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Calculation of p as a function of temperatures gives
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where all the related parameters are deined above in
this article.

At 300'K for instance, P= 0.54 (giving H; r,
= 1.54Hp)

instead of a value of P =0, when the excited ionic levels
are ignored. This relatively large correction mould be
important for the determination of nuclear gyromag-
netic ratios of excited states of europium isotopes using
angular correlation technique.

Note uddedi, e proof Rec.ent Mossbauer measurements
carried out by I. Nowik and S. Ofer in this laboratory,
and to be submitted for publication shortly, show that
at 80'K H,« is about 750 koe, in very good agreement
with the present calculations.
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The Feynman description of the polaron is used to write down a polaron Boltzmann equation. This
equation is then used to discuss the drift mobility problem. In the limit of low temperatures, the Boltzmann
equation is rearranged to exhibit elastic resonance scattering and it is solved exactly. The evaluation of the
drift mobility thus obtained is compared with the results of other calculations. Other applications of the
polaron Boltzmann equation are briefly discussed.

INTRODUCTION
' N this paper, we calculate the drift mobility of an
& - electron in a polar crystal (a polaron) by making use
of a model due to Feynman. ' ' Our procedure will be to
use the Feynman model to derive a Boltzmann equation
which may then be solved to find the mobility. Exten-
sive study' r has already been devoted to this mobility
problem. The primary novel feature of the present work
is the use of a Boltzmann equation in conjunction with
the Feynman model.

We begin from the Frohlich Hamiltonian for an elec-
tron in a polar crystal. We take all the optical phonons
to have the same frequency and the electron-phonon
matrix element to be proportional to the inverse of the
magnitude of the phonon wave vector. In units in which

5, the phonon frequency, and the electron band mass are
all equal to unity the Frohlich Hamiltonian is'

H=p, '/2+ U(r„1)+Pa,ta,
q

4s.n )"'
+Z (e, e~q r +rr te—/s r,) (1)

v2 Vq'I
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(London) A219, 53 (1953).
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Here, p, and r, are electron momentum and position
operators; aq~ and aq are operators which create and
destroy a phonon with wave vector q; V is the volume
of the system; o. is a dimensionless coupling constant
which measures the strength of the electron-phonon
interaction. U(r, t) is a scalar potential for a force
externally applied to the system. At the space-time
point r, t, this force is, of course, —7'U(r, 1).We shall use
this force to set the polaron in motion so that we may
measure its mobility.

In the weak coupling limit, 0.((i, we can apply a
perturbation expansion in the electron-phonon inter-
action. We can take the basic electronic states to be
plane wave states and write a Boltzmann equation to
describe how phonon emission and absorption processes
change the population of these states. 4 However, when
o. is comparable with or greater than unity this descrip-
tion of the electronic states breaks down. Every electron
now travels with a cloud of phonons about it and this
cloud substantially modi6es all the electronic properties.

However, there exists a relatively simple description
of the polaron which works quite well even when o. is
fairly large. Feynman' pointed out that the motion of
the electron in its associated cloud of phonons was quite
similar to the motion that an electron would go through
if it were coupled to another particle with a'.harmonic
oscillator coupling. If this ficticious other particle has
mass 3E and the spring constant is k, then the Hamil-
tonian for this analog system is
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Here, P and R are momentum and position operators
for the 6ctitious particle.

Feynman found that, when k and 3f were correctly
chosen, he could get an excellent description of the
electronic properties by employing the Hamiltonian Hp.
In particular, he calculated time-dependent correlation
functions for the electron in the canonical ensemble con-
structed from Hp. These correlation functions enabled
him to calculate the electronic energy. The parameters
k and 3f were choosen to minimize this ground-state
energy. At the end of this variational calculation,
Feynman had a better, i.e., a lower energy than any
previous worker. '

In this paper, we shall take the point of view that the
model Hamiltonian (2) provides a correct zeroth-order
description of the electron. We shall take the basic level
scheme for the electrons to be given by the eigenvalues
of (2). Then, we shall write down a Boltzmann equation
for a distribution function which describes the occupa-
tion of these various levels. The scattering from one level
to another will occur because of the emission and absorp-
tion of phonons. Following Feynman's discovery that
the electron-phonon interaction could be treated as a
perturbation when the zeroth-order Hamiltonian is Hp,
we shall simply apply the golden rule for the electron-
phonon interaction to calculate the transition rate into
and out of the eigenstates of Hp.

