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We investigate in the limit as the range of part of the interspin interaction becomes inde6nitely great,
but is still small compared to the size of the system, the behavior of Ising models which have, in addition,
a residual short-range interaction. We Gnd that the only possible type of transition in this limit is the familiar
Bragg-Williams type. We also investigate the passage of the three-dimensional Ising model on the simple
cubic lattice to the long-range limit from the short-range limit, dimension by dimension.

l. INTRODUCTION

N this paper we extend the results of Siegert' on the
- - Ising model in the limit in which all interactions
become long ranged to the case in which there are
residual short-range interactions. In the fourth and
final section of this paper we show that even in the
presence of short-range interactions, the existence of
any interaction of infinitely long range is sufficient to
force the nature of the transition to be of the Bragg-
Williams type, i.e., continuous energy and a discon-
tinuity in the specific heat.

In the second section of this paper we discuss the
general case and reduce the limit to a certain short-
range problem plus an equal interaction between all
spins.

In the third section we illustrate the results of the
second section by a number of examples and use the
examples to discuss the dimension-by-dimension long-
range limit for the Ising model on a simple cubic lattice.
We find that taking the long-range limit in one direction
alone is sufficient to obtain the qualitative nature of the
complete long-range limit. We find also that increasing
the range of the force raises the transition temperature,
just as with the spherical Ising model.

2. THE GENERAL CASE

Siegert has shown' that the Weiss-Bragg-Williams
approximation is equal to the limiting case of an Ising
model in which the range of the interaction becomes
infinite in all directions in such a way that, although
tending to infinity, it is still small compared to the total
size of the system. The maximum interaction energy
per spin is held fixed as the range becomes infinite. In
this section we extend his result to the case where part
of the interaction becomes infinitely long ranged and
part remains "short" ranged. We find again that the
limits of system size tending to infinity and the range
of the force tending to infinity may be interchanged.

Z (2~)
—/v/2

exp( ——', g x,s)OR(x,) g Ck, , (2.2)

where Ã is the number of spins and

OR(x, ) =g {cosh[+ x,f(A+8)'"],/]}. (2.3)

We shall assume that the indices k and 1 are d-dimen-
sional position vectors and that Al, l and Bl,l are func-
tions of (k—1) only. Also, we shall assume a ferromag-
netic interaction, i.e., Al, l) 0, Bl,l) 0. We may then
diagonalize A and 8 by introducing the eigenvectors
s~ and eigenvalues a(q) and b(q),

s,=X "'P& exp(2siq 1)x&,

At, ~
——X 'P, a(q) expL2oriq (1—k) j,

BQ& ——1V ' P, b(q) exp(27riq (1—k)j.
Equation (2.3) becomes

OR(ss) =Q {cosh[1V '/' Q s (a(q)+b(q)]'"

(2.4)

and Eq. (2.2) goes into

&&exp( —2oriq 1)]}, (2.5)

Also, the shape of the long-range part (in the infinite
limit) is not important in leading order but only its
total strength.

Let us consider an Ising model with both long- and
short-range interactions. Let the energy be given by

E/kT= —-', Q, ,; v, (A;;+8;;)v;, (2.1)

where A;; is the short-range and 8;; is the long-range
interaction. Following our development in a previous
paper' we may write the partition function as

Z (2~)
—/v/2 ~ exp( —-', P ~s, ~')OR(s, ) II ds, . (2.6)

*Work performed under the auspices of the U. S. Atomic Energy Commission.
A. I. I'. Siegert (private communication).

s G. A. Baker, Jr., Phys. Rev. 126, 20/2 (1962).
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where q; is the jth component of q and 8 is a range of full dimension tE, the din (2.17) and (2.18) is replaced
parameter proportional to the number of spins in the by a smaller number. While the rate is affected, the
range of the interaction, B. Hence the contribution of fact of convergence is not changed.
the exponential factor is bounded by

3. SOME EXAMPLES OF THE LONG-RANGE LIMIT
exp(sX sech'yM'(e)Ajar*[(lnR)/8't "j"}, (2.18)

which goes to zero as R ~ ~. Thus,

lim lim [(lnZ)/Ã$= lim f [lnZ(A*)]/AT}

= lim lim [(inZ)/Sj, (2.19)

which is the main conclusion of this section. The second
equality follows' from the uniform approach as E—& ~,
and existence of the appropriate limits. In case 8 is not

