)- (' A+8),
k IAglk) exp——O'PP'/m) —cos'b((k)P(P gA )exp—

x —h'py'/m) )—Lf(p) p(——k'PP'/m) —f(y) exp (—
2 2

where
cos'5y =— (k, ,y) =—(kl A~I y)(pl Ai y co»~ y

')j 'Leos'bi(p)k(kl &I pA =lim4vrl kp(k' —p' co

P2 2
8= lim8 (k' —p-') —' dy

Of'f-Diagonal Diagrams

s with a weight o 12 to ba'.l
' '

. 6(a), contributes, wiis
'

i lustrated in Fig. a,This diagram, i lus

b3 r'=12(3!87r3) ~

Let

0 x~ k3, k 2
—3)

k= —,
' (k,—k2),

k'=-', (1,+k,—21,),
K= k,+k2,

k~ ——(k+-,' K),

l,= (—1+-',K),
k,= (—k'+-', K).

es to take adv~nt~g

2m e. . . p
— ' k K)p t!,.k''-— — ' 2m 'lL, k, k', K)p 3C(—k', , p t!,.x —' k"+-'-E' —k' K)/2m ]%L2, , p
— '

p t!..x PPP k''--; ——' 2m %L2d'kd'k'd'K dP exp —' k''-— — 2b!!,z'=12(3!8~') '

s. The Jacobian equie ' uals one.our binary kernels. ) ee of the form of our i
W

e switc o lh to these variabl

(76)
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t.h Ii"urthcr) wtwO &rguI~me«) '"-of t is ek.ernel's sy] ng advantaga11$ k' »
~ g(& by deflnlng

~e jnterch»g
e (rom %2 an

i 2~2/4~)~(k', k) p'~

f ctor the K de endence

k kK)p=e"p
2 4 g(—k', k)p

pik21ti ~

(p g)k2g2 4mk', k, K)p-p'=
~h „enaMes u s to write

y2p( k 'K+4+ )/lg 2)-1 de exp[(12)(3 .

X

m]

(7»k, k),S(-k', k) p-p'k 2m)dkdk'e p(

K integral we obtain:Doing the in

/3 kg k),g( —k', k) p—p"~ ~ 3m), „,, dk "p(-k'p'/123- T2)-1 g~221 k P)

nd g and ~%. " "'"d
A

os(~)=k k'.s=Z 2l + 1)pv(cosO)s=p (21+1)E1(cosO)(R1,
E=0

ge over all

(2l+ 1)(2l'+ 1)= 22rd'k R(k', k) p g (—k', k) p p
= 2r

l=0, even E ~
00 +]

k', k) p g1 (k', k) p pdk k2 dIJ, IX(—1 1(~)~1 (~) 611(

1 a'k .1 ', ' k p. . (791 dk k2%.1 (k', k) p Sg (k, , p p .= 27r p 2 (2l+ 1) dk
EM, even

Iln R coil onl for l= lt .in a contribution on y

+1) dk exp(
0

ex ressions whic 'll'
h willrdl, the following expr . '

straightforward y,

1)

'
(R1 k', k)p S1(k', k) p p .—

02Pk "/3') dP' (R1dk' k'k"—3 21
1=0, even

3 ~

n y 11 we obtain, q
'

uiten analytica y,do the p integration y

—
02Pk "/3m) r,dk dk' k'k" exp—

0 0
where

' k p = (22r) '(k2/212' k p = 2r ' ) (I+II+III+IV+V .F= dpd '
lR (k', k) p Sg(k', k) p p = 2r-

ex ressions for I, I,e —, d the following exp
'

r I I,

Ik)pp '"), (g3)

hen, we 6n e ex

P" —p
" ' k k'(O'IA1 p

' ' k' —k") 'cos281

ki2 k2)j—1
(p

—ePk
)L

(k"—k') ) u

—ePz2 ~
—ePk'2

'—" ' o'1(') ( I 11 ')P
" ('

e let ~even values.allow t to assume eva
' '

ms we ran only allow oadding dlagraIIls) wious remarks on aith our previousConsistent wi
values.IaIl

0
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&-ePz&
&
—aPk2

(IV) =8 (4ir/kk') ( — i
' ' s e/ k') (k' —k") cos'bi(k)k'(k'~ A i~ k) s f eds k)pe ~"' f—(s) (86)

unit and in fact, by changing variables from y,s to may bed IV should be calculated as a unit; and in ac, y cExpressions III an s ou
combined with expression II.