We begin by examining the eigenstates of Hp. We can
diagonalize Hp by working with the set of canonical
variables:

center-of mass position:

total momentum:

relative position:

relative momentum:

r = (r,+MR)/(M+1),
@=p.—P,

ros = re Rq

p.,= (Mp, —P)/(M+1).

Clearly, Hp describes the motion of a compound
system, a "molecule" in which the center of mass moves

freely but the two particles are bound as a harmonic
oscillator. The eigenstates of this Hamiltonian are
labeled by the total momentum y and the integers e„
e„,e, which describe the level of the three-dimensional
oscillator. Since the oscillator frequency is

The energy levels are

E„,,= +(e.+e„+m,+-', )v,
2 (M+1)

and corresponding eigenstates can be labeled as
~ p, n).

In terms of these variables, the Hamiltonian Hp is
diagonalized as

p' M+1
Hp- + pos +—ros ~

2(M+1) 2M 2

In this approximation, M+1 represents the effective
mass of the system of electron plus its cloud of phonons.
In the weak-coupling limit n&(1, this effective mass
reduces to the electron band mass, i.e., 3f —+ 0. Also, in
the weak-coupling limit, the electron moves essentially
freely. Hence, its coupling to the other particle, here
measured by the spring constant k, also goes to zero. In
the opposite limit of strong coupling, n))1, the electron
appears very heavy and very strongly bound, M))1 and
v))1. The oscillator frequency v remains uniformly
greater than unity.

II. THE BOLTZMANN EQUATION FOR POLARONS

We describe the state of the polaron system by giving
the distribution function f(p,n, r, t) which gives the
occupation of the state

~ p, n) for particles in the neigh-
borhood of the space-time point r, t. In our calculation
of the mobility, we want to know the average velocity
induced by the external force. Since the electron and the
Gctitious particle remain bound together, the average
electronic velocity is the same as the average center-of-
mass velocity, i.e., the average electron velocity in the
neighborhood of r, t is

P
v(r, t) = d'p g f(p, n; r, t)

~Sf 1
d'P 2 f(Il n' r I)

(6)

Our level scheme in terms of p and n remains ap-
propriate whenever the external scalar potential varies
suSciently slowly in space and time. In particular, this
demands that the frequencies contained in U(r, t) be ((v
and the wave numbers be much smaller than the inverse
radius of the bound state. When these conditions hold
the Boltzmann equation takes the simple form

p.v.—+ +I'(r &)'Vl, f(p, »'r, t)=— (7)
M+ 1 — ~~ collision

Here P(r, t)= —VU(r, t) is the external force on the
electron which is the same as the force on the center of
mass of the bound system. The M+1 appears in (7)
because the velocity of the center of mass is p/(M+1).

To get the collision term we apply the golden rule.
The number of particles in the state

~ p,n) is diminished

by both processes in which the electron induces the
emission of the phonon and also processes in which
phonons are absorbed. First, we calculate the absorption
rate. According to the golden rule this rate is

4xcx

1 &P,nl ~ ""IIl',n') I'
a.u'. ' 42Vq'

X2~8(E„,, E„,„,+1), (g)—
Here X is the equilibrium number of phonons in the
state labeled by iI at the temperature p ':

E= (es—1)—'.
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and the eigenstates can also be decomposed as

lp, n)= Ip)ln),

so that the matrix element in (8) is

M ~
&p (

e-"'I n')&n
I expl s'q'ro

My1i

M
=Ss+s s &nlexp —iq r» lln').

M+1i

Consequently, the expression (8) for the rate of phonon
absorption is

where

Q 2m'(E„,„E,.„.+1)—NWs, „,s,„,(10)
(2~)s n

4~~ 1&nl exp[s(f —u') r-M/(M+1)]
I

~') I'

v2 (p —p')'

describes the transition rate between the states
~ p,n)

and
~

y', n'). The rate of emission of phonons is given by
a form very similar to (8) except that g~ %+1 and
inside the energy conservation delta function 1. —+ —1.
The rate of scattering into the state

~ y,n) can be calcu-
lated in exactly this same way. When all these results
are combined the collision term takes the form

To get the absorption rate, this number is multiplied by
the electron-phonon matrix element squared and finally
2~ times the energy conservation delta function. In
computing the matrix element we use, of course, the
eigenstates ~p', n') of Hs. Finally, this result is summed
over all phonon wave vectors q and all final states
~y', n'). The matrix element is easily computed if we
notice that the electron-position operator can be de-
composed as

r,=r+[M/(M+1)]r.
„

There are three features which make the Boltzmann
equation obtained by substituting (12) into (7) different
from the standard transport equation for electrons in a
polar crystal. The first is the relatively trivial fact that
the effective mass, M+1, appears instead of the electron
band mass. The second is that the m's serve as a set of
extra state labels so that more kinds of transitions need
to be considered. Finally, the appearance of the factor

(n
~
exp i(y —p') .r.,

~

n')
M

in TV tends to prevent large momentum transfers from
contributing appreciably.