In this section we will work out some examples of the
results of Sec. 2. These examples will illustrate the
results that the free energy per spin is independent of
the shape of the interaction B. For the 6rst example,
we shall consider an Ising model on a simple quadratic
lattice (two dimensional) with nearest-neighbor inter-
actions in one direction and infinitely long range in
the other. We will consider the equistrength case, i.e.,
the maximum interaction energy per spin is the same
in both directions, although the nonequistrength case
is no harder. The partition function for this model is

N
Z= P exp E P —P P v„v, r.+P v,,v;yi, ;

all vs' =+1 i=1 Q j=l It: 1 j=l
(3.1)

where K= J/hT. We may obtain a rigorous solution for the energy, etc , for .this model by the use of the method
of "Gaussian random variables" which was introduced by Kac,' and extended by us. ' Now we know the inte-
gration formula,

Thus we may rewrite 3.1 as

&tr Nrutr (2~K+)—1/2 exp( Kftr P' —2K&Vv c—e )dP (3.2)

all Vsg = &1
(2e EX)—~t'

M — sr (II (d"') exp —E&Z
I

P'+2P; p v't/1V
I

—K & v"'+i.s ~

i=1 t=l )=1 i,j
(3.3)

It is to be noted that the exponent has been partially linearized. We may rearrange (3.3) as

M dP. M M
— exp( —EX P pcs) Q [ P exp(E P 2p;v,;+v;svj+i, s)j

&=i (2srE1V)' ' t i j=i all uli = +1 i~i
(3.4)

The second product depends on j only as a dummy variable, hence if we rename v;;, p, , then our expression for
the partition function becomes

M dp ~ M MII, (exp( —EZ ") Z exp[EX (2 't'+t't'+)])".
'=i (2srEX)'" '=i v'=+i i=1 (3.5)

We assume cyclical boundary conditions pN+1 ——pl. We
recognize the quantity which is raised to the Eth power
as simply the one-dimensional Ising model with a
"magnetic field" Pi at each site. The solution of this
problem is well known' to be

M

Trf/ H, }, (3.6)

where the H; are 2)&2 matrices

)exp(E+2EP~) exp( —E')
H;=/ (3.7)

exp( —E) exp(E —2EP;)I
' M. Kac, Phys. Fluids 2, 8 (1959).
~ G. A. Baker, Jr., Phys. Rev. 122, 1477 (1961).' See, for example, D. ter Haar, Emblements of Statistical Mechanics

(Rinehart and Company, New York, 1958), Sec. 12.6.

The effect of the Sth power is to permit the evaluation
of the partition function per spin by the method of
steepest descents' in the limit as the number of spins
becomes infinite in the long-range interaction direction.
Hence, we have eGectively reduced the integration in
(2.5) to finding the maxima of the quantity which is
raised to the Xth power in (3.5).

We shall now obtain an upper bound. First, Eq. (3.6)
is less than

2+X (s), (3.8)

7 See, for instance, H. Jeffreys and B. S. JeGreys, Methods of
'Jviatheraaticat Physics (Cambridge University Press, New York,
1950), Chap. 17.
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where 'A (i) is the largest eigenvalue of H;. This
bound follows by induction from the fact that all
elements and eigenvalues of the H; are positive and if
we think of moving a vector from right to left through
the matrix products we increase its magnitude at every
step by at most a factor of 'A,„(i), irrespective of its
direction. The two comes from the H; being 2)&2
matrices. Using (3.8) we may now factor our upper
bound for (3.5) so that the integrations over the P,

may each be done independently. We have for

Xm~(i) = ex c osh2K P, +[e'x sinh'2kP, +e ' 7'" (3..9)

Thus, there is either one maximum for v;=0, or, two
maxima for v, =&P(E) of exp( —EP2)X, (i). Since
the location of the maxima is independent of i, let us
compare the value of the upper bound obtained above
with that of a lower bound obtained by evaluating
(3.5) by the method of steepest descents with all

P,=P(E). The contribution from (3.6) is6

Cy

I.O—

~max +~min (3.10)

2—(N+M /(NM)

N, M~
(3.11)

we conclude that the partition function per spin is
given by

where X;, is the other eigenvalue of H; with v, =P(K).
Equation (3.10) is, for large M, about —', of our bound
(3.8). Hence, the lower bound here obtained is smaller
than the upper by a factor of 2—N because of the
difference between (3.8) and (3.10). It may also be
smaller by a 2™because of the possibility of there
being two maxima for exp (—EPP)X,„(i).However, as

0.0 i

c

Fzo. 1. Sketch of the specinc heat for the equistrength, two-
dimensional Ising model with long-range interactions in one
direction and short-range interactions in the other.