(V) =- —C)4(k' —k") ' ds dy( },
0 0

where the bracket equals

k) f(k)p
-'"' -f(y-)-L( .&" —'"—-y —k

(87)

k2 —S2 P2 y2
e '"'—e-'"')/~(y' —k') 3-(k')C( '"'— '"")/ (k"—k')1—f(y)L(

k~2 y2

) (e-."-e-.e")/~(y -")]'"')/ (k' —')j—f(»I
k2 y'

(k' L(e '*'—e '"")/~(k"—s')) —f(y)t (e
—'e-' —e- » a y- —s

k"—y'

Diagonal Diagram

'n Fi . 6(b), contributes, with a w gwei ht of 24, to b, '.This diagram, illustrated in 'ig, ,
'

w

bg, rr =24(3!Ss' ) d'kid'kmd'k~ dP' exp( —h'P'kP/2m)

XexpL——h'~ —p')k '/2mj"ltd(k2, kq, k2, k~)e.Xx ki km, ki, k2)e e. (88)

e new variables k, k', K, K' and new functions f(p, qk and (P,k') by:

k=-', (k2—k~),

K= km+ k„k,=k+ K/2,
k'= -'(k, —k2), k3 ———k+ K/2,
K'= k,+k,,

~(P k) = exp(+O'PE'/4m)M&(P, E,k),)

K' k'
q (P,k') = exp (+O'PE"/4m) 3C (P,E,k

f the transformation will give us aariables to be k, k', K and the Jacobian o e%e shall take the independent variables to e
factor of 8.

b~ ii'= (24) (3!87r')—'8 2k"+ (k+2k') K+4(k k')+ 3E2/4j/2md'Ed'kd'k' exp( —O'P 3k'

X d ' exp) —h'p'(k" —k')/m)f(p' k)q(p —p', k') 89

n ular art o& the k and. k' integrals.h K tegral as well as the angular par o%e can Bo the in egra,

= 87rm/3h'p)~~' expL(h' p/6m) (4k'2+4k k'+k2) jd'E exp h'p)3E'/—4+ (k+2k') Kj/2m} = 87rm

d'kd'k' expL —(h'P/3m) (4 +k' k"+4k k') j
dk' kk' sinh(4h'pkk'/3m) expL —hmp(4k2yk 2)/3mj (9l= (4r) (2s) (3m/2h'P) dk dk' kk' sinh

0 0
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Expanding f and q:

1)f (P~k) q(P k') —Q (2l'+ )gv(P&7

lM

and collecting all terms, we obtain

bm, rr'= (2s.)'(256)3 '"))z '
l, l'M; eve&

(2l+ 1) (2l'+ ] )

X dk dk' kk' sinh(4A'Pkk'/3m) exp[—A')9(4k'+k")/3m

dP' exp—L
—eP (k2 —e)/mlf, (P',k)q, (P—P', k'.

enta. Performing the )8 integrat)on we have+le sum only over ethe even angular momen a.