To see this fact in more detail consider the case
n=n'=0. Then (9) becomes'

47rot exp[ —(M/e) (p —y') '/2 (M+1)]
8'y, p., y, p

—— (13)
K2 (1 —P')'

The factor (13) includes an exponential cutoff at high
momentum transfer. This cutoff occurs because the
electron is continually emitting and absorbing phonons.
It does not stand still long enough to achieve sufhcient
localization to be noticed by the very short wavelength
phonons. In other words, because of its random motion,
the electron is a disuse structure and it is quite trans-
parent to short-wavelength phonons. "

It should be pointed out that we have not derived a
Boltzmann equation for the polaron system. Instead, we
have simply assumed that the "molecules" of the Feyn-
man model have sufficiently well-separated collisions so
that the Boltzmann equation concept is valid. Con-
sequently, we cannot make any statement about the
range of validity of our analysis.

III. MOBILITY CALCULATIONS

We wish to compute the average velocity which ap-
pears as the linear response to a weak force for the
particular case in which the force is independent of
space and time. Because of this independence f(p,n; r, t)
is itself independent of space and time. We write

83 collision f(y,n; r, t) =fs(p, n)[1+@(y,n)], (14)

X~(E„,.—E„,.+1)[&f(p,n; r, ~)

—(g+1)f(p', n', r, t)]

+g(E„„—E„,„,—1)[(g+1)f(p,n; r, t)

—gf(p', n', r, t)]. (12)

[The reader might argue that there should, in fact, be
extra scattering terms in (12) resulting from the differ-

ence between Hs and p, '/2. This diiference indeed con-

tributes to higher order scattering processes; but it
cannot induce real transitions in first order. Hence, it is
omitted from the present analysis. ]

where fe is the complete equilibrium distribution
function

fob, n) -exp( —PE.,.)
and q (p,n) represents the deviation from equilibrium.
Notice that when f is replaced by fs in the collision
term (12) that term vanishes. After a bit of algebra we

The harmonic oscillator matrix elements are evaluated in, for
example, J. Schwinger, Phys. Rev. 91, 728 (1953).' See the discussions of T. D, Schultz and P. M. Platzman, in
Proceedings of the Scottish University Summer School on Exci-
tstions in Semi-conductors [Oliver Boyd Ltd. , London (to be pub-
lished) ].
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see that we can simplify the collision term as

d3
—fo(p,n) Q 2m Wp, , y,,

(2~)3 n

X[5(Ey,n
—E„,n.+1)X+8(Ey,n —Ey, n —1)(8+1)]

P' p = I'(c,) q (p,0) for e„(1,
M

(22)

p(p', 0) contributes very little to the right-hand side of
(21). For the moment, however, let us simply neglect
this term. Then (21) is of the form

X [q (p,n) —y(p', n')]. (16) where

On the left-hand side of our Boltzmann equation we ~ expL (Mli')(p p)'/(M+1)]
have F V~f(p, n). Since we only want to consider the
linear effect of the force, we can replace this by

p'
F V,f, (p, n) = — f,(p,n).

3f 1
(17)

The common factor fo may be cancelled out of (16) and

(17) leaving an integral equation for y of the form

Xb(e„e„+—1) (23)

is the rate of occurrence of phonon absorption processes
in which the polaron is both initially and 6nally in the
lowest oscillator level.