2~
—4' v2

E=J V )
sinh2E P (sinh2E P+ P cosh 2EP)

E)E,. (3.15b)

X(K)= lim Z'1&~"&
N, M~00

max (exp( —EP') (ex cosh2EP—00 (p(+00
+[e' sinh~2EP+e 2x7'I )}.

(3.12)

A simple calculation shows E to be continuous and
equal to —0.22620249J at the critical point. The
specific heat is discontinuous at the critical point, and
1s

1=2+ce2+' (3.13)

which has the solution E,—0.28357164. When K is
greater than E, we determine v by di6erentiating
(3.12) with respect to P and equating the result to zero.
We find that v satisfies

P=ex sinh(2EP)/(e x sinh 2E'P+e )~~2 (3.14)

which has only the solution v=O for E less than E,
and & P(E) for Egreater than E,. W'e may calculate
the energy. It is

E=—J tanhE, E&E„(3.15a,)

Physically speaking, v; is proportional to the value of
the molecular Geld and we expect equivalence (P,= P)
between all rows.

The critical properties of this model follow at once
from (3.12). The equation for the critical point, i.e.,
where the maximum is no longer at v=O, is

C, (E,—) = 8kK,'(1+2E,)—'= 0.07427813k,
ac„=C.(E,+)—C.(E;)

=3k(1+2K )'/[2K, (1—3e4x')7
= 1.5601429k. (3.16)

Thus, we see that this model displays a typical Bragg-
Williams singularity, with a discontinuity in the speci6c
heat and no discontinuity in the energy. We have
illustrated the specific heat in Fig. 1. Above the critical
point, the properties are the same as those of a col-
lection of uncoupled, one-dimensional Ising models.
This behavior corresponds to the fact that the energy
of a system with purely Sragg-Williams-type inter-
action is zero above the critical point. At the critical
point the discontinuity in the specific heat arises from
the transition to an ordered state caused by the long-
range interactions. It should be noted that the critical
point comes at much higher temperature (E',=0.28)
than the Bragg-Williams critical point (E,=0.5) in
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the absence of the short-range interaction, but at a
lower temperature than given by the Bragg-Williams
approximation to the whole system (E,=0.25). Even
so, the numerical value of AC, is quite close to the value
3k/2, obtained in the absence of the short-range force.

The spontaneous magnetization, which is propor-
tional to P, is easily shown from (3.14) to be propor-
tional to (E K—,)'" at the critical point.

The partition function corresponding to 3* for the
first example [A* is defined by (2.15)j is

Z(A*)= Q exp(/E/(XM)$(Q v;;)'+E Q v;, v,+i,,). (3.17)
all vs' =+1

By use of a formula like (3.2) we may rewrite (3.17) as

g' ~ 7 gt7

M, N M, N

all vs' =&1
dP exp{ EjtIM—P'+2EMXP g v;,/(ME) Eg—,v" ;v+t), (3.18)

which may be rearranged )as in (3.5)) as

+00 M

Z(Aa)= (2trEIiTM) —U~ dp (exp( —EM Ps) p exp/K g (2',+li,li )]) (3.19)

Equation (3.19) is, however, of the same sort as
(3.5), except now we have the same "magnetic field"
P at every lattice site. Thus, the solution proceeds as
before, except without the additional complication of
P, instead of P. Hence, (3.12) is again the solution.
This result is in agreement with (2.19).

For our last example we wish to consider an Ising
model on a simple cubic lattice in which there are
nearest-neighbor interactions in two dimensions and
an infinitely long-range force in the other direction.
Again we consider the "equistrength" case where the
maximum interaction energy per spin is the same in all
directions. As the derivation is almost the same here
as in (3.1) to (3.12) above, we shall discuss only the
differences. The major difference arises in (3.6) where
the II; are now the 2M'X2M' matrices as discussed by
Onsager. ' Consequently, various 2 are replaced by 2
Also where f; was previously a number, it must now be
treated as a 3f'-dimensional vector. However, one
eventually obtains a "squeezing" equation similar to
(3.11) and thus, if A(E,II) is the partition function per
spin for the simple quadratic lattice with E=J/kT
and H the applied magnetic field, then

)t(E)= max (exp( Ev')A(—K,2JP/tl)), (3.20)—eo (v(+ao

where m is magnetic moment per spin. The equation
for the critical point corresponding to (3.13) is easily
derived from the requirement that the second partial
with respect to P vanish for J =0 at that point. It is