' k' = (2s.) '(A'/m) lim(I+II+III+IV+V),dP' expL—[ A~P'(k—'2 k')/m —jy, (P',k)q; (P P', k')—= (93)

where, if we again let 5'/m=a,

fkn 1
(I)=~ —

~

cos%p(k') tanb) (k)e—

—costi (k)p(p i
A i i k)p, (94)X ""b(p)k(kid Ip) (, k,)

"" "")/ (y' —k'
(II)=~ —

~

oA, .(k') t S, (k)—

f~(p (1— ""' "")/~(p' —k') j—f) (y) L(1—e

2

where
~(y) =f~(k,p,y) =—(k I

~) I y)(p—l
~i I)» co"~~ y

-e P""
) (k' k', k') [(1——e 'P ~&'-"'))/u(p' —k')])

(III)+ (IV) =— cos- ~«p)k(kl~ i p)(-g)
k'2 —S2

2—2 —S21—e P &""+"' " "))/a(k" +P' —k' —s n. 1

(95)

k'2 —S2
cos'S, (k)p(pi a, i k)(g)

', ' s 1—e—P &""—"))/u(k" —s') je
—»'mf. (k' k' k')P —e P*'f& (k', k', s)[(1.—e '

(96)X d~
k"—S2

k"—S2

P2 y2

""' "")/ (y' —k') j, (k,k,k).—.""&f(k)l -f (y)[(1-—
(V)=-8

k2 —p'I 0 0

1—e "" "")/~(y' —k')jf)(p)[ 1—e """"))~()' &')j fib)LO ~ ' — — '

)2 2

k L(1—e—'P ' *")/a(k"—z')$ —f((y)[ 1—efg (k', k', s)e P*'
fg k L),1—e '

2 Z2—P(k'w))~)l~ —*~))/&(k 2+ye k2—~p~) ~&~) ~—*2))/z(kn+p~ k2 z2)) f, (y)[(1 e
—~ ))f (p)[(1 e

—ap(k'+y —s g

p' —y'
(97)
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APPENDIX E

TABLE III. The contributing terms to b39z'. '

Temperature
('K)

Free
2—dlQl.
4—dim. off
4-dlTl1. d1a.
Total

0.06415
0.6075
0.3436—0.6809
0.3344

0.06415
0.7444
0.5808—3.9531

—2.564

0.06415
0.6278
0.8394—12.10

—10.57

& It is estimated that the total results are accurate to within 2%, anQ
that no contributing term has an error greater than 5%.

TABLE IV. A breakdown of the contributing terms to b39 z for 1.7' K.

Two-dimensional integrals
Four-dimensional integrals {oR-diagonal diagram)
Four-dimensional integrals {diagonal diagrams)

0.1804
0.2475

0.4050
0.0940

0.0216
0.0021

0.0005
0.0000

Total

0.6075
0.3436

—0.6809

—0.2735—0.0266
0.0086
0.0009

—0.3493—0.0339
0.0058
0.0007

—0.0187
0.0051—0.0005
0.0000

0.0000
0.0007
0.0000
0.0000

TABLE V. A breakdown of the contributing terms to b3 XQ for 4 K.

Two-dimensional integrals
Four-dimensional integrals (oR-diagonal diagrams)
Four-dimensional integrais (diagonal diagrams)

—0.2810
0.4009

0,7966
0, 1532

0,2075
0.0267

6

0.02'.l3
0.0000

Total

0.7444
0.5808

—3.9531

—0.0995—0.6724—0.1805—0.0173

—2.1147—0.0659
0.0226
0.0000

—0.7129—0.0250
0.0081
0.0000

—0.0957
0.0000
0.0000
0.0000

TABLE VI. A breakdown of the contributing terms to b39z' for 8' K.

Two-dimensional integrals
Four-dimensional integrals (oB-diagonal diagram)
Four-dimensional integrals {diagonal diagrams)

—0.7840
0.4833

0.6517
0.2840

0.5894
0.0588

0.1707
0.0133

Total

0.6278
0.8394

—12.10

0.9625—0.9953—0.9466—0.3007

—3.3824—1.0539—0.3403—0.1186

—3.4167—0.9089—0.0067
0.0111

—1.2074—0.401.4—0.0005
0.0038