For very small p,

PF p dap/

Q 2irWp, , y
~

(2n-)' ~'

I'(0) =2aÃ(M+1)'i'e

%e can determine the mobility by substituting

X[5(E„,,—E~.,;+1)g+ 5(E„,~—E„,~ —1)(X+1)]

X[y(p, n) —
q (p', n')]. (18)

p'
p(p, 0) =

(M+ 1)I'(0)
(24)

Once we have calculated q, we can calculate the into (19) to find that the average velocity is
velocity, v, by making use of Eq. (6). In the limit of
small F and hence small q, F

daP p
~(p, n) fo(p, n)

(2s)' n Mj1 + fo(»n) and hence
(2ir)' ~

(19)

(My1)r (0)

Then the drift mobility is given as the coefficient p in the
relation

ev=/LiF, (20)

pF p aE

M+1 ~V2

exp[—(M/~) (p —p')'/(M+1)]
dap/

(p —p')'

X5(e„—e~ +1)[q (p,0)—y(p', 0)] for e~(1. (21)

where e is the magnitude of the electronic charge.
For very low temperatures, P))1, the only contribu-

tion to v in (19) occurs for n=0 and p'/2(M+1)«1. In
this limit, Eq. (18) is relatively simple. The second
delta function in (18) cannot contribute because its
argument is always smaller than zero when n=0 and
p'/2(M+1) (1.(The vanishing of this term reflects the
impossibility of processes in which a low-energy polaron
emits a phonon and also processes in which a low-energy
polaron is produced by the absorption of a phonon. ) In
this range of energies, the other delta function only con-
tributes for n'=0, since v&1. Thus, by making use of

(18) and (13), we find

PFHZP=—
2P (M+1)I'(0)

(26)

This differs by a factor of 3/(2P) from (25). However,
there exists no real disagreement between our con-
clusions and those of FHIP because the authors of
FHIP take great pains to point out that the perturba-
tion theory they employ fails in the zero-frequency limit.
The source of this failure can be seen in the fact that
their dc mobility was derived by extrapolating the high-
frequency form of y(p, 0) to lower frequencies. This gave
a result which can be expressed in the present language
as

p= (25)
(M+ 1)P (0) 2aX (M+ 1)3/' exp (—M/i/)

The result (25) for the low-temperature mobility was
previously obtained in reference 6. However, in refer-
ence 7 a somewhat different result was obtained. Here,
the mobility, which was calculated for all temperatures
and all frequencies, reduces in the zero-frequency, low-
temperature limit to

(27)Here we have used the abbreviation e„for the kinetic FHIP: y(p, 0)=pop. F for all p.
energy of the "molecule, "p'/2(M+1).

In the next section we shall show that the term Here qo is a constant which is to be determined self-
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consistently. In our work we have assumed that for low
temperatures

i/(y, O)=ypp F for e„(1,
=0 for 6)1.

(28)

Resonance Scattering

At this point, we return to Eq. (21). This equation
can be written in terms of the variables

e,=p'/2 (M+1),
Q=1/I el,

~(u, O) = v (e,Q),
as

I/t2

PF Q =I'(e) y(e, Q)
M

dQ'
y(e+1, Q')P„, , (Q' ~ Q) . (29)

4x

Here, F(e) is the phonon absorption rate defined by
Eq. (23) and P,+1, is defined by

r(.)P,„,(Q'~ Q)
00 M (1 —1')'

= 2~2aN dp'p" 5(e~—e~.+1) exp ——
0 1/ 2(M+1)

=2crN/(e+1) (M+1)]1/'

exp j (M/1/) )Qel/s Q (e+ 1)1/212j
X (30)

Qel/s QI(e+1)1/sj2

From Eq. (29) P,+1,(Q'~ Q) represents the proba-
bility that, in a phonon emission process, a particle with
initial energy e+1 and direction Q' would have the
direction Q after the emission. This probability is
normalized so that

It is well known'" that in a variational calculation
based upon the ordinary Boltzmann equation, the
assumption (27) leads to an incorrect estimate of the
low-temperature mobility. In fact, the error produced
in the variational calculation by this incorrect assump-
tion is just the extra factor of 3/(2P) which appears in
/1FHip. ' Equation (27) is wrong because q (p,0) is greatly
reduced by phonon emission processes whenever the
energy of the particle is above the emission threshold.

In order to make this point more firmly, in the next
section we calculate p(p, O) from our polaron Boltzmann
equation with the aim of establishing the validity
of (28).

pF p' n

M+1 ir42

p 2
p 2

dppltI —1
&2 (M+1) 2 (M+1)

expL —(M/~) (p' —P")'/2(M+ 1)j
X

(11'—11")'

X Lp (p', 0)—p(p",0)j. (33)

We multiply this equation by N, write p"/2(M'+1)
=e+1 and utilize our definitions of 1' and P to write
(33) as

-2(e+1)- 1/s

NPF Q' =r(e) q (e+1, Q')
M I

dQ"
i/ (.,Q")P, ,+,(Q"~ Q) . (34)

4m

Notice that we begin from a particular value of the
energy, say e, for e &1. Equation (29) tells us that be-
cause of phonon emission processes ip(e, Q) is deter-
mined by rp(e+1, Q'). However, Eq. (34) tells us that
because of phonon absorption process y(e+1, Q') is
itself determined by q (e,Q"). Hence, we can eliminate
y(e+1, Q') from the pair of Eqs. (29) and (34).