2E,X(E,)=1, (3.21)

whei. e X is the reduced magnetic susceptibility X,kT/m'.
Using the Pade approximant method~ to evaluate X(E)
we may solve for E,. We obtain K,=0.1889619. The

L. Onsager, Phys. Rev. 65, I17 (1944).
t Q. A. Baker, Jr., Phys. Rev. 124, 768 (1961).

energy is again continuous and the specific heat dis-
continuous. The discontinuity is given by

1 8
AC, =—12E,s — (lnh. )—1

2 Bv'BK
g4

(lnA) . (3.22)
X~,v =0

The third partial derivative is expressible in terms of
X(E).The fourth partial may be computed directly by
the Pade approximant method from a series expansion
in terms of diagrams in which all but 4 of the vertices
are the meet of an even number of lines. "We have not,
however, done so. It should again be noted that the
critical point comes out at a much higher temperature
than Bragg-Williams critical point (E,=0.5) in the
absence of the short-range interaction, or the short-
range critical point~ (E,=0.4406868) in the absence
of the long-range interaction. It is also at a higher
temperature than the short-range limit of all the
interactions, i.e., the Ising model on the simple cubic
lattice' (E',=0.22172), but a lower temperature than
the Bragg-Williams approximation to it (E,=0.166667).

These results, together with corresponding results
for the spherical Ising model, ' enable us to give a
plausible discussion of the behavior of the Ising model
(we discuss specifically the simple cubic lattice here but
other lattices are similar) as the range of the interaction
varies from nearest-neighbor to infinitely long. For
nearest-neighbor interactions, " the specific heat is
singular on both sides of T,. The nature of the singu-
larity is probably logarithmic on both sides but of
smaller amplitude above T,. Following the results for
I This result corresponds to that of T. Oguchi fJ. Phys. Soc.

Japan 6, 31 (1951)g for the reduced magnetic susceptibility.
~ G. A. Baker, Jr., Phys. Rev, 129, 99 (1963); C. Domb, Phil.

Mag. Suppl. 9, 149 (1960).
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the spherical modeP and the one-dimensional Ising
model' we think that the quantitative nature of the
transition does not change as the (strength preserving)
range increases, although the transition temperature
increases. In the limit in which the range in any one
direction becomes infinite, we obtain a typical Bragg-
Williams transition. It probably looks much like Fig. i.
The infinite part of the specific heat curve is squeezed
to the critical point and disappears in the limit as the
range becomes infinite. The nature of the short-range
interaction transition is thus completely obscured in
this limit. If the long-range limit is taken in another
dimension we obtain a nonequistrength version of Fig.
1. If the final long-range limit is taken, the variation is
rather minor and the standard Bragg-Williams approxi-
mation is obtained. As pointed out in Sec. 2, the shape
remains practically unchanged and the transition
temperature increases.

4. LONG- AND SHORT-RANGE MODEL IN TERMS OF
THE SHORT-RANGE PARTITION FUNCTION

We point out in this section that many of the results
obtained for the special examples in the previous section
are more generally valid. From (2.19) it follows that
we may evaluate any long-range limit of the type
discussed by considering Z(A*). Thus, letting b=b(0),
we have

Z( *)= 2 pL —-'Z v' 'tvt+b(Z v)'/N] (4 )
all states

which may be identically rewritten as

Z(A*) = P (2~N/b)-~t2
all states

+00

dv exp( —NP'/b —2P Q v;)

Xexp[ ——,
' Q v,A;,v;]. (4.2)

If we introduce X(E)= [Z(A*)]' ~, the partition
function per spin, and A(K,H)=[Z(A)]'~~, then in
the limit as N —+ 00

'A(J )= (2+N/b) "'

1/N

dP [exp(—P'/b)A(E, 2hTP/m)]~ (4 3)

which is the same result as (3.20). The equation for the
critical point is

2bx(E,)=1 (4.5)

in analogy to (3.21), where X is again the reduced
magnetic susceptibility. A formula similar to (3.22)
holds for the discontinuity in the specific heat. We wish
to point out that in all models in which I is singular,
the smallest amount of long-range force or, for that

matter, of effective long range force i-ntroduced through an
approximate solution procedure forces a Bragg Willi-ams

type solution. If the amount of the long-range force is

very small, then at moderate distances from the critical
point the specific heat will look very much as it did
without any long-range interaction; however, near the
critical point the presence of any long-range force is of
overriding importance.
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In the limit as Ã —+ ~ we may evaluate the integral
by the method of steepest descents. ~ Hence,

g(IC) = max (exp( —P'/b)A (E,2hTP/m) }, (4.4)—oo &v &oo