Since N«1, the left-hand side of (34) may be replaced
by zero. Then (34) implies

dQ"
i/(e+1, Q')= ip(e, Q")P, ~1(Q"—+ Q'). (35)

4m

The result of combining (35) with (29) is

26
—I/2

Thus, P,+1,(Q' ~ Q) represents an angular correlation
factor for an emission process. Because of detailed
balancing symmetry, P,+1,(Q'~ Q) also represents
the angular correlation factor which gives the proba-
bility that, after an absorption process a particle with
initial energy 6 and direction Q would have 6nal direc-
tion Q'. This dual role of I' is indicated by writing

P, ,„(Q~ Q') =P,„„,(Q'~ Q). (32)

Equation (29) involves qr(e+1, Q'). For n=0 and
e) 1, the Boltzmann equation (18) involves both terms
proportional to N and terms proportional to N+1.
Since N is «1 for low temperatures, we neglect it and
find

dQ
P,„,(Q'~ Q)

4m

dQ' dQ"
cp(e) Q")

4x 4x
= I'(e) ip (e,Q)—

dQ'
P,„,, (Q' ~ Q) =1. (31)

XP, .„(Q"~ Q')P„, , (Q ~ Q") . (36)4x
"J.M. Ziman, E/ectrons and Phonons (The Clarendon Press,

Oxford, England, 1962), p. 344.
uP. Garcia Moiiner(privatecommunication), notedtiiis feature This result may be best understood by multiPlying it

Of pFHIP. by fp Because the an. gular scattering probabilities
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ntegrate to unity (36) then implies

iF V,f(p, O)

P(') f(p 0)
dQ' dQ"

f(p",o) I" =
4~ 4x

X~, ,+,(~- ~ p,+, ,(~

Equation (37) is naturally interpreted by looking at
scatterings as a compound in which a low-energy
polaron first absorbs and then emits a phonon. The
rate at which this process occurs is I'(e); while

dQ'

= I'(0) q (e,Q)— v (~,&") (38)
4m

describes the angular correlation between the initial and
final directions of the polaron.

This view of the scattering as a compound process has
been espoused by Schultz. ' He called this a resonance
scattering process. Notice that we have derived reso-
nance scattering only for very low temperatures; in our
view the concept breaks down for higher temperatures.

Now we can see quite directly why it is possible to
neglect the second term in (36) in the limit e ~ 0. In
this limit the initial and final momentum of the particle
almost vanishes. Therefore, the directions of these mo-
menta are almost irrelevant in determining the direction
of the momentum in the excited state, Q'. This means
that for small e, the angular correlation factors, I', may
be replaced by unity. Then, (36) becomes for e((1

26
—1/2

pF ~
M 1

dQ"

However, because of the vector character of the dis-
turbance y(e, Q") F Q" times a function of e. Thus,
the angular average of y vanishes, and the second term
on the right-hand side of (38) disappears.

We can, therefore, conclude that the collision time
approximation, (24), is fully justified at sufFiciently low
temperatures.

Another way of seeing this same result is to again
make use of (35) which implies that, for very small e

q (&+1, Q') =
dQ"

q (e,a")=0.
4m

Thus, we see quite directly that, above the emission
threshold, the FHIP assumption (28) is quite untenable.

CONCLUSIONS

The work reported in this paper is quite incomplete.
We have only calculated the drift mobility in the
extreme low-temperature limit; our Boltzmann equa-
tion is capable of predicting the drift mobility for all
temperatures. We have not considered the Hall mobility
at all; the analysis given here can easily be extended to
the case in which a magnetic 6eld is present. Calcula-
tions of the drift and Hall mobilities at all temperatures
are in progress.

Finally, the most important gap in this paper is the
question of the range of validity of the Boltzmann
employed here. Is this equation correct for all tempera-
tures and coupling strengths' Is it correct in the pres-
ence of a strong magnetic fields These questions too are
under investigation and it is hoped that we can report
some progress in the near future.


